引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1302次   下载 1146 本文二维码信息
码上扫一扫!
分享到: 微信 更多
涉及复代数超曲面的全纯映射正规族
曹红哲
作者单位
曹红哲 南昌大学数学系, 江西 南昌 330031 
摘要:
本文研究了涉及固定超曲面的全纯映照的正规性问题.利用Aladro和Krantz对全纯映射族正规性的刻画和Shirosahi建立的一系列涉及一些特殊复代数超曲面的Picard型定理,得到了全纯映射族的一些正规定则.
关键词:  正规族  全纯映射  超曲面  值分布理论
DOI:
分类号:O174.56;O174.52
基金项目:Supported by the NSFC (11401291; 11101201) and NSF of ED of Jiangxi (GJJ13077).
NORMAL FAMILIES OF HOLOMORPHIC MAPPINGS FROM CM INTO Pn(C) WITH SOME FIXED HYPERSURFACES
CAO Hong-zhe
Abstract:
In this paper, we study the normal families of meromorphic mappings. Applying the heuristic principle in several complex variables obtained by Aladro and Krantz[1] and some Picard theorems given by M. Shirosahi, we shall prove some normality criterias for families of holomorphic mappings of several complex variables into Pn(C), the n-dimensional complex projective space, related to some special hypersurfaces.
Key words:  normal families  holomorphic mappings  hypersurfaces  value distribution theory