数学杂志  2015, Vol. 35 Issue (2): 294-306   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WANG Yu-yu
WANG Jun-li
A NEW FAMILY OF ELEMENTS IN THE STABLE HOMOTOPY GROUPS OF SPHERES
WANG Yu-yu, WANG Jun-li    
College of Math. Science, Tianjin Normal University, Tianjin 300387, China
Abstract: In this paper, we study the non-triviality of the elements in the stable homotopy groups of spheres. Using the May spectral sequence, the authors show that there exists a new product in the E2-term of the Adams spectral sequence, which converges to a family of homotopy elements with order p and higher filtration in the stable homotopy groups of spheres.
Key words: stable homotopy groups of spheres     Toda-Smith spectrum     sphere spectrum     Adams spectral sequence     May spectral sequence    
球面稳定同伦群中的一族新元素
王玉玉, 王俊丽    
天津师范大学数学科学学院, 天津 300387
摘要:本文研究了球面稳定同伦群中元素的非平凡性.利用May谱序列,证明了在Adams谱序列E2项中存在乘积元素收敛到球面稳定同伦群的一族阶为p的非零元,此非零元具有更高维数的滤子.
关键词稳定同伦群    Toda-Smith谱    球谱    Adams谱序列    May谱序列    
1 Introduction

To determine the stable homotopy groups of spheres $\pi_*(S)$ is one of the central problems in homotopy theory. One of the main tools to reach it is the Adams spectral sequence(ASS).

Let $A$ be the mod $p$ Steenrod algebra, and $S$ be the sphere spectrum localized at an odd prime $p$. For connected finite type spectra $X$, $Y$, there exists the ASS $\{E_r^{s,t}, d_r\}$ such that

(1) $d_r: E_r^{s,t}\rightarrow E_r^{s+r,t+r-1}$ is the differential;

(2) $E_2^{s,t}\cong \text{Ext}_A^{s,t}(H^*(X),H^*(Y))\Rightarrow [\Sigma^{t-s}Y,X]_p$, where $E_2^{s,t}$ is the cohomology of $A$. When $X$ is sphere spectrum $S$, Toda-Smith spectrum $V(n)(n=1,2,3)$, respectively, $(\pi_{t-s}(X))_p$ is the stable homotopy groups of $S$, $V(n)$. So, for computing the stable homotopy groups of spheres with the ASS, we must compute the $E_2$-term of the ASS, $\text{Ext}_A^{*,*}(\mathbb{Z}_p, \mathbb{Z}_p)$.

From [1], $\text{Ext}_A^{1,*}(\mathbb{Z}_p, \mathbb{Z}_p)$ has the $\mathbb{Z}_p$-base consisting of

$a_0\in \text{Ext}_A^{1,1}(\mathbb{Z}_p, \mathbb{Z}_p), h_i\in\text{Ext}_A^{1,p^i q}(\mathbb{Z}_p, \mathbb{Z}_p)$

for all $i\geqslant0$ and $\text{Ext}_A^{2,*}(\mathbb{Z}_p, \mathbb{Z}_p)$ has the $\mathbb{Z}_p$-base consisting of $\alpha_2$, $a_0^2$, $a_0h_i(i>0)$, $g_i(i\geqslant0)$, $k_i(i\geqslant0)$, $b_i(i\geqslant0)$ and $h_ih_j(j\geqslant i+2,i\geqslant0)$ whose internal degrees are $2q+1$, 2, $p^iq+1$, $p^{i+1}q+2p^iq$, $2p^{i+1}q+p^iq$, $p^{i+1}q$ and $p^i q+p^j q$, respectively. From [2,P.110, Table 8.1], the $\mathbb{Z}_p$-base of $\text{Ext}_A^{3,*}(\mathbb{Z}_p, \mathbb{Z}_p)$ has been completely listed and there is a generator $\stackrel {\sim}{\gamma_t}\in \text{Ext}_A^{t,tp^2q+(t-1)pq+(t-2)q+t-3}(\mathbb{Z}_p, \mathbb{Z}_p)$ which is described in [3].

Our main theorems of this paper are as follows.

Theorem 1.1  Let $p\geqslant 11$, $3\leqslant t<p-5$, then

$ \stackrel{\thicksim}{\gamma_t} h_0 b_1^5\in \text{Ext}_A^{t+11,(t+5)p^2q+(t-1)(p+1)q+t-3}(\mathbb{Z}_p,\mathbb{Z}_p) $

is a permanent cycle in the ASS and converges to a non-trivial element in $\pi_*(S)$.

Based on a new homotopy element in $\pi_*(V(2))$, the above homotopy element in $\pi_*(S)$ will be constructed .

For the reader's convenience, let us firstly give some preliminaries on Toda-Smith spectrum $V(n)$.

The $\mathbb{Z}_p$ cohomology group of Toda-Smith spectrum $V(n)$ is $H^*V(n)\cong E[Q_0,Q_1,$ $\cdots,Q_n]\\ \cong Q(2^{n+1})$, where $Q_i(i\geqslant 0)$ is the Milnor's elements of Steenrod algebra $A$, and E[ ] is the exterior algebra. From [4], when $n=1,2,3$ and $p>2n$, we know that $V(n)$ is realized, and there exists a cofibre sequence $(V(-1)=S)$:

$ \Sigma^{2(p^n-1)}V(n-1) \xrightarrow{{{\alpha }_{n}}} V(n-1) \xrightarrow{{{i}_{n}}} V(n) \xrightarrow{{{j}_{n}}} \Sigma^{2p^n-1}V(n-1), $

where $\alpha_n(n=0,1,2,3)$ are $p$, $\alpha$, $\beta$, $\gamma$, respectively. The cofibre sequence can induce a short exact sequence of $\mathbb{Z}_p$ cohomology groups. Thus, we get the following long exact sequence of Ext groups:

$ \cdots\xrightarrow{{(j_n)_*}} \text{Ext}_A^{s-1,t-(2p^n-1)}(H^*V(n-1),\mathbb{Z}_p) \xrightarrow{{(\alpha_n)_*}} \text{Ext}_A^{s,t}(H^*V(n-1),\mathbb{Z}_p) $
$ \xrightarrow{{(i_n)_*}} \text{Ext}_A^{s,t}(H^*V(n),\mathbb{Z}_p) \xrightarrow{{(j_n)_*}} \text{Ext}_A^{s,t-(2p^n-1)}(H^*V(n-1),\mathbb{Z}_p)\xrightarrow{{(\alpha_n)_*}} \cdots. $

The following theorem is a key step to prove Theorem 1.1.

Theorem 1.2 Let $p\geqslant 11$, then $h_0b_1^5\in \text{Ext}_A^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p)$ is a permanent cycle in the ASS and converges to a non-trivial element in $\pi_*V(2)$.

