|
摘要: |
本文研究了带有相关0根空间的任意分裂的δ-Jordan李三系的结构.利用这种三系的根连通,得到了带有对称根系的分裂的δ-Jordan李三系T可以表示成T=U+Σ[α]∈Λ1/~ I[α],其中U是0根空间T0的子空间,任意I[α]为T的理想,并且满足当[α]≠[β]时,[I[α],T,I[β]]=0. |
关键词: 分裂的δ-Jordan李三系 李三系 δ-Jordan李代数 根系 根空间 |
DOI: |
分类号:O152.5 |
基金项目:Supported by National Natural Science Foundation of China (11801121); NSF of Heilongjiang Province (QC2018006) and the Fundamental Research Fundation for Universities of Heilongjiang Province (LGYC2018JC002). |
|
ON THE STRUCTURE OF SPLIT δ-JORDAN LIE TRIPLE SYSTEMS |
CAO Yan
|
Abstract: |
The aim of this article is to study the structure of arbitrary split δ-Jordan Lie triple systems by focussing on those with a coherent 0-root space. By developing techniques of connections of roots for this kind of triple system T, we show that such an arbitrary δ-JLTS with a symmetric root system is of the form T=U+Σ[α]∈Λ1/~ I[α] with U a subspace of the 0-root space T0 and any I[α] a well described ideal of T, satisfying [I[α], T, I[β]] = 0 if [α]≠[β]. |
Key words: split δ-Jordan Lie triple system Lie triple system δ-Jordan Lie algebra root system root space |