数学杂志  2020, Vol. 40 Issue (4): 431-445   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
LONG Pin-hong
LI Xing
WANG Wen-shuai
FEKETE-SZEGÖ PROBLEMS FOR SEVERAL QUASI-SUBORDINATION SUBCLASSES OF ANALYTIC AND BI-UNIVALENT FUNCTIONS ASSOCIATED WITH THE DZIOK-SRIVASTAVA OPERATOR
LONG Pin-hong, LI Xing, WANG Wen-shuai    
School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
Abstract: In the article we introduce two quasi-subordination subclasses of the function class ∑ of analytic and bi-univalent functions associated with the Dziok-Srivastava operator, and some problems for their coefficient estimation and Fekete-Szegö functional. By using differential quasisubordination and convolution operator theory, we obtain some results about the corresponding bound estimations of the coefficient a2 and a3 as well as Fekete-Szegö functional inequalities for theses subclasses, which generalize and improve some earlier known results.
Keywords: Fekete-Szegö problem     bi-univalent function     Gaussian hypergeometric function     Dziok-Srivastava operator     quasi-subordination    
与Dziok-Srivastava算子有关的几类解析双单值函数拟从属子类的Fekete-Szegö问题
龙品红, 李星, 汪文帅    
宁夏大学数学统计学院, 宁夏 银川 750021
摘要:本文介绍了与Dziok-Srivastava算子有关的解析双单叶类∑的两个拟从属子类,系数估计和Fekete-Szegö泛函.利用微分拟从属和卷积算子理论,获得了相应函数子类的Fekete-Szegö泛函不等式和系数a2a3的有界估计,推广和改进了某些早期已知结果.
关键词Fekete-Szegö问题    双单叶函数    Gaussian超几何函数    Dziok-Srivastava算子    拟从属    
1 Introduction

In the article, our aim focuses on the certain quasi-subordination subclasses of analytic and bi-univalent functions associated with the Dziok-Srivastava operator. To state our results, at first we will recall some notations and basic properties for analytic and bi-univalent functions and Dziok-Srivastava operator.

Let $ \mathcal{A} $ be the class of normalized analytic function $ f(z) $ by

$ \begin{equation} f(z) = z+\sum\limits^{\infty}_{n = 2}a_{n}z^{n} \end{equation} $ (1.1)

in the open unit disk $ \Delta = \{z\in\mathbb{C}: \mid z\mid<1\} $.

Let the subclass $ \mathcal{S} $ of $ \mathcal{A} $ be the set of all univalent functions in $ \Delta $. According to the Koebe one quarter theorem [1], the inverse $ f^{-1} $ of every $ f\in\mathcal{S} $ satisfies

$ \begin{equation*} f^{-1}(f(z)) = z\; \; (z\in\Delta) \quad \text{and}\quad f(f^{-1}(w)) = w\; \; (w\in\Delta_{\rho}), \end{equation*} $

where $ \rho\geq \frac{1}{4} $ denotes the radius of the image $ f(\Delta) $ and $ \Delta_{\rho} = \{z\in\mathbb{C}: \mid z\mid<\rho\} $. It is recalled that

$ \begin{equation} f^{-1}(w) = w-a_{2}w^{2}+(2a^{2}_{2}-a_{3})w^{3}-(5a^{3}_{2}-5a_{2}a_{3}+a_{4})w^{4}+\cdots. \end{equation} $ (1.2)

If both the function $ f\in\mathcal{A} $ and its inverse $ f^{-1} $ are univalent in $ \Delta $, then it is bi-univalent. Denote by $ \Sigma $ the class of all bi-univalent functions $ f\in\mathcal{A} $ in $ \Delta $.

For given $ f, g\in\mathcal{A} $, define the Hadamard product or convolution $ f\ast g $ by

$ \begin{equation*} (f\ast g)(z) = z+\sum\limits^{\infty}_{n = 2}a_{n}b_{n}z^{n}\; \; (z\in\Delta), \end{equation*} $

where $ f(z) $ is given by (1.1) and $ g(z) = z+\sum\limits^{\infty}_{k = 2} b_{k}z^{k} $. Assume that the Gaussian hypergeometric function $ {}_{q}F_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s};z) $ is defined by