It is very difficult to determine the stable homotopy groups of spheres. So far, not so many nontrivial elements in the stable homotopy groups of spheres were detected. See, for example [1,5,6].

The detection of the element $\stackrel{\sim}{\gamma_t}h_0b_1^5$ is parallel to that of the element $\stackrel{\sim}{\gamma_t}h_0b_1^2$ given in [7]. Actually, our results are more complicated, especially to Proposition 3.3 and Proposition 3.4.

This paper is organized as follows: after giving some preliminaries on the May spectral sequence (MSS) in Section 2, the proofs of the main theorems will be given in Section 3.

2 Some Preliminaries on the May Spectral Sequence

The most successful tool for computing $\text{Ext}_A^{*,*}(\mathbb{Z}_p,\mathbb{Z}_p)$ is the MSS. From [8,Theorem 3.2.5] {Ravenel}, there exists the MSS $\{E_r^{s,t,*},d_r\}$ which converges to $\text{Ext}_A^{s,t}(\mathbb{Z}_p,\mathbb{Z}_p)$. The $E_1$-term and differential of the MSS are

$E_1^{*,*,*}=E(h_{i,j} |i>0,j\geqslant 0)\otimes P(b_{i,j} |i>0,j\geqslant 0)\otimes P(a_i |i\geqslant 0),$
$d_r:E_r^{s,t,u}\rightarrow E_r^{s+1,t,u-r}, r\geqslant 1,$

where $E$ is the exterior algebra, $P$ is the polynomial algebra and

$h_{i,j}\in E_1^{1,2(p^i -1)p^j,2i-1},\hspace{0.1cm} b_{i,j}\in E_1^{2,2(p^i-1)p^{j+1}, p(2i-1)},\hspace{0.1cm} a_i\in E_1^{1,2p^i-1,2i+1}.$

Lemma 2.1 (see [9]) Let $t=(c_np^n+c_{n-1}p^{n-1}+\cdots +c_1p+c_0)q+c_{-1}$, $c_i\in\mathbb{Z}$, and $p-1\geqslant c_n\geqslant c_{n-1}\geqslant\cdots \geqslant c_1\geqslant c_0\geqslant c_{-1}\geqslant 0$, then the number of $h_{n+1-i,i}$ in the generator of $E_1^{c_n,t,*}$ will be $(c_i-c_{i-1})$ $(0\leqslant i\leqslant n)$.

Corollary 2.2 (see [9]) If $p>a\geqslant b\geqslant c\geqslant d\geqslant 0$, then the number of $h_{1,2}$, $h_{2,1}$ and $h_{3,0}$ in the generator of $E_1^{a,ap^2q+bpq+cq+d,*}$ will be $(a-b)$, $(b-c)$ and $(c-d)$, respectively.

Corollary 2.3 (see [9]) Let $t\geqslant 3$, then $E_1^{t,tp^2 q+(t-1)pq+(t-2)q+t-3}=\mathbb{Z}_p\{h_{2,1}h_{1,2}h_{3,0}a_3^{t-3}\}$.

Lemma 2.4 (see [9]) Let

$t=(c_np^n+c_{n-1}p^{n-1}+\cdots +c_1 p+c_0)q+c_{-1},$

$c_i\in \mathbb{Z}_p (-1\leqslant i\leqslant n)$, for $c_i<c_{i-1}$, $0\leqslant i\leqslant n-1$, then $E_1^{c_n,t,*}=0$.

Lemma 2.5 (see [9]) Let $u>0$, $p>c_2,c_1,c_0,c_{-1}\geqslant 0$ and $c_2-c_{-1}\geqslant 4$, there don't exist $u$ factors in the generator of $E_1^{u,c_2 p^2 q+c_1 pq+c_0 q+c_{-1}}$.

3 The Convergence of $\stackrel{\thicksim}{\gamma_t}h_0b_1^5$ in the Adams Spectral Sequence

Let $P$ be the subalgebra of $A$ generated by the reduced power operations $P^i(i>0),$ then we have the following results.

Proposition 3.1 (see [9]) $\text{Ext}_A^{s,t}(H^*V(3),\mathbb{Z}_p)\cong \text{Ext}_P^{s,t}(\mathbb{Z}_p,\mathbb{Z}_p)$, $t-s<2p^4-1$.

Corollary 3.2 Let $s\geqslant 2$, then

$\text{Ext}_A^{s+11,5p^2q+q+s-1}(H^*V(3),\mathbb{Z}_p)\cong \text{Ext}_P^{s+11,5p^2q+q+s-1}(\mathbb{Z}_p,\mathbb{Z}_p).$

Proposition 3.3 Let $3\leqslant t<p-5, p\geqslant 11$, then

$0\neq \stackrel{\thicksim}{\gamma_t} h_0 b_1^5 \in \text{Ext}_A^{t+11,(t+5)p^2q+(t-1)(p+1)q+t-3} (\mathbb{Z}_p ,\mathbb{Z}_p).$

The generators of $E_1^{s,t,u}$ and their first, second degrees satisfying $t<p^3 q$ are listed in Table 1.

Table 1
The generators and degrees

To compare the degrees, $h_0$, $b_1\in \text{Ext}_A^{*,*}(\mathbb{Z}_p,\mathbb{Z}_p)$ are represented by $h_{1,0}\in E_1^{1,q,*}$, $b_{1,1}\in E_1^{2,p^2 q,*}$ in the MSS. From Corollary 2.3, we conclude that $\stackrel{\thicksim}{\gamma_t}\in \text{Ext}_A^{t,tp^2 q+(t-1)pq+(t-2)q+t-3}$ $(\mathbb{Z}_p,\mathbb{Z}_p)$ is represented by $h_{2,1}h_{1,2}h_{3,0}a_3^{t-3}\in E_1^{t,tp^2 q+(t-1)pq+(t-2)q+t-3,*}(t\geqslant 3)$ in the MSS.

Thus, $\stackrel{\thicksim}{\gamma_t} h_0 b_1^5$ is represented by $h_{1,0}b_{1,1}^5h_{2,1}h_{1,2}h_{3,0}a_3^{t-3}\in E_1^{t+11,(t+5)p^2 q+(t-1)pq+(t-1)q+t-3,*}$ in the MSS. If we want to prove that $0\neq \stackrel{\thicksim}{\gamma_t} h_0 b_1^5 \in \text{Ext}_A^{t+11,(t+5)p^2q+(t-1)(p+1)q+t-3}(\mathbb{Z}_p ,\mathbb{Z}_p), $ we must prove that $E_1^{t+10,(t+5)p^2q+(t-1)(p+1)q+t-3,*}=0$. For any $\sigma\in E_1^{t+10,(t+5)p^2q+(t-1)(p+1)q+t-3,*}$, we have the following discussions.

