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Abstract: In this paper, we study the dihedral group of elements of the equivalence parti-

tioning. By using the group acting on the set, we obtain the construction of association schemes

on the dihedral group and all parameters of these schemes are computed. Moreover, we obtain a

family of strongly regular graphs. The result enriches the theory of association scheme.
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1 Introduction

In the theory of (algebraic) combinatorics association schemes play an important role.
Association schemes may be seen as colorings of the edges of the complete graph satisfying
nice regularity conditions, and they are used in coding theory, design theory, graph theory
and group theory. Many chapters of books or complete books are devoted to association
schemes (see [1–3]).

We start with a brief introduction to association schemes. For (more) basic results on
association schemes and their proofs we refer to [1].

Let V be a finite set of vertices. A d-class association scheme on V consists of a set of
d + 1 symmetric relations R0, R1, · · · , Rd on V , with identity relation R0 = {(x, x)|x ∈ V },
such that any two vertices are in precisely one relation. Furthermore, there are intersection
numbers pk

ij such that for any (x, y) ∈ Rk, the number of vertices z such that (x, z) ∈ Ri

and (z, y) ∈ Rj equals pk
ij .

The nontrivial relations can be considered as graphs, which in our case are undirected.
One immediately sees that the respective graphs are regular with degree ni = p0

ii. For the
corresponding adjacency matrices Ai the axioms of the scheme are equivalent to

d∑
i=0

Ai = J, A0 = I, Ai = AT
i , AiAj =

d∑
k=0

pk
ijAk.
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It follows that the adjacency matrices generate a d + 1-dimensional commutative algebra
A of symmetric matrices. This algebra was first studied by Bose and Mesner (see [5]) and
is called the Bose-Mesner algebra of the scheme. The corresponding algebra of a coherent
configuration is called a coherent algebra, or by some authors a cellular algebra or cellular
ring (with identity) (see [6]).

Kaishun Wang, Jun Guo, Fenggao Li (see [7]) constructed association schemes by at-
tenuated spaces. Their construction stimulates us to consider the construction of association
schemes by dihedral group.

In this paper, we provide a new family of symmetric association schemes, and obtain
the following results:

Theorem 1.1 For n = 2m, suppose that D2n = {1, a, a2, · · · , an−1, b, ba, ba2, · · · , ban−1}
be a dihedral group. Let us define

(1) R0 = {(x, x)|x ∈ D2n};
(2) Ri = {(al, a2m+l−i)|l = 0, 1, · · · , 2m− 1} ∪ {(al, al+i)|l = 0, 1, · · · , 2m− 1}

∪{(bal, ba2m+l−i)|l = 0, 1, · · · , 2m − 1} ∪ {(bal, bal+i)|l = 0, 1, · · · , 2m − 1}, where i =
1, 2, · · · ,m− 1;

(3) Rm = {(al, am+l)|l = 0, 1, · · · , 2m− 1} ∪ {(bal, bam+l)|l = 0, 1, · · · , 2m− 1};
(4) Rm+1 = {(al, bal+2j)|l = 0, 1, · · · , 2m− 1, j = 0, 1, · · · ,m− 1} ∪ {(bal, a2m+l−2j)|l =

0, 1, · · · , 2m− 1, j = 0, 1, · · · ,m− 1};
(5) Rm+2 = {(al, bal+2j+1)|l = 0, 1, · · · , 2m−1, j = 0, 1, · · · ,m−1}∪{(bal, a2m+l−2j−1)|l =

0, 1, · · · , 2m− 1, j = 0, 1, · · · ,m− 1}.
Then we obtain a family of symmetric association scheme χ = (D2n, {Ri}0≤i≤m+2) with
parameters

d = m + 2; v = 2n; ni =





1, i = 0, or i = m,

2, 1 ≤ i ≤ m− 1,

0, i = m + 1 or i = m + 2,

intersection numbers pk
ij given by (1).