$ \begin{eqnarray*} {}_{q}F_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s};z)& = &\sum^{\infty}_{n = 0}\frac{\Pi^{q}_{k = 1}(\alpha_{k})_{n}}{\Pi^{s}_{j = 1}(\beta_{j})_{n}}\frac{z^{n}}{n!} \notag\\ & = &1+\sum^{\infty}_{n = 2}\frac{\Pi^{q}_{k = 1}(\alpha_{k})_{n-1}}{\Pi^{s}_{j = 1}(\beta_{j})_{n-1}}\frac{z^{n-1}}{(n-1)!}\; \; (z\in\Delta) \end{eqnarray*} $

for the complex parameters $ \alpha_{k} $ and $ \beta_{j} $ with $ \beta_{j}\neq0, -1, -2, -3,\ldots $ $ (k = 1,\cdots, q;j = 1, \cdots, s) $, where $ (\ell)_{n} $ denotes the Pochhammer symbol or shifted factorial by

$ (\ell)_{n} = \frac{\Gamma(\ell+n)}{\Gamma(\ell)} = \left\{\begin{array}{ll} 1, &\mbox{if}\; \; n = 0,\ell\in\mathbb{C}\setminus\{0\},\\ \ell(\ell+1)(\ell+2)\ldots (\ell+n-1), &\mbox{if}\; \; n\in\mathbb{N} = \{1,2,3,\ldots\}. \end{array}\right. $

Dziok and Srivastava [2, 3] ever introduced the convolution operator $ {}_{q}\mathcal{I}_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s}) $$ = {}_{q}\mathcal{I}_{s} $ later named by themselves as follows

$ \begin{eqnarray} {}_{q}\mathcal{I}_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s})f(z) & = &{z}_{q}F_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s};z)\ast f(z) \\ & = &z+\sum^{\infty}_{n = 2}p_{n}(q,s)a_{n}z^{n}\; \; (z\in\Delta), \end{eqnarray} $ (1.3)

where

$ \begin{equation} p_{n}(q,s) = \frac{\Pi^{q}_{k = 1}(\alpha_{k})_{n-1}}{\Pi^{s}_{j = 1}(\beta_{j})_{n-1}(n-1)!}. \end{equation} $ (1.4)

Note that

$ \begin{eqnarray*} &&z[{}_{q}\mathcal{I}_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s})f(z)]'\notag \\ & = &\alpha_{1}{}_{q}\mathcal{I}_{s}(\alpha_{1}+1,\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s})f(z)-(\alpha_{1}-1){}_{q}\mathcal{I}_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s})f(z) \notag \\ & = &\alpha_{2}{}_{q}\mathcal{I}_{s}(\alpha_{1},\alpha_{2}+1,\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s})f(z)-(\alpha_{2}-1){}_{q}\mathcal{I}_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s})f(z) \notag \\ &&\vdots\notag \\ & = &\alpha_{q}{}_{q}\mathcal{I}_{s}(\alpha_{1},\cdots,\alpha_{q}+1;\beta_{1},\cdots,\beta_{s})f(z)-(\alpha_{q}-1){}_{q}\mathcal{I}_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s})f(z)\; \; (z\in\Delta). \end{eqnarray*} $

Here we remind some reduced versions of Dziok-Srivastava operator $ {}_{q}\mathcal{I}_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s}) $ for suitable parameters $ \alpha_{k}(k = 1,\cdots,q) $ and $ \beta_{j}(j = 1,\cdots,s) $; refer to the generalized Bernardi operator $ \mathcal{J}_{\eta} = {}_{2}\mathcal{I}_{1}(1,1+\eta;2+\eta)(\Re (\eta)>-1) $ [4]; Carlson-Shaffer operator $ \mathcal{L}(a,c) = {}_{2}\mathcal{I}_{1}(a,1;c) $ [5]; Choi-Saigo-Srivastava operator $ \mathcal{I}_{\lambda,\mu} = {}_{2}\mathcal{I}_{1}(\mu,1;\lambda+1)(\lambda>-1, \mu\geq0) $ [6]; Hohlov operator $ \mathcal{I}^{a,b}_{c} = {}_{2}\mathcal{I}_{1}(a,b;c) $ [7, 8]; Noor integral operator $ \mathcal{I}^{n} = {}_{2}\mathcal{I}_{1}(2,1;n+1) $ [9]; Owa-Srivastava fractional differential operator $ \Omega^{\lambda}_{z} = {}_{2}\mathcal{I}_{1}(2,1;2-\lambda)(0\leq\lambda<1) $ [10, 11]; Ruscheweyh derivative operator $ \mathcal{D}^{\delta} = {}_{2}\mathcal{I}_{1}(1+\delta,1;1) $ [12].