Case 1 When $t\geqslant 6$, from Lemma 2.5, the number of the factors in $\sigma$ will be $t+9$, $t+8$, $t+7$, $t+6$ or $t+5$.

Subcase 1.1 If $\sigma$ has $t+9$ factors, there exists a factor $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, the possible forms will be $\sigma=\sigma_{1.1} b_{1,0}$, $\sigma=\sigma_{1.2} b_{1,1}$, $\sigma=\sigma_{1.3} b_{2,0}$, where

$\begin{eqnarray*} &&\sigma_{1.1}\in E_1^{t+8,(t+5)p^2q+(t-2)pq+(t-1)q+t-3,*}, \sigma_{1.2}\in E_1^{t+8,(t+4)p^2q+(t-1)pq+(t-1)q+t-3,*},\nonumber\\ &&\sigma_{1.3}\in E_1^{t+8,(t+4)p^2q+(t-2)pq+(t-1)q+t-3,*}. \end{eqnarray*}$

By Lemma 2.5, the number of the factors in $\sigma_{1.1}$ is $t+7, t+6$ or $t+5,$ thus the number of the factors in $\sigma$ will be $t+8, t+7$ or $ t+6$. It is in contradiction with that $\sigma$ has $t+9$ factors, so $\sigma_{1.1}=0$. Similarly, we conclude that $\sigma_{1.2}=0$, $\sigma_{1.3}=0$, so $\sigma=0$.

Subcase 1.2 If $\sigma$ has $t+8$ factors, there exist two factors $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, the possible forms will be $\sigma=\sigma_{2.1} b_{1,0}^2$, $\sigma=\sigma_{2.2} b_{1,1}^2$, $\sigma=\sigma_{2.3} b_{2,0}^2$, $\sigma=\sigma_{2.4} b_{1,0}b_{1,1}$, $\sigma=\sigma_{2.5} b_{1,0}b_{2,0}$, $\sigma=\sigma_{2.6} b_{1,1}b_{2,0}$, where

$\begin{eqnarray*} &&\sigma_{2.1}\in E_1^{t+6,(t+5)p^2q+(t-3)pq+(t-1)q+t-3,*}, \sigma_{2.2}\in E_1^{t+6,(t+3)p^2q+(t-1)pq+(t-1)q+t-3,*},\nonumber\\ &&\sigma_{2.3}\in E_1^{t+6,(t+3)p^2q+(t-3)pq+(t-1)q+t-3,*}, \sigma_{2.4}\in E_1^{t+6,(t+4)p^2q+(t-2)pq+(t-1)q+t-3,*},\nonumber\\ &&\sigma_{2.5}\in E_1^{t+6,(t+4)p^2q+(t-3)pq+(t-1)q+t-3,*}, \sigma_{2.6}\in E_1^{t+6,(t+3)p^2q+(t-2)pq+(t-1)q+t-3,*}. \end{eqnarray*}$

By the similar argument in Subcase1.1, we can get that $\sigma_{2.i}=0(i=1,2\cdots 6)$, thus $\sigma=0$.

Subcase 1.3 If $\sigma$ has $t+7$ factors, there exist three factors $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, the possible forms will be $\sigma=\sigma_{3.1} b_{1,0}^3$, $\sigma=\sigma_{3.2} b_{1,0}^2 b_{1,1}$, $\sigma=\sigma_{3.3} b_{1,0}^2 b_{2,0}$, $\sigma=\sigma_{3.4}b_{1,1}^3 $, $\sigma=\sigma_{3.5} b_{2,0}^3$, $\sigma=\sigma_{3.6} b_{1,1}^2 b_{2,0}$, $\sigma=\sigma_{3.7} b_{1,1}^2 b_{1,0}$, $\sigma=\sigma_{3.8} b_{2,0}^2 b_{1,0}$, $\sigma=\sigma_{3.9} b_{2,0}^2 b_{1,1}$, $\sigma=\sigma_{3.10} b_{1,0} b_{1,1} b_{2,0}$, where

$\begin{eqnarray*} &&\sigma_{3.1}\in E_1^{t+4,(t+5)p^2q+(t-4)pq+(t-1)q+t-3,*}, \sigma_{3.2}\in E_1^{t+4,(t+4)p^2q+(t-3)pq+(t-1)q+t-3,*}, \nonumber\\ &&\sigma_{3.3}\in E_1^{t+4,(t+4)p^2q+(t-4)pq+(t-1)q+t-3,*}, \sigma_{3.4}\in E_1^{t+4,(t+2)p^2q+(t-1)pq+(t-1)q+t-3,*},\nonumber\\ &&\sigma_{3.5}\in E_1^{t+4,(t+2)p^2q+(t-4)pq+(t-1)q+t-3,*}, \sigma_{3.6}\in E_1^{t+4,(t+2)p^2q+(t-2)pq+(t-1)q+t-3,*},\nonumber\\ &&\sigma_{3.7}\in E_1^{t+4,(t+3)p^2q+(t-2)pq+(t-1)q+t-3,*}, \sigma_{3.8}\in E_1^{t+4,(t+3)p^2q+(t-4)pq+(t-1)q+t-3,*},\nonumber\\ &&\sigma_{3.9}\in E_1^{t+4,(t+2)p^2q+(t-3)pq+(t-1)q+t-3,*}, \sigma_{3.10}\in E_1^{t+4,(t+3)p^2q+(t-3)pq+(t-1)q+t-3,*}. \end{eqnarray*}$

It is obvious that $\sigma_{3.1}=0$. By the similar argument in Subcase1.1, we can get that $\sigma_{3.i}=0$ $(i=4,5,\cdots, 10).$ From Lemma 2.4, note that $t-3<t-1$, $t-4<t-1$, thus the remainder are all zero. Therefore, we can get $\sigma=0$.

Subcase 1.4 If $\sigma$ has $t+6$ factors, there exist four factors $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, $\sigma=\sigma^\prime b_{1,0}^x b_{1,1}^yb_{2,0}^z$, where $x+y+z=4,x,y,z\geqslant 0$ and $\sigma^\prime\in E_1^{t+2,T},$ $T=(t+5-y-z)p^2q+(t-1-x-z)pq+(t-1)q+(t-3).$ If $x\geqslant 2,$ we have that $y+z<3$ and $t+5-y-z>t+2$. It is obvious that $\sigma^\prime =0$. Thus, the possible nontrivial forms will be $\sigma=\sigma_{4.1} b_{1,1}^4$, $\sigma=\sigma_{4.2} b_{2,0}^4$, $\sigma=\sigma_{4.3} b_{1,1}^3 b_{1,0}$, $\sigma=\sigma_{4.4} b_{1,1}^3 b_{2,0}$, $\sigma=\sigma_{4.5} b_{2,0}^3 b_{1,0}$, $\sigma=\sigma_{4.6} b_{2,0}^3 b_{1,1}$, $\sigma=\sigma_{4.7} b_{1,1}^2 b_{2,0}^2$, $\sigma=\sigma_{4.8} b_{1,0} b_{1,1}^2b_{2,0}$, $\sigma=\sigma_{4.9} b_{1,0} b_{1,1}b_{2,0}^2$, where the first degrees of $\sigma_{4.i}(i=1,2,3,\cdot\cdot\cdot,9)$ are all $t+2$ and the second degrees of them are listed in Table 2 ($M=t-1$, and $N=t-3$).

