数学杂志  2015, Vol. 35 Issue (1): 103-109   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
YUE Meng-tian
LI Zeng-ti
CONSTRUCTION OF AN ASSOCIATION SCHEME OVER DIHEDRAL GROUP
YUE Meng-tiana, LI Zeng-tib    
a. Department of Scientific Research, Langfang Teachers'College, Langfang 065000, China;
b. Mathematics and Information College, Langfang Teachers'College, Langfang 065000, China
Abstract: In this paper, we study the dihedral group of elements of the equivalence partitioning. By using the group acting on the set, we obtain the construction of association schemes on the dihedral group and all parameters of these schemes are computed. Moreover, we obtain a family of strongly regular graphs. The result enriches the theory of association scheme.
Key words: dihedral group     association scheme     strongly regular graphs    
二面体群上构作的结合方案
岳孟田a, 李增提b    
a. 廊坊师范学院科研处, 河北 廊坊 065000;
b. 廊坊师范学院数信学院, 河北 廊坊 065000
摘要:本文研究了二面体群的元素的等价划分问题.利用群在集合上的作用, 在二面体群上构造了一类新的结合方案, 并且计算了这类结合方案的所有参数.进一步, 得到了一类强正则图.所得到的结果丰富了结合方案理论.
关键词二面体群    结合方案    强正则图    
1 Introduction

In the theory of (algebraic) combinatorics association schemes play an important role. Association schemes may be seen as colorings of the edges of the complete graph satisfying nice regularity conditions, and they are used in coding theory, design theory, graph theory and group theory. Many chapters of books or complete books are devoted to association schemes (see [1-3]).

We start with a brief introduction to association schemes. For (more) basic results on association schemes and their proofs we refer to [1].

Let $V$ be a finite set of vertices. A $d$-class association scheme on $V$ consists of a set of $d+1$ symmetric relations $R_0,R_1,\cdots,R_d$ on $V$, with identity relation $R_0=\{(x,x)|x\in V\},$ such that any two vertices are in precisely one relation. Furthermore, there are intersection numbers $p^k_{ij}$ such that for any $(x,y)\in R_k$, the number of vertices $z$ such that $(x,z)\in R_i$ and $(z,y)\in R_j$ equals $p^k_{ij}$.

The nontrivial relations can be considered as graphs, which in our case are undirected. One immediately sees that the respective graphs are regular with degree $n_i=p_{ii}^0$. For the corresponding adjacency matrices $A_i$ the axioms of the scheme are equivalent to

$\sum\limits_{i=0}^dA_i=J,\ A_0=I,\ A_i=A_i^T,\ A_iA_j=\sum\limits_{k=0}^dp_{ij}^kA_k.$

It follows that the adjacency matrices generate a $d+1$-dimensional commutative algebra $\mathfrak{A}$ of symmetric matrices. This algebra was first studied by Bose and Mesner (see [5]) and is called the Bose-Mesner algebra of the scheme. The corresponding algebra of a coherent configuration is called a coherent algebra, or by some authors a cellular algebra or cellular ring (with identity) (see [6]).

Kaishun Wang, Jun Guo, Fenggao Li (see [7]) constructed association schemes by attenuated spaces. Their construction stimulates us to consider the construction of association schemes by dihedral group.

In this paper, we provide a new family of symmetric association schemes, and obtain the following results:

Theorem 1.1  For $n=2m$, suppose that $D_{2n}=\{1,a,a^2,\cdots,a^{n-1},b,ba,ba^2,\cdots,ba^{n-1}\}$ be a dihedral group. Let us define

(1) $R_0=\{(x,x)|x\in D_{2n}\};$

(2) $R_i=\{(a^l,a^{2m+l-i})|l=0,1,\cdots,2m-1 \}\cup\{(a^l,a^{l+i})|l=0,1,\cdots,2m-1 \}$ $\cup\{(ba^l,ba^{2m+l-i})|l=0,1,\cdots,2m-1 \}\cup\{(ba^l,ba^{l+i})|l=0,1,\cdots,2m-1 \},$ where $i=1,2,\cdots,m-1;$

(3) $R_{m}=\{(a^l,a^{m+l})|l=0,1,\cdots,2m-1\}\cup\{(ba^l,ba^{m+l})|l=0,1,\cdots,2m-1\};$

(4) $R_{m+1}=\{(a^l,ba^{l+2j})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}\cup\{(ba^l,a^{2m+l-2j})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\};$

(5) $R_{m+2}=\{(a^l,ba^{l+2j+1})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}\cup\{(ba^l,a^{2m+l-2j-1})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}.$

Then we obtain a family of symmetric association scheme $\chi=(D_{2n},\{R_i\}_{0\leq i\leq m+2})$ with parameters

$d=m+2;v=2n;n_i=\left\{\begin{array}{ll} 1,&i=0,\ {\rm or}\ i=m,\\ 2,&1\leq i\leq m-1,\\ 0,&i=m+1\ {\rm or}\ i=m+2, \end{array}\right.$

intersection numbers $p_{ij}^k$ given by (1).