In 1967, Lewin [13] introduced the analytic and bi-univalent function and proved that $ \mid a_{2}\mid<1.51 $. Moreover, Brannan and Clunie [14] conjectured that $ \mid a_{2}\mid\leq\sqrt{2} $, and Netanyahu [15] obtained that $ \max\limits_{f\in\sum}\mid a_{2}\mid = \frac{4}{3} $. Later, Styer and Wright [17] showed that there exists function $ f(z) $ so that $ \mid a_{2}\mid>\frac{4}{3} $. However, so far the upper bound estimate $ \mid a_{2}\mid<1.485 $ of coefficient for functions in $ \sum $ by Tan [18] is best. Unfortunately, as for the coefficient estimate problem for every Taylor-Maclaurin coefficient $ \mid a_{n}\mid(n\in\mathbb{N}\setminus \{1,2\}) $ it is probably still an open problem. Based on the works of Brannan and Taha [19] and Srivastava et al. [20], many subclasses of analytic and bi-univalent functions class $ \sum $ were introduced and investigated, and the non-sharp estimates of first two Taylor-Maclaurin coefficients $ \mid a_{2}\mid $ and $ \mid a_{3}\mid $ were given; refer to Deniz [21], Frasin and Aouf [22], Hayami and Owa [23], Patil and Naik [24, 25], Srivastava et al. [26, 27], Tang et al. [28] and Xu et al. [29, 30] for more detailed information. Recently, Srivastava et al. [31, 32] gave some new subclasses of the function class $ \sum $ of analytic and bi-univalent functions to unify the works of Deniz [21], Frasin [33], Keerthi and Raja [34], Srivastava et al. [35], Murugusundaramoorthy et al.[36] and Xu et al. [29], etc. Besides, we also refer to Goyal et al. [37] for the subclasses of analytic and bi-univalent associated with quasi-subordination. Since Fekete-Szegö [38] studied the determination of the sharp upper bounds for the subclass of $ \mathcal{S} $, Fekete-Szegö functional problem was considered in many classes of functions; refer to Abdel-Gawad [39] for class of quasi-convex functions, Koepf [40] for class of close-to-convex functions, Orhan and Rǎducanu [16] for class of starlike functions, Magesh and Balaji [41] for class of convex and starlike functions, Orhan et al. [42] for the classes of bi-convex and bi-starlike type functions, Panigrahi and Raina [43] for class of quasi-subordination functions, Tang et al. [28] for classes of m-mold symmetric bi-univalent functions. In addition, Murugusundaramoorthy et al. [36, 44, 45] and Patil and Naik [46] ever introduced and investigated several new subclasses of the function class $ \sum $ of analytic and bi-univalent functions involving the hohlov operator. Moreover, Al-Hawary et al. [47] studied the Fekete-Szegö functional problem for the classes of analytic functions of complex order defined by the Dziok-Srivastava operator. Motivated by the statements above, in the article we are ready to introduce and investigate two new subclasses of the function class $ \sum $ of analytic and bi-univalent functions associated with the Dziok-Srivastava operator and quasi-subordination, and consider the corresponding bound estimates of the coefficient $ a_2 $ and $ a_3 $ as well as the corresponding Fekete-Szegö functional inequalities. Furthermore, the consequences and connections to some earlier known results would be pointed out.

For two analytic functions $ f $ and $ g $, if there exist two analytic functions $ \varphi $ and $ h $ with $ \mid\varphi(z)\mid\leq1 $, $ h(0) = 0 $ and $ \mid h(z)\mid<1 $ for $ z\in\Delta $ so that $ f(z) = \varphi(z)g(h(z)) $, then $ f $ is quasi-subordinate to $ g $, i.e., $ f\prec_{\text{quasi}}g $. Note that if $ \varphi\equiv1 $, then $ f $ is subordinate to $ g $ in $ \Delta $, i.e., $ f\prec g $. Further, if $ h(z) = z $, then $ f $ is majorized by $ g $ in $ \Delta $, i.e. $ f\leq g $. For the related work on quasi-subordination, refer to Robertson [48], and Frasin and Aouf [22]. Write

$ \begin{equation} \varphi(z) = B_{0}+B_{1}z+B_{2}z^{2}+B_{3}z^{3}+\ldots\quad(\mid\varphi(z)\mid\leq1, z\in\Delta). \end{equation} $ (1.5)

First we will introduce the following general subclasses of analytic and bi-univalent functions associated with the Dziok-Srivastava operator.