Table 2
The factors and second degrees

By the argument similar to Subcase 1.3, we get that $\sigma_{4.i}=0(i=1,2\cdots 9)$, thus $\sigma=0$.

Subcase 1.5 If $\sigma$ has $t+5$ factors, there exist five factors $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{5.1} b_{1,1}^3b_{2,0}^2$, $\sigma=\sigma_{5.2} b_{1,1}^2b_{2,0}^3$, $\sigma=\sigma_{5.3} b_{2,0}^4 b_{1,1}$, $\sigma=\sigma_{5.4} b_{1,1}^4 b_{2,0}$, $\sigma=\sigma_{5.5} b_{2,0}^5$, $\sigma=\sigma_{5.6} b_{1,1}^5$, where the first degrees of $\sigma_{5.i}(i=1,2,3,\cdot\cdot\cdot,6)$ are all $t$ and the second degrees of them are listed in Table 3 ($M=t-1$, and $N=t-3$).

Table 3
The factors and second degrees

Similarly to $\sigma_{3.2}$, we can get that $\sigma_{5.i}=0(i=1,2\cdots 5)$. As for $\sigma_{5.6}$, from the Corollary 2.2, there exist two factors $h_{3,0}$, so $\sigma_{5.6}=0$. Thus, we can get $\sigma=0$.

Case 2 When $t=5$, $E_1^{t+10,(t+5)p^2q+(t-1)(p+1)q+t-3,*}=E_1^{15,10p^2q+4pq+3q+q+2,*},$ the generator contains $(q+2)$ factors $a_i$. Therefore, the first degree $\geqslant q+2>15,$ it's a contradiction. So, we get $\sigma=0$. When $t=4$, $ t=3$, the proofs are the similar to $t=5$. Summarize the above Case 1 and Case 2, $E_1^{t+10,(t+5)p^2q+(t-1)(p+1)q+t-3,*}=0.$ That is

$0\neq \stackrel{\thicksim}{\gamma_t} h_0 b_1^5 \in \text{Ext}_A^{t+11,(t+5)p^2q+(t-1)(p+1)q+t-3} (\mathbb{Z}_p ,\mathbb{Z}_p)(3\leqslant t<p-5).$

Proposition 3.4 Let $r\geqslant 2$, $3\leqslant t<p-5$, then

$\text{Ext}_A^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*}(\mathbb{Z}_p,\mathbb{Z}_p)=0.$

It is sufficient if we can show that $E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*}=0$.

Case 1 If $r>6$, $t+11-r<t+5$, so we have

$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*}=0.$

Case 2 If $r=6$, then

$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*}=E_1^{t+5,(t+5)p^2q+(t-1)pq+(t-1)q+t-8,*}.$

Subcase 2.1 When $t\geqslant 8$, from the Corollary 2.2, there exist six factors $h_{1,2}$, so $\sigma=0$.

Subcase 2.2 When $t=7$, $E_1^{t+5,(t+5)p^2q+(t-1)pq+(t-1)q+t-8,*}=E_1^{12,12p^2q+6pq+5q+q-1,*}$. The generator contains $(q-1)$ factors $a_i$. Therefore, the first degree$\geqslant q-1>12$, it's a contradiction. So, the generator is impossible to exist.

Subcase 2.3 When $3\leqslant t\leqslant 6$, by the similar argument in Subcase 2.2, the generator is impossible to exist.

Case 3 If $r=5$, then

$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*}=E_1^{t+6,(t+5)p^2q+(t-1)pq+(t-1)q+t-7,*}.$

Subcase 3.1 When $t\geqslant 7$, from the Lemma 2.5, we know that the generator contains $t+5$ factors, one of which must be the factor $b_{i,j}$. Thus, the possible nontrivial forms will be $\sigma=\sigma_{3.1} b_{1,1}$, $\sigma=\sigma_{3.2} b_{2,0}$, where $\sigma_{3.1}\in E_1^{t+4,(t+4)p^2q+(t-1)pq+(t-1)q+t-7,*}$, $\sigma_{3.2}\in E_1^{t+4,(t+4)p^2q+(t-2)pq+(t-1)q+t-7,*}$. By the similar argument in Subcase2.1, we can get that $\sigma_{3.1}=0$, $\sigma_{3.2}=0$.

Subcase 3.2 When $3\leqslant t\leqslant 6$, by the similar argument in Subcase 2.2, the generator is impossible to exist.

Case 4 If $r=4$, then

$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*}=E_1^{t+7,(t+5)p^2q+(t-1)pq+(t-1)q+t-6,*}.$

Subcase 4.1 When $t\geqslant 6$, from Lemma 2.5, we know that the number of the factors in $\sigma$ will be $t+5$ or $t+6$.

Subcase 4.1.1 If $\sigma$ contains $t+6$ factors, then there exists a factor $b_{i,j}(b_{1,0},b_{1,1},$ $b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{4.1} b_{1,0}, \sigma=\sigma_{4.2} b_{1,1},$ $ \sigma=\sigma_{4.3}b_{2,0}, $ where

$\begin{eqnarray*} &&\sigma_{4.1}\in E_1^{t+5,(t+5)p^2q+(t-2)pq+(t-1)q+t-6,*}, \sigma_{4.2}\in E_1^{t+5,(t+4)p^2q+(t-1)pq+(t-1)q+t-6,*},\nonumber\\ &&\sigma_{4.3}\in E_1^{t+5,(t+4)p^2q+(t-2)pq+(t-1)q+t-6,*}. \end{eqnarray*}$

By the similar argument in Subcase 2.1, we know that $\sigma_{4.1}=0$. As for $\sigma_{4.2}$, from Lemma 2.5, $\sigma_{4.2}$ must contain $t+4$ factors, thus $\sigma=\sigma_{4.2}b_{1,1}$ contains $t+5$ factors. It is a contradiction with that $\sigma$ contains $t+6$ factors, then $\sigma_{4.2}=0$. Similarly, we can get $\sigma_{4.3}=0$.