2 Some Lemmas

In this section we give some lemmas, which are needed in the proof of Theorem 1.1.

We assume that $D_{2n}=\{1,a,a^2,\cdots,a^{n-1},b,ba,ba^2,\cdots,ba^{n-1}\}$ is a dihedral group. It is know that $a^jb=ba^{-j}$ and $(ba^j)^{-1}=ba^j.$ Here $j\in \{0,1,\cdots,n-1\}.$

Lemma 2.1  For $n=2m,$ the conjugacy classes of the dihedral group $D_{2n}$ are the following.

$C_0=\{1\};\ C_i=\{a^i,a^{2m-i}\},i=1,2,\cdots,m-1;\ C_{m}=\{a^m\} $

and

$ C_{m+1}=\{b,ba^2,\cdots,ba^{2m-2}\};\ C_{m+2}=\{ba,ba^3,\cdots,ba^{2m-1}\}.$

Proof For any $a^j\in D_{2n}$ and $ba^j\in D_{2n},j=0,1,\cdots,2m-1$, pick $a^i\in D_{2n},i=1,2,\cdots,m-1$. We have $a^ja^i(a^j)^{-1}=a^{j+i-j}=a^i$ and $(ba^j)a^i(ba^j)^{-1}=ba^{j+i}ba^j=a^{-i}=a^{2m-i}.$ Therefore the conjugacy class containing $a^i$ is

$C_{i}=\{a^i,a^{2m-i}\},i=1,2,\cdots,m-1.$

Picking $a^m\in D_{2n}$, we have $a^ja^m(a^j)^{-1}=a^{j+m-j}=a^m$ and $(ba^j)a^m(ba^j)^{-1}=ba^{j+m}ba^j=a^{-m}=a^{m}.$ Therefore the conjugacy class containing $a^m$ is

$C_{m}=\{a^m\}.$

Picking $b\in D_{2n}$, we have $a^jb(a^j)^{-1}=ba^{-2j}$ and $(ba^j)b(ba^j)^{-1}=ba^{2j}.$ Therefore the conjugacy class containing $b$ is

$C_{m+1}=\{b,ba^2,\cdots,ba^{2m-2}\}.$

Picking $ba\in D_{2n}$, we have $a^jba(a^j)^{-1}=ba^{-2j+1}$ and $(ba^j)ba(ba^j)^{-1}=ba^{2j-1}.$ Therefore the conjugacy class containing $ba$ is

$C_{m+2}=\{ba,ba^3,\cdots,ba^{2m-1}\}.$

Let $C_0=\{1\}.$ Since

$\bigcup_{i=0}^{m+2}C_i=D_{2n},$

the lemma holds.

Let $C_0,C_1,\cdots,C_{m+2}$ be the set of all the conjugacy classes of the group $D_{2n}$ as Lemma2.1. We define $X=D_{2n}$ and $(x,y)\in R_i\Longleftrightarrow yx^{-1}\in C_i.$ Then $(X,\{R_i\}_{0\leq i\leq m+2})$ becomes an association scheme.

Lemma 2.2  For $n=2m,$ let $D_{2n}$ be a dihedral group. Suppose that $(x,y)\in R_i\Longleftrightarrow yx^{-1}\in C_i,i=0,1,\cdots,m+2.$ Then

(1) $R_0=\{(x,x)|x\in D_{2n}\}.$

(2) $R_i=\{(a^l,a^{2m+l-i})|l=0,1,\cdots,2m-1 \}\cup\{(a^l,a^{l+i})|l=0,1,\cdots,2m-1 \}\\ \cup\{(ba^l,ba^{2m+l-i})|l=0,1,\cdots,2m-1 \}\cup\{(ba^l,ba^{l+i})|l=0,1,\cdots,2m-1 \},$ where $i=1,2,\cdots,m-1.$

(3) $R_{m}=\{(a^l,a^{m+l})|l=0,1,\cdots,2m-1\}\cup\{(ba^l,ba^{m+l})|l=0,1,\cdots,2m-1\}.$