Definition 1.1 A function $ f(z)\in\sum $ given by (1.1), belongs to the class $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) $ if the following quasi-subordinations are satisfied

$ \begin{equation} \left [\frac{z({}_{q}\mathcal{I}_{s}f)'(z)}{{}_{q}\mathcal{I}_{s}f(z)}\right]\left [\frac{({}_{q}\mathcal{I}_{s}f)(z)}{z}\right]^{\eta}-1\prec_{\text{quasi}}(\phi(z)-1) \end{equation} $ (1.6)

and

$ \begin{equation} \left [\frac{z({}_{q}\mathcal{I}_{s}g)'(w)}{{}_{q}\mathcal{I}_{s}g(w)}\right]\left [\frac{({}_{q}\mathcal{I}_{s}g)(w)}{w}\right]^{\eta}-1\prec_{\text{quasi}}(\phi(w)-1) \end{equation} $ (1.7)

for $ z, w\in\Delta $, where $ \eta\geq0 $ and the function $ g $ is the inverse of $ f $ given by (1.2).

Definition 1.2 A function $ f(z)\in\sum $ given by (1.1), belongs to the class $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}} $ $ (\tau,\mu,\lambda,\gamma;\phi) $ if the following quasi-subordinations are satisfied:

$ \begin{equation} \frac{1}{\tau} [\frac{z({}_{q}\mathcal{I}_{s}f)'(z)+\mu z^{2}({}_{q}\mathcal{I}_{s}f)''(z)}{(1-\lambda)z+\lambda(1-\gamma)({}_{q}\mathcal{I}_{s}f)(z)+\gamma z({}_{q}\mathcal{I}_{s}f)'(z)}-\frac{1}{[1+\gamma(1-\lambda)]} ]\prec_{\text{quasi}}(\phi(z)-1) \end{equation} $ (1.8)

and

$ \begin{equation} \frac{1}{\tau} [\frac{w({}_{q}\mathcal{I}_{s}g)'(z)+\mu w^{2}({}_{q}\mathcal{I}_{s}g)''(w)}{(1-\lambda)w+\lambda(1-\gamma)({}_{q}\mathcal{I}_{s}g)(w)+\gamma w({}_{q}\mathcal{I}_{s}g)'(w)}-\frac{1}{[1+\gamma(1-\lambda)]} ]\prec_{\text{quasi}}(\phi(w)-1) \end{equation} $ (1.9)

for $ z, w\in\Delta $, where $ \tau\in \mathbb{C}\setminus\{0\} $, $ 0\leq\mu\leq1 $, $ 0\leq\lambda\leq1 $, $ 0\leq\gamma\leq1 $ and the function $ g $ is the inverse of $ f $ given by (1.2).

Lemma 1.3(see [1, 49]) Let $ \mathcal{P} $ be the class of all analytic functions $ q(z) $ of the following form

$ \begin{equation*} q(z) = 1+\sum\limits^{\infty}_{n = 1}c_{n}z^{n}\; \; (z\in\Delta) \end{equation*} $

satisfying $ \Re q(z)>0 $ and $ q(0) = 1 $. Then the sharp estimates $ \mid c_{n}\mid\leq2(n\in\mathbb{N}) $ are true. In particular, the equality holds for all $ n $ for the next function

$ \begin{equation*} q(z) = \frac{1+z}{1-z} = 1+\sum\limits^{\infty}_{n = 1}2z^{n}. \end{equation*} $
2 Coefficient Bounds for the Function Class $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) $

Denote the functions $ s $ and $ t $ in $ \mathcal{P} $ by

$ \begin{equation} s(z) = \frac{1+u(z)}{1-u(z)} = 1+\sum\limits^{\infty}_{n = 1}c_{n}z^{n}\quad\text{and}\quad t(w) = \frac{1+v(w)}{1-v(w)} = 1+\sum\limits^{\infty}_{n = 1}d_{n}w^{n}\; \; (z,w\in\Delta). \end{equation} $ (2.1)

