| 摘要: |
| 本文研究了N(2, 2, 0)代数(S, ∗, ∆, 0)的E-反演半群.利用N(2, 2, 0)代数的幂等元,弱逆元,中间单位元的性质和同宇关系,得到了N(2, 2, 0)代数的半群(S, ∗)构成E-反演半群的条件及元素a的右伴随非零零因子唯一,且为a的弱逆元等结论,这些结果进一步刻画了N(2, 2, 0)代数的结构. |
| 关键词: N(2,2,0)代数 E-反演半群 弱逆元 中间单位元 非零零因子 |
| DOI: |
| 分类号:O152.7 |
| 基金项目:国家自然科学基金资助项目(81160183). |
|
| E-INVERSIVE SEMIGROUPS OF N(2,2,0) ALGEBRA |
|
DENG Fang-an
|
|
School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, China
|
| Abstract: |
| We study E-inversive semigroups of N(S, ∗, δ, 0) on N(2, 2, 2, 0) algebra. Using the properties of idempotents element, weak inverse element and middle unit, and congruence relations, we obtain the following results:if the idempotents set of N(2, 2, 0) algebra is nonempty, then its two dual semigroups (S, ∗) and (S, ∆) of N(2, 2, 0) algebra are E-inversive semigroups. Moreover, right adjoint non-zero divisor of element a on semigroup (S, ∗) of N(2, 2, 0) algebra is unique and is weak inverse of a. Some other conclusions are also discussed, which further characterize structure of N(2, 2, 0) algebra. |
| Key words: N(2, 2, 0) algebra E-inversive semigroup weak inverses element middle unit non-zero divisor |