(4) $R_{m+1}=\{(a^l,ba^{l+2j})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}\cup\{(ba^l,a^{2m+l-2j})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}.$

(5) $R_{m+2}=\{(a^l,ba^{l+2j+1})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}\cup\{(ba^l,a^{2m+l-2j-1})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}.$

Proof Let $b^ka^l\in D_{2n}.$ If $b^ka^lx^{-1}\in C_i,i=1,\cdots,m-1$, then $b^ka^lx^{-1}=a^i$ or $b^ka^lx^{-1}=a^{2m-i}$. Therefore

$x=a^{2m-i}b^ka^l=b^ka^{(-1)^k(2m-i)+l}=\left\{ \begin{array}{ll} a^{2m+l-i},&\hbox{if}\ k=0,\\ ba^{l+i},&\hbox{if} \ k=1, \end{array} \right. $

or

$x=(a^{2m-i})^{-1}b^ka^l=b^ka^{(-1)^ki+l}=\left\{ \begin{array}{ll} a^{l+i},&\hbox{if}\ k=0,\\ ba^{2m+l-i},&\hbox{if} \ k=1. \end{array} \right. $

Hence

$\begin{array}{ll} R_i=&\{(a^l,a^{2m+l-i})|l=0,1,\cdots,2m-1 \}\cup\{(a^l,a^{l+i})|l=0,1,\cdots,2m-1 \}\\ &\cup\{(ba^l,ba^{2m+l-i})|l=0,1,\cdots,2m-1 \}\cup\{(ba^l,ba^{l+i})|l=0,1,\cdots,2m-1 \}, \end{array}$

where $i=1,2,\cdots,m-1.$

If $b^ka^lx^{-1}\in C_{m}$, then $b^ka^lx^{-1}=a^m.$ Therefore

$x=(a^m)^{-1}b^ka^l=a^mb^ka^l=\left\{ \begin{array}{ll} a^{m+l},&\hbox{if}\ k=0\\ ba^{l-m},&\hbox{if}\ k=1 \end{array} \right. =\left\{ \begin{array}{ll} a^{m+l},&\hbox{if}\ k=0,\\ ba^{m+l},&\hbox{if}\ k=1. \end{array} \right. $

Hence

$R_{m}=\{(a^l,a^{m+l})|l=0,1,\cdots,2m-1\}\cup\{(ba^l,ba^{m+l})|l=0,1,\cdots,2m-1\}.$

If $b^ka^lx^{-1}\in C_{m+1}$, then $b^ka^lx^{-1}=ba^{2j},j=0,1,\cdots,m-1.$ Therefore

$x=(ba^{2j})^{-1}b^ka^l=b^{k+1}a^{(-1)^k2j+l}=\left\{ \begin{array}{ll} ba^{l+2j},&\hbox{if}\ k=0,\\ a^{2m+l-2j},&\hbox{if}\ k=1. \end{array} \right. $

Hence

$\begin{array}{ll} R_{m+1}=&\{(a^l,ba^{l+2j})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}\\ &\cup\{(ba^l,a^{2m+l-2j})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}. \end{array}$

If $b^ka^lx^{-1}\in C_{m+2}$, then $b^ka^lx^{-1}=ba^{2j+1},j=0,1,\cdots,m-1.$ Therefore

$x=(ba^{2j+1})^{-1}b^ka^l=b^{k+1}a^{(-1)^k(2j+1)+l}=\left\{ \begin{array}{ll} ba^{l+2j+1},&\hbox{if}\ k=0,\\ a^{2m+l-2j-1},&\hbox{if}\ k=1. \end{array} \right. $

Hence

$\begin{array}{ll} R_{m+2}=&\{(a^l,ba^{l+2j+1})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}\\ &\cup\{(ba^l,a^{2m+l-2j-1})|l=0,1,\cdots,2m-1,j=0,1,\cdots,m-1\}. \end{array}$
3 Proof of Theorem1.1

In this section we shall prove Theorem1.1 and compute all the parameters of the corresponding association scheme.

By Lemma 2.2, for $n=2m$, we have that $\chi=(D_{2n},\{R_i\}_{0\leq i\leq m+2})$ is an association scheme, and obtain the following propositions.

Proposition 3.1  Suppose that $n=2m$. Then the set of the adjacency matrices of the association scheme $\chi$ is given by the following matrices.

