|
摘要: |
本文在Orlicz空间中研究了Bernstein-Durrmeyer算子拟中插式Bn(2r-1)(f,x)逼近性质.利用2r阶Ditzian-Totik模与K-泛函的等价性,Jensen不等式,Hölder不等式,Berens-Lorentz引理得到了逼近的正,逆和等价定理,从而推广了Bernstein-Durrmeyer算子拟中插式Bn(2r-1)(f,x)在LP空间的逼近结果. |
关键词: Bernstein-Durrmeyer算子 Ditzian-Totik模 正逆定理 Orlicz空间 |
DOI: |
分类号:O147.41 |
基金项目:国家自然科学基金资助(11161033;11461052);内蒙古自治区自然科学基金资助(2014MS0107;2016MS0118);内蒙古民族大学科学研究项目资助(NMDYB15087). |
|
APPROXIMATION BY BERNSTEIN-DURRMEYER QUASI-INTERPOLANTS IN ORLICZ SPACES |
HAN Ling-xiong,WU Garidi,GAO Hui-shuang
|
Abstract: |
In the present paper, we will study the approximation property of the BernsteinDurrmeyer quasi-interpolants Bn(2r-1)(f,x) in Orlicz space. By using the 2r-th Ditzian-Totik modulus of smoothness, Jensen inequality, Hölder inequality and Berens-Lorentz lemma, we obtain the direct, inverse and equivalence theorems, which generalize the approximation results of the Bernstein-Durrmeyer quasi-interpolants Bn(2r-1)(f,x) in LP space. |
Key words: Bernstein-Durrmeyer operators Ditzian-Totik modulus direct inverse theorem Orlicz space |