引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 646次   下载 1007 本文二维码信息
码上扫一扫!
分享到: 微信 更多
具有对数型衰减初值的半线性波动方程解的爆破
蔡春玲,黄守军
作者单位
蔡春玲 安徽师范大学数学与统计学院, 安徽 芜湖 241002 
黄守军 安徽师范大学数学与统计学院, 安徽 芜湖 241002 
摘要:
本文研究了一类具有对数型衰减初值的半线性波动方程解的爆破.利用迭代法证明了半线性波动方程组柯西问题的经典解将在有限时间内爆破,同时给出生命区间的下界估计.推广了已有半线性波动方程组柯西问题的有关结果,并给出若干应用.
关键词:  半线性波动方程  对数型衰减  爆破  生命区间
DOI:
分类号:O175.2
基金项目:国家自然科学基金资助(11301006);安徽省自然科学基金资助(1408085MA01).
BLOW UP OF SOLUTIONS TO SEMILINEAR WAVE EQUATIONS WITH LOGARITHMIC DECAY INITIAL DATA
CAI Chun-ling,HUANG Shou-jun
Abstract:
This paper considers the blow up of solutions to a class of semilinear wave equations with logarithmic decay initial data. By utilizing the method of an iteration argument, we obtain the blow up and the lower bound of lifespan of solutions to the Cauchy problem for the semilinear wave equations, which generalize the existing facts on semilinear wave equations. In addition, some applications are also given.
Key words:  semilinear wave equations  logarithmic decay data  blow up  lifespan