(1) $A_0=I$;

(2) $A_i=\left[\begin{array}{cc} S^{n-i}+S^i&0\\ 0&S^{n-i}+S^i \end{array} \right],i=1,\cdots,m-1;$

(3) $A_{m}=\left[\begin{array}{cc} S^m&0\\ 0&S^m \end{array} \right];$

(4) $A_{m+1}=\left[\begin{array}{cc} 0&\sum\limits_{i=0}^{m-1}S^{2i}\\ \sum\limits_{i=0}^{m-1}S^{2i}&0 \end{array} \right];$

(5) $A_{m+2}=\left[\begin{array}{cc} 0&\sum\limits_{i=0}^{m-1}S^{2i+1}\\ \sum\limits_{i=0}^{m-1}S^{2i+1}&0 \end{array} \right].$ Here $S=\left[\begin{array}{cc} 0&I_{n-1}\\ 1&0 \end{array} \right]$.

Proposition 3.2  Suppose that $n=2m$. Then the intersection numbers of the association scheme $\chi$ are as following.

$\begin{aligned} p_{ij}^k=\left\{\begin{array}{ll} 1,{\rm if}\ \{i,j\}=\{0,l\}\ {\rm and}\ k=l,l=0,1,\cdots,m+2,\\ 1,{\rm if}\ 1\leq i+j\leq m\ {\rm and}\ k=i+j,1\leq i,j\leq m-1,\\ 1,{\rm if}\ m+1\leq i+j\leq 2m-1\ {\rm and}\ k=n-(i+j),1\leq i,j\leq m-1,\\ 1,{\rm if}\ i\neq j\ {\rm and}\ k=|i-j|,1\leq i,j,k\leq m-1,\\ 2,{\rm if}\ 1\leq i=j\leq m-1\ {\rm and}\ k=0,\\ 1,{\rm if}\ \{i,j\}=\{m,l\}\ {\rm and}\ k=m-l,l=1,2,\cdots,m-1,\\ 2,{\rm if}\ \{i,j\}=\{m+1,l\}\ {\rm and}\ k=m+1,l=2,4,\cdots,2m-2,\\ 2,{\rm if}\ \{i,j\}=\{m+1,l\}\ {\rm and}\ k=m+2,l=1,3,\cdots,2m-1,\\ 2,{\rm if}\ \{i,j\}=\{m+2,l\}\ {\rm and}\ k=m+2,l=2,4,\cdots,2m-2,\\ 2,{\rm if}\ \{i,j\}=\{m+2,l\}\ {\rm and}\ k=m+1,l=1,3,\cdots,2m-1,\\ 1,{\rm if}\ \{i,j\}=\{m,m+1\}\ {\rm and}\ k=m+1,m\ \mbox{is even},\\ 1,{\rm if}\ \{i,j\}=\{m,m+1\}\ {\rm and}\ k=m+2,m\ \mbox{is odd},\\ 1,{\rm if}\ \{i,j\}=\{m,m+2\}\ {\rm and}\ k=m+2,m\ \mbox{is even},\\ 1,{\rm if}\ \{i,j\}=\{m,m+2\}\ {\rm and}\ k=m+1,m\ \mbox{is odd},\\ m,{\rm if}\ \{i,j\}=\{m+1,m+2\}\ {\rm and}\ k=m+2,\\ 1,{\rm if}\ i=j=m\ {\rm and}\ k=0,\\ m,{\rm if}\ i=j=k=m+1,\\ m,{\rm if}\ i=j=m+2,k=m+1,\\ 0,{\rm otherwise}.\\ \end{array} \right. \end{aligned}$ (1)

Proof By Proposition3.1, we obtain the results as following. If $0\leq i\leq m+2$, we have

$A_0A_i=A_iA_0=A_i.$

If $1\leq i,j\leq m-1$, we have

$\begin{array}{ll} &A_iA_j=A_jA_i\\ =&\left[\begin{array}{cc} S^{n-(i+j)}+S^{n+j-i}+S^{n+i-j}+S^{i+j}&0\\ 0&S^{n-(i+j)}+S^{n+j-i}+S^{n+i-j}+S^{i+j} \end{array} \right]\\ =&\left[\begin{array}{cc} S^{n-(i+j)}+S^{i+j}&0\\ 0&S^{n-(i+j)}+S^{i+j} \end{array} \right]+\left[\begin{array}{cc} S^{n+j-i}+S^{n+i-j}&0\\ 0&S^{n+j-i}+S^{n+i-j} \end{array} \right]\\ =&\left\{\begin{array}{ll} A_{i+j}+A_{i-j},&i>j,\\ A_{i+j}+A_{j-i},&i<j,\\ A_{2i}+2A_0,&i=j.\\ \end{array}\right. \end{array}$

