引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 512次   下载 822 本文二维码信息
码上扫一扫!
分享到: 微信 更多
多阈值和非独立同分布的在线分位数学习算法
蒋铭勤
作者单位
蒋铭勤 武汉大学数学与统计学院, 湖北 武汉 430072 
摘要:
本文研究了多阈值和非一致分布下的在线分位数回归算法,在每一次迭代中,样本会来自不同的分布和取不同的阈值.利用边缘分布在对偶空间中多项式收敛的性质,我们得到了算法的学习速度,并且做了相应的数值模拟来支持我们的结论.
关键词:  非一致分布  在线学习  分位数回归  再生核希尔伯特空间
DOI:
分类号:O29
基金项目:Supported by National Natural Science Foundation of China(11671307).
ONLINE QUANTILE REGRESSION WITH VARYING THRESHOLDS AND NON-IDENTICAL SAMPLING DISTRIBUTIONS
JIANG Ming-qin
Abstract:
In this paper we study the online quantile regression algorithm with varying thresholds and non-identical sampling distributions, where at each time a sample is drawn independently from different probability distributions and the threshold values decrease with the iteration process. The learning rate of the algorithm is obtained under the assumption that the sequence of marginal distribution converges polynomially fast in the dual of a Hölder space. Several numerical simulations are presented to support our results.
Key words:  sampling with non-identical distributions  online learning  quantile regression  ϵ-insensitive pinball loss  reproducing kernel Hilbert spaces