Equivalently, from (2.1) we know that

$ \begin{equation} u(z) = \frac{s(z)-1}{s(z)+1} = \frac{c_{1}}{2}z+\frac{1}{2}(c_{2}-\frac{c^{2}_{1}}{2})z^{2}+\ldots \; \; (z\in\Delta) \end{equation} $ (2.2)

and

$ \begin{equation} v(w) = \frac{t(w)-1}{t(w)+1} = \frac{d_{1}}{2}w+\frac{1}{2}(d_{2}-\frac{d^{2}_{1}}{2})w^{2}+\ldots\; \; (w\in\Delta). \end{equation} $ (2.3)

Given $ \phi\in\mathcal{P} $ with $ \phi'(0)>0 $, let $ \phi(\Delta) $ be symmetric with respect to the real axis. When the series expansion form of $ \phi $ is denoted by

$ \begin{equation} \phi(z) = 1+\sum\limits^{\infty}_{n = 1}E_{n}z^{n}\; \; (E_{1}>0,z\in\Delta), \end{equation} $ (2.4)

by (2.2)–(2.3) and (2.4) it follows that

$ \begin{equation} \phi(u(z)) = 1+\frac{1}{2}E_{1}c_{1}z+[\frac{1}{2}E_{1}(c_{2}-\frac{c^{2}_{1}}{2})+\frac{1}{4}E_{2}c^{2}_{1}]z^{2}+\ldots\; \; (z\in\Delta) \end{equation} $ (2.5)

and

$ \begin{equation} \phi(v(w)) = 1+\frac{1}{2}E_{1}d_{1}w+[\frac{1}{2}E_{1}(d_{2}-\frac{d^{2}_{1}}{2})+\frac{1}{4}E_{2}d^{2}_{1}]w^{2}+\ldots\; \; (w\in\Delta). \end{equation} $ (2.6)

In the section we study the estimates for the class $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) $. Now, we establish the next theorem.

Theorem 2.1 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) $, then

$ \begin{equation} \mid a_{2}\mid\leq\min\{\frac{E_{1}}{(\eta+1)},\frac{2(\vert E_{2}-E_{1}\vert+ E_{1})}{\sqrt{(\eta+1)(\eta+2)}},\frac{E_{1}\sqrt{2E_{1}}}{\sqrt{\vert\Xi(\eta,B_{0},E_{1},E_{2})\vert}}\}\frac{\vert B_{0}\vert}{\vert p_{2}(q,s)\vert} \end{equation} $ (2.7)

and

$ \begin{equation} \mid a_{3}\mid\leq\frac{(\vert B_{0}+\vert B_{1}\vert) E_{1}}{(\eta+2)\vert p_{3}(q,s)\vert}+\min\{\frac{\vert B_{0}\vert E^{2}_{1}}{\eta+1}, \frac{2(\vert E_{2}-E_{1}\vert+E_{1})}{\eta+2}\}\frac{\vert B_{0}\vert}{(\eta+1)\vert p_{3}(q,s)\vert}, \end{equation} $ (2.8)

where

$ \begin{equation} \Xi(\eta,B_{0},E_{1},E_{2}) = (\eta+1)(\eta+2)B_{0}E^{2}_{1}+2(\eta+1)^{2}(E_{1}-E_{2}). \end{equation} $ (2.9)

Proof If $ f(z)\in\mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) $, then by Definition 1.1 and Lemma 1.3, there exist two analytic functions $ u(z) $ and $ v(w)\in\mathcal{P} $ so that

$ \begin{equation} [\frac{z({}_{q}\mathcal{I}_{s}f)'(z)}{{}_{q}\mathcal{I}_{s}f(z)}] [\frac{({}_{q}\mathcal{I}_{s}f)(z)}{z}]^{\eta}-1 = \varphi(z)[\phi(u(z))-1] \end{equation} $ (2.10)

and

$ \begin{equation} [\frac{z({}_{q}\mathcal{I}_{s}g)'(w)}{{}_{q}\mathcal{I}_{s}g(w)}] [\frac{({}_{q}\mathcal{I}_{s}g)(w)}{w}]^{\eta}-1 = \varphi(w)[\phi(v(w))-1]. \end{equation} $ (2.11)