Subcase 4.1.2 If $\sigma$ contains $t+5$ factors, then there exist two factors $b_{i,j}(b_{1,0},b_{1,1},$ $b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{4.4} b_{1,1}^2, $ $ \sigma=\sigma_{4.5}b_{2,0}^2,$ $\sigma=\sigma_{4.6} b_{1,1}b_{2,0}, $ where

$\begin{eqnarray*} &&\sigma_{4.4}\in E_1^{t+3,(t+3)p^2q+(t-1)pq+(t-1)q+t-6,*}, \sigma_{4.5}\in E_1^{t+3,(t+3)p^2q+(t-3)pq+(t-1)q+t-6,*}, \nonumber\\ &&\sigma_{4.6}\in E_1^{t+3,(t+3)p^2q+(t-2)pq+(t-1)q+t-6,*}. \end{eqnarray*}$

By the similar argument in Subcase 2.1, we can get $\sigma_{4.4}=0$. As for $\sigma_{4.5}$, from the Lemma 2.4 and $t-3<t-1$, so $\sigma_{4.5}=0$. Similarly, we can get $\sigma_{4.6}=0$.

Subcase 4.2 When $3\leqslant t\leqslant 5$, by the similar argument in Subcase 2.2, we know that the generator is impossible to exist. Thus, we have $\sigma=0$.

Case 5 If $r=3$, then

$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*}=E_1^{t+8,(t+5)p^2q+(t-1)pq+(t-1)q+t-5,*}.$

Subcase 5.1 When $t\geqslant 5$, from Lemma 2.5, the number of the factors in $\sigma$ will be $t+5$, $t+6$ or $t+7$.

Subcase 5.1.1 If $\sigma$ contains $t+7$ factors, then there exists a factor $b_{i,j}(b_{1,0},b_{1,1},$ $b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{5.1} b_{1,0}, \sigma=\sigma_{5.2} b_{1,1},$ $\sigma=\sigma_{5.3}b_{2,0}, $ where

$\begin{eqnarray*} &&\sigma_{5.1}\in E_1^{t+6,(t+5)p^2q+(t-2)pq+(t-1)q+t-5,*}, \sigma_{5.2}\in E_1^{t+6,(t+4)p^2q+(t-1)pq+(t-1)q+t-5,*},\nonumber\\ &&\sigma_{5.3}\in E_1^{t+6,(t+4)p^2q+(t-2)pq+(t-1)q+t-5,*}. \end{eqnarray*}$

Similarly to $\sigma_{4.2}$, we can get $\sigma_{5.i}=0(i=1,2,3)$.

Subcase 5.1.2 If $\sigma$ contains $t+6$ factors, then there exist two factors $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{5.4} b_{1,1}^2$, $\sigma=\sigma_{5.5}b_{2,0}^2$, $\sigma=\sigma_{5.6} b_{1,0} b_{1,1} $, $\sigma=\sigma_{5.7}b_{1,0}b_{2,0}$, $\sigma=\sigma_{5.8} b_{1,1}b_{2,0}$, where

$\begin{eqnarray*} &&\sigma_{5.4}\in E_1^{t+4,(t+3)p^2q+(t-1)pq+(t-1)q+t-5,*}, \sigma_{5.5}\in E_1^{t+4,(t+3)p^2q+(t-3)pq+(t-1)q+t-5,*},\nonumber\\ &&\sigma_{5.6}\in E_1^{t+4,(t+4)p^2q+(t-2)pq+(t-1)q+t-5,*}, \sigma_{5.7}\in E_1^{t+4,(t+4)p^2q+(t-3)pq+(t-1)q+t-5,*},\nonumber\\ &&\sigma_{5.8}\in E_1^{t+4,(t+3)p^2q+(t-2)pq+(t-1)q+t-5,*}. \end{eqnarray*}$

Similarly to $\sigma_{4.2}$, we can get that $\sigma_{5.4}=0$, $\sigma_{5.5}=0$, $\sigma_{5.8}=0$. Similarly to $\sigma_{4.5}$, we can get that $\sigma_{5.6}=0$, $\sigma_{5.7}=0$.

Subcase 5.1.3 If $\sigma$ contains $t+5$ factors, then there exist three factors $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{5.9} b_{1,1}^3$, $\sigma=\sigma_{5.10}b_{2,0}^3$, $\sigma=\sigma_{5.11} b_{1,1}^2b_{2,0}$, $\sigma=\sigma_{5.12} b_{1,1}b_{2,0}^2$, where

$\begin{eqnarray*} && \sigma_{5.9}\in E_1^{t+2,(t+2)p^2q+(t-1)pq+(t-1)q+t-5,*}, \sigma_{5.10}\in E_1^{t+2,(t+2)p^2q+(t-4)pq+(t-1)q+t-5,*},\nonumber\\ &&\sigma_{5.11}\in E_1^{t+2,(t+2)p^2q+(t-2)pq+(t-1)q+t-5,*}, \sigma_{5.12}\in E_1^{t+2,(t+2)p^2q+(t-3)pq+(t-1)q+t-5,*}, \end{eqnarray*}$

By the similar argument in Subcase2.1, we can know that $\sigma_{5.9}=0$. Similarly to $\sigma_{4.5}$, we can get that $\sigma_{5.10}=0$, $\sigma_{5.11}=0$, $\sigma_{5.12}=0$.

Subcase 5.2 When $t=4$ or $t=3$, by the similar argument in Subcase2.2, we know that the generator is impossible to exist. Thus, in this case, we can get $\sigma=0$.

Case 6 If $r=2$, then

$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*}=E_1^{t+9,(t+5)p^2q+(t-1)pq+(t-1)q+t-4,*}.$

Subcase 6.1 When $t\geqslant 5$, from Lemma 2.5, the number of the factors in $\sigma$ will be $t+5$, $t+6$, $t+7$ or $t+8$.

Subcase 6.1.1 If $\sigma$ contains $t+8$ factors, then there exists a factor $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{6.1} b_{1,0}, \sigma=\sigma_{6.2} b_{1,1},$ $\sigma=\sigma_{6.3}b_{2,0}, $ where

$\begin{eqnarray*} &&\sigma_{6.1}\in E_1^{t+7,(t+5)p^2q+(t-2)pq+(t-1)q+t-4,*}, \sigma_{6.2}\in E_1^{t+7,(t+4)p^2q+(t-1)pq+(t-1)q+t-4,*}, \nonumber\\ &&\sigma_{6.3}\in E_1^{t+7,(t+4)p^2q+(t-2)pq+(t-1)q+t-4,*}. \end{eqnarray*}$

Similarly to $\sigma_{4.2}$, we can get $\sigma_{6.1}=0$, $\sigma_{6.2}=0$, $\sigma_{6.3}=0$.

