| 摘要: |
| 本文研究了一类分数阶p(x)-Laplace算子方程解的存在性和多解性问题.在非线性项不满足(AR)条件时,利用喷泉定理和分数阶变指数Sobolev空间的相关理论,得到了方程无穷多解的存在性.从而推广了经典变指数问题的相关结果. |
| 关键词: 分数阶p(x)-Laplace方程 分数变指数Sobolev空间 喷泉定理 多解性 |
| DOI: |
| 分类号:O175.29 |
| 基金项目: |
|
| MULTIPLICITY OF SOLUTIONS FOR A FRACTIONAL p(x)-LAPLACIAN EQUATION |
|
ZHANG Jin-guo1, JIAO Hong-ying2,3, LIU Qiu-yun1
|
|
1.Department of Mathematics, Jiangxi Normal University, Nanchang 330022, China;2.Department of Basic Sciences, Air Force Engineering University, Xi'an 710051, China;3.School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
|
| Abstract: |
| In this paper, we investigate the existence and multiplicity of solutions to a class of fractional p(x)-Laplacian equation. By means of Fountain theorem and the theory of fractional variable exponent Sobolev space, we show that the equation has a sequence of nontrivial solutions with high energies, which generalize the results of classical variable exponent problem. |
| Key words: fractional p(x)-Laplacian operator fractional variable exponent Sobolev space fountain theorem multiple solutions |