2 Some Lemmas

In this section we give some lemmas, which are needed in the proof of Theorem 1.1.
We assume that D2n = {1, a, a2, · · · , an−1, b, ba, ba2, · · · , ban−1} is a dihedral group. It

is know that ajb = ba−j and (baj)−1 = baj . Here j ∈ {0, 1, · · · , n− 1}.
Lemma 2.1 For n = 2m, the conjugacy classes of the dihedral group D2n are the

following.

C0 = {1}; Ci = {ai, a2m−i}, i = 1, 2, · · · ,m− 1; Cm = {am}

and

Cm+1 = {b, ba2, · · · , ba2m−2}; Cm+2 = {ba, ba3, · · · , ba2m−1}.
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Proof For any aj ∈ D2n and baj ∈ D2n, j = 0, 1, · · · , 2m − 1, pick ai ∈ D2n, i =
1, 2, · · · ,m − 1. We have ajai(aj)−1 = aj+i−j = ai and (baj)ai(baj)−1 = baj+ibaj = a−i =
a2m−i. Therefore the conjugacy class containing ai is

Ci = {ai, a2m−i}, i = 1, 2, · · · ,m− 1.

Picking am ∈ D2n, we have ajam(aj)−1 = aj+m−j = am and (baj)am(baj)−1 = baj+mbaj =
a−m = am. Therefore the conjugacy class containing am is

Cm = {am}.

Picking b ∈ D2n, we have ajb(aj)−1 = ba−2j and (baj)b(baj)−1 = ba2j . Therefore the conju-
gacy class containing b is

Cm+1 = {b, ba2, · · · , ba2m−2}.
Picking ba ∈ D2n, we have ajba(aj)−1 = ba−2j+1 and (baj)ba(baj)−1 = ba2j−1. Therefore the
conjugacy class containing ba is

Cm+2 = {ba, ba3, · · · , ba2m−1}.

Let C0 = {1}. Since
m+2⋃
i=0

Ci = D2n,

the lemma holds.
Let C0, C1, · · · , Cm+2 be the set of all the conjugacy classes of the group D2n as Lemma

2.1. We define X = D2n and (x, y) ∈ Ri ⇐⇒ yx−1 ∈ Ci. Then (X, {Ri}0≤i≤m+2) becomes
an association scheme.

Lemma 2.2 For n = 2m, let D2n be a dihedral group. Suppose that (x, y) ∈ Ri ⇐⇒
yx−1 ∈ Ci, i = 0, 1, · · · ,m + 2. Then

(1) R0 = {(x, x)|x ∈ D2n}.
(2) Ri = {(al, a2m+l−i)|l = 0, 1, · · · , 2m− 1} ∪ {(al, al+i)|l = 0, 1, · · · , 2m− 1}

∪ {(bal, ba2m+l−i)|l = 0, 1, · · · , 2m − 1} ∪ {(bal, bal+i)|l = 0, 1, · · · , 2m − 1}, where i =
1, 2, · · · ,m− 1.

(3) Rm = {(al, am+l)|l = 0, 1, · · · , 2m− 1} ∪ {(bal, bam+l)|l = 0, 1, · · · , 2m− 1}.
(4) Rm+1 = {(al, bal+2j)|l = 0, 1, · · · , 2m− 1, j = 0, 1, · · · ,m− 1} ∪ {(bal, a2m+l−2j)|l =

0, 1, · · · , 2m− 1, j = 0, 1, · · · ,m− 1}.
(5) Rm+2 = {(al, bal+2j+1)|l = 0, 1, · · · , 2m−1, j = 0, 1, · · · ,m−1}∪{(bal, a2m+l−2j−1)|l =

0, 1, · · · , 2m− 1, j = 0, 1, · · · ,m− 1}.
Proof Let bkal ∈ D2n. If bkalx−1 ∈ Ci, i = 1, · · · ,m − 1, then bkalx−1 = ai or

bkalx−1 = a2m−i. Therefore

x = a2m−ibkal = bka(−1)k(2m−i)+l =

{
a2m+l−i, if k = 0,

bal+i, if k = 1,
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or

x = (a2m−i)−1bkal = bka(−1)ki+l =

{
al+i, if k = 0,

ba2m+l−i, if k = 1.