Subcase 6.1.2 If $\sigma$ contains $t+7$ factors, then there exist two factors $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{6.4} b_{1,0}^2$, $\sigma=\sigma_{6.5} b_{1,1}^2$, $\sigma=\sigma_{6.6}b_{2,0}^2$, $\sigma=\sigma_{6.7} b_{1,0} b_{1,1} $, $\sigma=\sigma_{6.8}b_{1,0}b_{2,0}$, $\sigma=\sigma_{6.9} b_{1,1}b_{2,0}$, where

$\begin{eqnarray*} &&\sigma_{6.4}\in E_1^{t+5,(t+5)p^2q+(t-3)pq+(t-1)q+t-4,*}, \sigma_{6.5}\in E_1^{t+5,(t+3)p^2q+(t-1)pq+(t-1)q+t-4,*},\nonumber\\ &&\sigma_{6.6}\in E_1^{t+5,(t+3)p^2q+(t-3)pq+(t-1)q+t-4,*}, \sigma_{6.7}\in E_1^{t+5,(t+4)p^2q+(t-2)pq+(t-1)q+t-4,*},\nonumber\\ &&\sigma_{6.8}\in E_1^{t+5,(t+4)p^2q+(t-3)pq+(t-1)q+t-4,*}, \sigma_{6.9}\in E_1^{t+5,(t+3)p^2q+(t-2)pq+(t-1)q+t-4,*}. \end{eqnarray*}$

Similarly to $\sigma_{4.5}$, we can get that $\sigma_{6.4}=0$. Similarly to $\sigma_{4.2}$, we can get that $\sigma_{6.i}=0$ $(i=5,6\cdots 9)$.

Subcase 6.1.3 If $\sigma$ contains $t+6$ factors, then there exist three factors $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{6.10} b_{1,1}^3$, $\sigma=\sigma_{6.11}b_{2,0}^3$, $\sigma=\sigma_{6.12}b_{1,1}^2b_{1,0}$, $\sigma=\sigma_{6.13} b_{1,1}^2b_{2,0}$, $\sigma=\sigma_{6.14} b_{1,0}b_{2,0}^2$, $\sigma=\sigma_{6.15} b_{1,1}b_{2,0}^2$, $\sigma=\sigma_{6.16} b_{1,0}b_{1,1}b_{2,0}$, where the first degrees of $\sigma_{6.i}(i=10,11,\cdot\cdot\cdot,16)$ are all $t+3$ and the second degrees of them are listed in Table 4 ($M=t-1$, and $N=t-4$).

Table 4
The factors and second degrees

Similarly to $\sigma_{4.2}$, we can get that $\sigma_{6.10}=0$, $\sigma_{6.11}=0$, $\sigma_{6.13}=0$. Similarly to $\sigma_{4.5}$, we can get that $\sigma_{6.12}=0$, $\sigma_{6.14}=0$, $\sigma_{6.15}=0$, $\sigma_{6.16}=0$.

Subcase 6.1.4 If $\sigma$ contains $t+5$ factors, then there exist four factors $b_{i,j}(b_{1,0},b_{1,1},b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{6.17} b_{1,1}^4$, $\sigma=\sigma_{6.18}b_{2,0}^4$, $\sigma=\sigma_{6.19}b_{1,1}^3b_{2,0}$, $\sigma=\sigma_{6.20} b_{1,1}b_{2,0}^3$, $\sigma=\sigma_{6.21} b_{1,2}^2b_{2,0}^2$, where the first degrees of $\sigma_{6.i}(i=17,18,\cdot\cdot\cdot,21)$ are all $t+1$ and the second degrees of them are listed in Table 5 ($M=t-1$, and $N=t-4$).

Table 5
The factors and second degrees

Similarly to Subcase2.1, we can get that $\sigma_{6.17}=0$. Similarly to $\sigma_{3.2}$, we can get that $\sigma_{6.i}=0(i=18,19,20,21)$.

Subcase 6.2 When $t=3, t=4$, by the similar argument in Subcase 2.2, we know that the generator is impossible to exist. Thus, we have $\sigma=0$.

Therefore, we can get that $E_1^{t+11-r,(5+t)p^2q+(t-1)pq+(t-1)q+t-r-2,*}=0$.

That is $\text{Ext}_A^{t+11-r,(5+t)p^2q+(t-1)pq+(t-1)q+t-r-2,*}(\mathbb{Z}_p,\mathbb{Z}_p)=0.$

Proposition 3.5 Let $s\geqslant 2$, $p\geqslant 11$, then $\text{Ext}_A^{s+11,5p^2q+q+s-1}(H^*V(2),\mathbb{Z}_p)=0.$

From Corollary 3.2, we have

$\text{Ext}_A^{s+11,5p^2q+q+s-1}(H^* V(3),\mathbb{Z}_p)\cong\text{Ext}_P^{s+11,5p^2q+q+s-1}(\mathbb{Z}_p,\mathbb{Z}_p).$

From [4,Lemma 2.2]{Toda}, we know that the rank of $\text{Ext}_P^{s+11,5p^2q+q+s-1}(\mathbb{Z}_p,\mathbb{Z}_p)$ is less than or equal to that of $[P(b_j^i)\otimes H^{*,*}(U(L))]^{s+11,5p^2q+q+s-1}$ , and $[P(b_j^i)\otimes H^{*,*}(U(L))]^{s,t}$ is the $E_2-$term of the MSS, where $P()$ is the polynomial algebra. Up to the total degree $t-s<(p^3+3p^2+2p+1)q-4$, $H^{s,t}(U(L))$ is multiplicative by the following cohomology classes

$\begin{alignat}{5} h_i & =\{R_1^i\}, & g_i & =\{R_2^i R_1^i\}, & k_i & =\{R_2^i R_1^{i+1}\}(i\geqslant 0),\nonumber\\ l_1 & =\{R_3^0 R_2^0 R_1^0 \}, & l_2 & =\{R_2^1 R_2^0 R_1^1 \}, & l_3 & =\{R_3^0 R_1^2 R_1^0 \},\nonumber\\ l_4 & =\{R_3^0 R_2^1 R_1^2 \}, & l_5 & =\{R_3^1 R_2^1 R_1^1 \}, & l_6 & =\{R_2^2 R_2^1 R_1^2 \},\nonumber\\ m_1 & =\{R_3^0 R_2^1 R_2^0 R_1^1 \}, & m_2 & =\{R_4^0 R_3^0 R_2^0 R_1^0 \} , & & \nonumber\\ m_3 & =\{R_3^1 R_2^1 R_2^0 R_1^1 \}, & m_4 & =\{R_2^2 R_3^0 R_1^2 R_1^0 \}. & & \nonumber \end{alignat}$

