|
摘要: |
本文研究了加权双线性Hardy算子和加权双线性Cesàro算子在加幂权Lp空间中的有界性,精确得到了这两类算子在加幂权Lp空间中的算子范数.作为应用,得到了双线性Riemann-Liouville算子和双线性Weyl算子的最佳常数. |
关键词: 加权双线性Hardy算子 加权双线性Cesàro算子 加幂权Lp空间 双线性Riemann-Liouville算子 双线性Weyl算子 最佳常数 |
DOI: |
分类号:O174.2 |
基金项目: |
|
SHARP BOUND FOR THE WEIGHTED BILINEAR HARDY OPERATOR ON THE LP SPACE WITH POWER WEIGHT |
XIAO Fu-yu
|
Abstract: |
We study the boundedness of the weighted bilinear Hardy operator and the weighted bilinear Cesàro operator on the Lp space with power weight and obtain norms of these two operators on the Lp space with power weight. As applications, we also calculate sharp bounds of the bilinear Riemann-Liouville operator and the bilinear Weyl operator on the Lp space with power weight. |
Key words: weighted bilinear Hardy operator weighted bilinear Cesàro operator Lp space with power weight bilinear Riemann-Liouville operator bilinear Weyl operator sharp bound |