Hence

Ri = {(al, a2m+l−i)|l = 0, 1, · · · , 2m− 1} ∪ {(al, al+i)|l = 0, 1, · · · , 2m− 1}
∪{(bal, ba2m+l−i)|l = 0, 1, · · · , 2m− 1} ∪ {(bal, bal+i)|l = 0, 1, · · · , 2m− 1},

where i = 1, 2, · · · ,m− 1.

If bkalx−1 ∈ Cm, then bkalx−1 = am. Therefore

x = (am)−1bkal = ambkal =

{
am+l, if k = 0
bal−m, if k = 1

=

{
am+l, if k = 0,

bam+l, if k = 1.

Hence

Rm = {(al, am+l)|l = 0, 1, · · · , 2m− 1} ∪ {(bal, bam+l)|l = 0, 1, · · · , 2m− 1}.

If bkalx−1 ∈ Cm+1, then bkalx−1 = ba2j , j = 0, 1, · · · ,m− 1. Therefore

x = (ba2j)−1bkal = bk+1a(−1)k2j+l =

{
bal+2j , if k = 0,

a2m+l−2j , if k = 1.

Hence

Rm+1 = {(al, bal+2j)|l = 0, 1, · · · , 2m− 1, j = 0, 1, · · · ,m− 1}
∪{(bal, a2m+l−2j)|l = 0, 1, · · · , 2m− 1, j = 0, 1, · · · ,m− 1}.

If bkalx−1 ∈ Cm+2, then bkalx−1 = ba2j+1, j = 0, 1, · · · ,m− 1. Therefore

x = (ba2j+1)−1bkal = bk+1a(−1)k(2j+1)+l =

{
bal+2j+1, if k = 0,

a2m+l−2j−1, if k = 1.

Hence

Rm+2 = {(al, bal+2j+1)|l = 0, 1, · · · , 2m− 1, j = 0, 1, · · · ,m− 1}
∪{(bal, a2m+l−2j−1)|l = 0, 1, · · · , 2m− 1, j = 0, 1, · · · ,m− 1}.

3 Proof of Theorem 1.1

In this section we shall prove Theorem 1.1 and compute all the parameters of the cor-
responding association scheme.

By Lemma 2.2, for n = 2m, we have that χ = (D2n, {Ri}0≤i≤m+2) is an association
scheme, and obtain the following propositions.

Proposition 3.1 Suppose that n = 2m. Then the set of the adjacency matrices of the
association scheme χ is given by the following matrices.
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(1) A0 = I;

(2) Ai =

[
Sn−i + Si 0

0 Sn−i + Si

]
, i = 1, · · · ,m− 1;

(3) Am =

[
Sm 0
0 Sm

]
;

(4) Am+1 =




0
m−1∑
i=0

S2i

m−1∑
i=0

S2i 0


 ;

(5) Am+2 =




0
m−1∑
i=0

S2i+1

m−1∑
i=0

S2i+1 0


 . Here S =

[
0 In−1

1 0

]
.

Proposition 3.2 Suppose that n = 2m. Then the intersection numbers of the associ-
ation scheme χ are as following.