Moreover, we have additively

$\begin{eqnarray*} &&H^{*,*}(U(L))\cong \{1,l_4,h_3 \}\otimes \{1,h_0,h_1,g_0,k_0,k_0h_0\}\nonumber\\ &&+\{h_2,h_2h_0,g_1,l_1,l_2,l_1h_1,k_1,l_3,k_1h_1,l_1h_2,m_1,m_1h_0,g_2,g_2h_0,l_5,m_2,m_3,l_6,m_4\}, \end{eqnarray*}$

and the bidegrees of $R_j^i,b_j^i$ are $(1,2(p^{i+j}-p^i))$, $(2,2(p^{i+j-1}-p^{i+1}))$, respectively. In the MSS, $b_1^0$ converges to $b_0\in \text{Ext}_P^{2,pq}(\mathbb{Z}_p,\mathbb{Z}_p)$, and the total degree of $b_1^0$ is $|b_1^0|=pq-2$. The generators whose total degrees are less than or equal to $5p^2q+q-12$ in $[P(b_j^i)\otimes H^{*,*}(U(L))]^{s,t}$ and the total degrees $|\lambda|$ mod $pq-2$ are listed in Table 6 $(t=1,2,3,4,5,t'=1,2,3,4).$

Table 6
The generators $\lambda$ and total degrees $|\lambda|$ mod $pq-2$

Let $x$ be a generator of $ \text{Ext}_A^{s+11,5p^2q+q+s-1}(H^* V(2),\mathbb{Z}_p)$, then we have

$(i_3)_*(x)\in \text{Ext}_A^{s+11,5p^2q+q+s-1}(H^* V(3),\mathbb{Z}_p). $

The total degree of $(i_3)_*(x)$ is $5p^2q+q+s-1-(s+11)=5p^2q+q-12\equiv 6q-2$ (mod $ pq-2)$. From the above Table, we know that the generator $\lambda$ with total degree mod $pq-2$ being equal to $6q-2$ in $[P(b_j^i)\otimes H^{*,*}(U(L))]^{s,t}$ doesn't exist. So, we can get that $(i_3)_*(x)=0$. Consider the following exact sequence:

$ \cdots \xrightarrow{{(j_3)_*}} \text{Ext}_A^{s+10,5p^2q+q+s-1-(2p^3-1)}(H^*V(2),\mathbb{Z}_p) \xrightarrow{{(\alpha_3)_*}} \text{Ext}_A^{s+11,5p^2q+q+s-1}(H^*V(2),\mathbb{Z}_p) $
$ \xrightarrow{{(i_3)_*}} \text{Ext}_A^{s+11,5p^2q+q+s-1}(H^*V(3),\mathbb{Z}_p)\xrightarrow{{(j_3)_*}} \cdots, $

there exists an element $x_1\in \text{Ext}_A^{s+10,5p^2q+q+s-1-(2p^3-1)}(H^*V(2),\mathbb{Z}_p)$ satisfying $(\alpha_3)_*(x_1)=x$. The total degree of $(i_3)_*(x_1)$ is $5p^2q+q+s-1-(2p^3-1)-(s+10)\equiv 4q-6$(mod $pq-2)$. From the above Table, we know that

$0=(i_3)_*(x_1)\in \text{Ext}_A^{s+10,5p^2q+q+s-1-(2p^3-1)}(H^*V(3),\mathbb{Z}_p).$

Using the exactness repeatedly, there exists an element $x_k\in \text{Ext}_A^{s+11-k,5p^2q+q+s-1-k(2p^3-1)}$ $(H^*V(2),\mathbb{Z}_p)$ satisfying $(\alpha_3)_*(x_k)=x_{k-1}$. But the total degree of $(i_3)_*(x_k)$ mod $pq-2$ is different from that in the above table, so we know that

$0=(i_3)_*(x_k)\in \text{Ext}_A^{s+11-k,5p^2q+q+s-1-k(2p^3-1)}(H^*V(3),\mathbb{Z}_p).$

Let $k=5,$ then

$x_5\in \text{Ext}_A^{s+6,5p^2q+q+s-1-5(2p^3-1)}(H^*V(2),\mathbb{Z}_p)=\text{Ext}_A^{s+6,-10p^2+q+s+4}(H^*V(2),\mathbb{Z}_p)=0.$

Therefore, we have $x=\underbrace{(\alpha_3)_* \cdots (\alpha_3)_*}\limits_5(x_5)=0$, that is

$\text{Ext}_A^{s+11,5p^2q+q+s-1}(H^*V(2),\mathbb{Z}_p)=0 (s\geqslant2, p\geqslant 11).$

Proposition 3.6 Let $r\geqslant 2$, $p\geqslant 11$, then

$\text{Ext}_A^{11-r,5p^2q+q-r+1}(H^*V(2),\mathbb{Z}_p)=0.$

The proposition is evident for $r\geqslant 11$. Thus, we need only to consider the case of $2\leqslant r<11$.

For any $y\in \text{Ext}_A^{11-r,5p^2q+q-r+1}(H^*V(2),\mathbb{Z}_p)$, we can know $0<q-r+1<q$ from $2\leqslant r<11$. Since $Sdim((i_3)_*(y))=5p^2q+q-r+1=q-r+1\neq 0$(mod $ q)$ and $\text{Ext}_P^{s,t}(\mathbb{Z}_p,\mathbb{Z}_p)=0$ $ (t\neq 0$ mod $q )$, from Proposition 3.1, we can get that

$0=(i_3)_*(y)\in \text{Ext}_A^{11-r,5p^2q+q-r+1}(H^*V(3),\mathbb{Z}_p).$

According to the exactness, there exists an element

$y_1\in \text{Ext}_A^{10-r,5p^2q+q-r+1-(2p^3-1)}(H^*V(2),\mathbb{Z}_p)$

such that $(\alpha_3)_*(y_1)=y$, and

$Sdim((i_3)_*(y_1))=5p^2q+q-r+1-(2p^3-1)=4p^2q-pq-r=q-r\neq 0 ({\hbox{mod}} q),$

so $0=(i_3)_*(y_1)\in \text{Ext}_A^{10-r,5p^2q+q-r+1-(2p^3-1)}(H^*V(3),\mathbb{Z}_p)$.

