|
摘要: |
本文研究了m-d增生映射的零点以及有限个m-d增生映射公共零点的迭代设计问题.利用Lyapunov泛函与广义f投影映射等技巧,在Banach空间中,证明了迭代序列强收敛或弱收敛到m-d增生映射的零点或有限个m-d增生映射的公共零点.与以往的相关研究工作相比,迭代设计中考虑了误差项、迭代格式被简化、限定条件被削弱. |
关键词: Lyapunov 泛函 广义 f 投影映射 m-d 增生映射 零点 |
DOI: |
分类号:O177.91 |
基金项目:国家自然科学基金资助(11071053);河北省自然科学基金项目资助(A2014207010);河北省教育厅科学研究重点项目资助(ZH2012080);河北经贸大学科学研究重点项目资助(2013KYZ01). |
|
STRONG AND WEAK CONVERGENCE THEOREMS FOR ZEROS OF m - d-ACCRETIVE MAPPINGS IN BANACH SPACES |
WEI Li,LIU Yuan-xing
|
Abstract: |
The problems of iterative designs of zero point of m-d accretive mappings and common zero points of flnitely many m-d accretive mappings are studied in this paper. By using the techniques of Lyapunov functional and generalized f-projection mapping, the results that the iterative sequences converge strongly or weakly to zero pint of m-d accretive mappings or common zero point of flnitely many m-d accretive mappings in Banach spaces are proved. Compared to the existing work, the errors are considered in the iterative designs, the iterative schemes are simplifled and the restrictions are weaken. |
Key words: Lyapunov functional generalized f-projection mapping m-d accretive mapping zero point |