pk
ij =





1, if {i, j} = {0, l} and k = l, l = 0, 1, · · · ,m + 2,

1, if 1 ≤ i + j ≤ m and k = i + j, 1 ≤ i, j ≤ m− 1,

1, if m + 1 ≤ i + j ≤ 2m− 1 and k = n− (i + j), 1 ≤ i, j ≤ m− 1,

1, if i 6= j and k = |i− j|, 1 ≤ i, j, k ≤ m− 1,

2, if 1 ≤ i = j ≤ m− 1 and k = 0,

1, if {i, j} = {m, l} and k = m− l, l = 1, 2, · · · ,m− 1,

2, if {i, j} = {m + 1, l} and k = m + 1, l = 2, 4, · · · , 2m− 2,

2, if {i, j} = {m + 1, l} and k = m + 2, l = 1, 3, · · · , 2m− 1,

2, if {i, j} = {m + 2, l} and k = m + 2, l = 2, 4, · · · , 2m− 2,

2, if {i, j} = {m + 2, l} and k = m + 1, l = 1, 3, · · · , 2m− 1,

1, if {i, j} = {m,m + 1} and k = m + 1,m is even,

1, if {i, j} = {m,m + 1} and k = m + 2,m is odd,

1, if {i, j} = {m,m + 2} and k = m + 2,m is even,

1, if {i, j} = {m,m + 2} and k = m + 1,m is odd,

m, if {i, j} = {m + 1,m + 2} and k = m + 2,

1, if i = j = m and k = 0,

m, if i = j = k = m + 1,

m, if i = j = m + 2, k = m + 1,

0, otherwise.

(1)

Proof By Proposition 3.1, we obtain the results as following. If 0 ≤ i ≤ m + 2, we
have

A0Ai = AiA0 = Ai.



108 Journal of Mathematics Vol. 35

If 1 ≤ i, j ≤ m− 1, we have

AiAj = AjAi

=

[
Sn−(i+j) + Sn+j−i + Sn+i−j + Si+j 0

0 Sn−(i+j) + Sn+j−i + Sn+i−j + Si+j

]

=

[
Sn−(i+j) + Si+j 0

0 Sn−(i+j) + Si+j

]
+

[
Sn+j−i + Sn+i−j 0

0 Sn+j−i + Sn+i−j

]

=





Ai+j + Ai−j , i > j,

Ai+j + Aj−i, i < j,

A2i + 2A0, i = j.

If 1 ≤ i ≤ m− 1, we have

AiAm+1 = Am+1Ai =

{
2Am+1, if i is even,

2Am+2, if i is odd,

and

AiAm+2 = Am+2Ai =

{
2Am+2, if i is even,

2Am+1, if i is odd.

Note that

AmAm+1 = Am+1Am =

{
Am+1, if m is even,

Am+2, if m is odd,

AmAm+2 = Am+2Am =

{
Am+2, if m is even,

Am+1, if m is odd.

A2
m = A0,

Am+1Am+2 = Am+2Am+1 =




0 m
m−1∑
i=0

S2i+1

m
m−1∑
i=0

S2i+1 0


 = mAm+2,

and

A2
m+1 = A2

m+2 =




0 m
m−1∑
i=0

S2i

m
m−1∑
i=0

S2i 0


 = mAm+1.

Therefore the desired result follows.
The proof of Theorem 1.1 is completed.

4 Strongly Regular Graphs

Bannai and Ito (see [1]) introduced strongly regular graphs. In this section we construct
a family of strongly regular graphs from above association schemes χ = (D2n, {Ri}0≤i≤m+2).
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A simple graph (X, R) is called a strongly regular graph with parameters (n, k, λ, µ) if the
following conditions are satisfied:

(a) |X| = n;
(b) For each x ∈ X, we have |{y ∈ X|(x, y) ∈ R}| = k;
(c) For each pair of x, y with (x, y) ∈ R, we have |{z ∈ X|(x, z) ∈ R, (y, z) ∈ R}| = λ;
(d) For each pair of x, y with (x, y) 6∈ R, we have |{z ∈ X|(x, z) ∈ R, (y, z) ∈ R}| = µ.

Let

X = D2n,

R = R1 = {(al, a2m+l−1)|l = 0, 1, · · · , 2m− 1} ∪ {(al, al+1)|l = 0, 1, · · · , 2m− 1}
∪{(bal, ba2m+l−1)|l = 0, 1, · · · , 2m− 1} ∪ {(bal, bal+1)|l = 0, 1, · · · , 2m− 1}.

By Theorem 1.1, we obtain the following theorem.
Theorem 4.1 The graph Γ = (X, R) is a strongly regular graph with parameters

(2n, 2, 0, 2).
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二面体群上构作的结合方案
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摘要: 本文研究了二面体群的元素的等价划分问题. 利用群在集合上的作用, 在二面体群上构造了一

类新的结合方案, 并且计算了这类结合方案的所有参数. 进一步, 得到了一类强正则图. 所得到的结果丰富

了结合方案理论.
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