Similarly, there exists an element $y_k\in \text{Ext}_A^{11-k-r,5p^2q+q-r+1-k(2p^3-1)}(H^*V(2),\mathbb{Z}_p)$ satisfying $(\alpha_3)_*(y_k)=y_{k-1}$, and $Sdim((i_3)_*(y_k))\neq 0$ (mod $q).$ Let $k=5,$ then

$y_5\in \text{Ext}_A^{6-r,5p^2q+q-r+1-5(2p^3-1)}(H^*V(2),\mathbb{Z}_p)=\text{Ext}_A^{6-r,-10p^2+q-r+6}(H^*V(2),\mathbb{Z}_p)=0.$

Thus, we get that $y=\underbrace{(\alpha_3)_* \cdots (\alpha_3)_*}\limits_5(y_5)=0$, that is

$\text{Ext}_A^{11-r,5p^2q+q-r+1}(H^*V(2),\mathbb{Z}_p)=0(r\geqslant 2,p\geqslant 11). $

The Proof of Theorem 1.2  First, we consider the ASS with $E_2$-term:

$\text{Ext}_A^{s,t}(H^*V(2),\mathbb{Z}_p)\Rightarrow \pi_{t-s}V(2),$

and its differential is $d_r:E_r^{s,t}\rightarrow E_r^{s+r,t+r-1}.$

From Proposition 3.5,

$E_2^{r+11,5p^2q+q+r-1}=\text{Ext}_A^{r+11,5p^2q+q+r-1}(H^*V(2),\mathbb{Z}_p), $

we can get that $E_r^{r+11,5p^2q+q+r-1}=0 (r\geqslant 2).$ Let $h_0b_1^5$ be the image of $h_0b_1^5\in \text{Ext}_A^{11,5p^2q+q}(\mathbb{Z}_p,\mathbb{Z}_p)$ under the map

$(i_2)_*(i_1)_*(i_0)_*:\text{Ext}_A^{11,5p^2q+q}(\mathbb{Z}_p,\mathbb{Z}_p)\rightarrow \text{Ext}_A^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p),$

then $d_r(h_0b_1^5)\in E_r^{r+11,5p^2q+q+r-1}=0(r\geqslant 2). $ Furthermore, we can get that

$h_0b_1^5\in E_2^{11,5p^2q+q}=\text{Ext}_A^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p)$

is a permanent cycle in the ASS. Moreover, from Proposition 3.6,

$E_2^{11-r,5p^2q+q-r+1}=\text{Ext}_A^{11-r,5p^2q+q-r+1}(H^*V(2),\mathbb{Z}_p)=0(r\geqslant 2),$

we have that $E_r^{11-r,5p^2q+q-r+1}=0(r\geqslant 2).$ So, $h_0b_1^5$ is impossible to be the $d_r$-boundary in the ASS, and $h_0b_1^5\in \text{Ext}_A^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p)$ converges to a nontrivial element in $\pi_*V(2)$.

The Proof of Theorem 1.1 From Theorem 1.2, we know that there exists a nontrivial element $f$ in $\pi_*V(2)$, which is represented by $h_0b_1^5\in \text{Ext}_A^{11,5p^2q+q} (H^*V(2),\mathbb{Z}_p)$, where $h_0b_1^5$ denotes the image of $h_0b_1^5\in \text{Ext}_A^{11,5p^2q+q}(\mathbb{Z}_p,\mathbb{Z}_p)$ under the homomorphism

$(i_2)_*(i_1)_*(i_0)_*:\text{Ext}_A^{11,5p^2q+q}(\mathbb{Z}_p,\mathbb{Z}_p)\rightarrow \text{Ext}_A^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p).$

Consider the following composition of maps

$ \tilde{f}:\Sigma^{5p^2q+q-11}S\xrightarrow{{f}} V(2)\xrightarrow{{\gamma^t}} \Sigma^{t(p^2+p+1)q} V(2)\xrightarrow{{j_0j_1j_2}} \Sigma^{-t(p^2+p+1)q+(p+1)q+q+3}S, $

the composed map $\tilde{f}= j_0j_1j_2\gamma^t f$ is represented by

$(j_0j_1j_2)_*(\gamma^t)_*(i_2i_1i_0)_*(h_0b_1^5)\in \text{Ext}_A^{11+t,(5+t)p^2q+(t-1)(p+1)q+t-3}(\mathbb{Z}_p,\mathbb{Z}_p).$

From [3], we have known that $\gamma_t=j_0j_1j_2\in \pi_*(S)$ is represented by $\stackrel{\thicksim}{\gamma_t}$ in the ASS. By the knowledge of Yoneda products, we know that the following composition:

$ \text{Ext}_A^{0,0}(\mathbb{Z}_p,\mathbb{Z}_p)\xrightarrow{{(i_2i_1i_0)_*}} \text{Ext}_A^{0,0}(H^*V(2),\mathbb{Z}_p)\xrightarrow{{(\gamma^t)_*}} \text{Ext}_A^{t,t(p^2+p+1)q+t}(H^*V(2),\mathbb{Z}_p) $
$ \xrightarrow{{(j_0j_1j_2)_*}} \text{Ext}_A^{t,tp^2q+(t-1)pq+(t-2)q+t-3}(\mathbb{Z}_p,\mathbb{Z}_p) $

is a homomorphism which is multiplied by $\stackrel{\thicksim}{\gamma_t}$. Hence, $\stackrel{\thicksim}{f}\in \pi_*(S)$ is represented by

$\stackrel{\thicksim}{\gamma_t} h_0 b_1^5\in \text{Ext}_A^{11+t,(5+t)p^2q+(t-1)(p+1)q+t-3}(\mathbb{Z}_p,\mathbb{Z}_p)$

in the ASS.

Moreover, from the Proposition 3.4 we know that $\stackrel{\thicksim}{\gamma_t}h_0 b_1^5$ can't be hit by the differentials in the ASS, then we get that $\stackrel{\thicksim}{\gamma_t}h_0 b_1^5$ converges to a nontrivial element $\stackrel{\thicksim}{f}$ in $\pi_*(S)$.

References
[1] Liulevicius A. The factorization of cyclic reduced powers by secondary cohomology operations[M]. Providence: AMS, 1962.
[2] Aikawa T. 3-Dimensional cohomology of the mod $p$ steenrod algebra[J]. Math. Scand., 1980, 1(47): 91–115.
[3] Wang Xiangjun, Zheng Qibing. The convergence of ${stackrel{sim}{alpha_s}}.{(n)}h_0b_k$[J]. Sci. China Math., 1998, 41(6): 622–628. DOI:10.1007/BF02876232
[4] Toda H. On spectra realizing exterior part of the Steenrod algebra[J]. Topology, 1971, 2(10): 53–65.
[5] Cohen R L. Odd primary infinite families in the stable homotopy theory[M]. Providence: AMS, 1981.
[6] Lee C. Detection of some elements in the stable homotopy groups of spheres[J]. Math. Z., 1996, 1(222): 231–245.
[7] Wang Jianbo, Hu Linmin. A new family elements in the stable homotopy group of spheres and the convergence of $h_0b_1 .2$ in $pi_*(V(1))$[J]. Chinese Ann. Math.(Ser. A.), 2005, 5(26): 375–384.
[8] Ravenel D C. Complex cobordism and stable homotopy groups of spheres[M]. Orlando: Academic Press, 1986.
[9] Wang Yu Yu. The new family elements $tilde{gamma_t}tilde{l_1}g_0$ in the stable homotopy group of spheres[J]. Chinese Ann. Math. (Ser. A.), 2007, 6(28): 853–862.