If $1\leq i\leq m-1$, we have

$A_iA_{m+1}=A_{m+1}A_i=\left\{\begin{array}{ll} 2A_{m+1},\mbox{if}\ i\ \mbox{is even}, \\ 2A_{m+2},\mbox{if}\ i\ \mbox{is odd}, \end{array} \right.$

and

$A_iA_{m+2}=A_{m+2}A_i=\left\{\begin{array}{ll} 2A_{m+2},\mbox{if}\ i\ \mbox{is even}, \\ 2A_{m+1},\mbox{if}\ i\ \mbox{is odd}. \end{array} \right.$

Note that

$A_mA_{m+1}=A_{m+1}A_m=\left\{\begin{array}{ll} A_{m+1},\mbox{if}\ m\ \mbox{is even}, \\ A_{m+2},\mbox{if}\ m\ \mbox{is odd}, \end{array} \right.$
$A_mA_{m+2}=A_{m+2}A_m=\left\{\begin{array}{ll} A_{m+2},\mbox{if}\ m\ \mbox{is even}, \\ A_{m+1},\mbox{if}\ m\ \mbox{is odd}. \end{array} \right.$
$A_m^2=A_0,$
$A_{m+1}A_{m+2}=A_{m+2}A_{m+1}=\left[\begin{array}{cc} 0&m\sum\limits_{i=0}^{m-1}S^{2i+1} \\ m\sum\limits_{i=0}^{m-1}S^{2i+1}&0 \end{array} \right]=mA_{m+2},$

and

$A_{m+1}^2=A_{m+2}^2=\left[\begin{array}{cc} 0&m\sum\limits_{i=0}^{m-1}S^{2i}\\ m\sum\limits_{i=0}^{m-1}S^{2i}&0 \end{array} \right]=mA_{m+1}.$

Therefore the desired result follows.

The proof of Theorem1.1 is completed.

4 Strongly Regular Graphs

Bannai and Ito (see [1]) introduced strongly regular graphs. In this section we construct a family of strongly regular graphs from above association schemes $\chi=(D_{2n},\{R_i\}_{0\leq i\leq m+2})$. A simple graph $(X,R)$ is called a strongly regular graph with parameters $(n,k,\lambda,\mu)$ if the following conditions are satisfied:

(a) $|X|=n$;

(b) For each $x\in X$, we have $|\{y\in X|(x,y)\in R\}|=k$;

(c) For each pair of $x,y$ with $(x,y)\in R$, we have $|\{z\in X|(x,z)\in R,(y,z)\in R\}|=\lambda;$

(d) For each pair of $x,y$ with $(x,y)\not\in R$, we have $|\{z\in X|(x,z)\in R,(y,z)\in R\}|=\mu.$

Let

$\begin{eqnarray*}&& X=D_{2n},\\ && R=R_1=\{(a^l,a^{2m+l-1})|l=0,1,\cdots,2m-1 \}\cup\{(a^l,a^{l+1})|l=0,1,\cdots,2m-1 \}\\ && \cup\{(ba^l,ba^{2m+l-1})|l=0,1,\cdots,2m-1 \}\cup\{(ba^l,ba^{l+1})|l=0,1,\cdots,2m-1 \}. \end{eqnarray*}$

By Theorem 1.1, we obtain the following theorem.

Theorem 4.1 The graph $\Gamma=(X,R)$ is a strongly regular graph with parameters $(2n,2,0,2)$.

References
[1] Bannai E, Ito T. Algebraic combinatorics I: association schemes[M]. London, Benjamin: Cummings, 1984.
[2] Brouwer A E, Cohen A M, Neumaier A. Distance-regular graphs[M]. Heidelberg: Springer, 1989.
[3] Godsil C D. Algebraic combinatorics[M]. New York: Chapman and Hall, 1993.
[4] Huang T. A characterization of the association schemes of bilinear forms[J]. European J. Combin., 1987, 8(2): 159–173. DOI:10.1016/S0195-6698(87)80007-0
[5] Bose R C, Mesner D M. On linear associative algebras corresponding to association schemes of partially balanced designs[J]. Ann. Math. Statist., 1959, 30: 21–38. DOI:10.1214/aoms/1177706356
[6] Faradžev I A, Ivanov A A, Klin M H, Woldar A J. Investigations in algebraic theory of combinatorial objects[M]. Dordrecht: Kluwer, 1994.
[7] Wang Kaishun, Guo Jun, Li Fenggao. Association schemes based on attenuated spaces[J]. European J. Combinatorics, 2010, 31(1): 297–305. DOI:10.1016/j.ejc.2009.01.002