Expanding the left half parts of (2.11) and (2.12), we obtain that

$ \begin{eqnarray} &&[\frac{z({}_{q}\mathcal{I}_{s}f)'(z)}{{}_{q}\mathcal{I}_{s}f(z)}] [\frac{({}_{q}\mathcal{I}_{s}f)(z)}{z}]^{\eta}\\& = &1+(\eta+1)p_{2}(q,s)a_{2}z + [(\eta+2)p_{3}(q,s)a_{3}+\frac{(\eta-1)(\eta+2)}{2}p^{2}_{2}(q,s)a^{2}_{2}]z^{2}+\cdots\qquad \end{eqnarray} $ (2.12)

and

$ \begin{eqnarray} &&[\frac{z({}_{q}\mathcal{I}_{s}g)'(w)}{{}_{q}\mathcal{I}_{s}g(w)}] [\frac{({}_{q}\mathcal{I}_{s}g)(w)}{w}]^{\eta}\\ & = &1- (\eta+1)p_{2}(q,s)a_{2}w + [-(\eta+2)p_{3}(q,s)a_{3} +\frac{(\eta+2)(\eta+3)}{2}p^{2}_{2}(q,s)a^{2}_{2}]w^{2}+\cdots.\quad\qquad \end{eqnarray} $ (2.13)

In addition, we know that

$ \begin{equation} \varphi(z)[\phi(u(z))-1] = \frac{1}{2}B_{0}E_{1}c_{1}z+[\frac{1}{2}B_{1}E_{1}c_{1}+\frac{1}{2}B_{0}E_{1}(c_{2}-\frac{c^{2}_{1}}{2})+\frac{1}{4}B_{0}E_{2}c^{2}_{1}]z^{2}+\cdots \end{equation} $ (2.14)

and

$ \begin{equation} \varphi(w)[\phi(v(w))-1] = \frac{1}{2}B_{0}E_{1}d_{1}w+[\frac{1}{2}B_{1}E_{1}d_{1}+\frac{1}{2}B_{0}E_{1}(d_{2}-\frac{d^{2}_{1}}{2})+\frac{1}{4}B_{0}E_{2}d^{2}_{1}]w^{2}+\cdots. \end{equation} $ (2.15)

Therefore, from (2.10)–(2.15) we have that

$ \begin{equation} (\eta+1)p_{2}(q,s)a_{2} = \frac{1}{2}B_{0}E_{1}c_{1}, \end{equation} $ (2.16)
$ \begin{equation} (\eta+2)p_{3}(q,s)a_{3}+\frac{(\eta-1)(\eta+2)}{2}p^{2}_{2}(q,s)a^{2}_{2} = \frac{1}{2}B_{1}E_{1}c_{1}+\frac{1}{2}B_{0}E_{1}(c_{2}-\frac{c^{2}_{1}}{2})+\frac{1}{4}B_{0}E_{2}c^{2}_{1}, \end{equation} $ (2.17)
$ \begin{equation} -(\eta+1)p_{2}(q,s)a_{2} = \frac{1}{2}B_{0}E_{1}d_{1} \end{equation} $ (2.18)

and

$ \begin{equation} -(\eta+2)p_{3}(q,s)a_{3} +\frac{(\eta+2)(\eta+3)}{2}p^{2}_{2}(q,s)a^{2}_{2} = \frac{1}{2}B_{1}E_{1}d_{1}+\frac{1}{2}B_{0}E_{1}(d_{2}-\frac{d^{2}_{1}}{2})+\frac{1}{4}B_{0}E_{2}d^{2}_{1}. \end{equation} $ (2.19)

From (2.16) and (2.18), it infers that

$ \begin{equation} a_{2} = \frac{B_{0}E_{1}c_{1}}{2(\eta+1)p_{2}(q,s)} = -\frac{B_{0}E_{1}d_{1}}{2(\eta+1)p_{2}(q,s)}. \end{equation} $ (2.20)

Then, we show that

$ \begin{equation} c_{1} = -d_{1} \end{equation} $ (2.21)

and

$ \begin{equation} B^{2}_{0}E^{2}_{1}(c^{2}_{1}+d^{2}_{1}) = 8(\eta+1)^{2}p^{2}_{2}(q,s)a^{2}_{2}. \end{equation} $ (2.22)

By (2.17) and (2.19), we have that

$ \begin{equation} \frac{1}{4}B_{0}(E_{2}-E_{1})(c^{2}_{1}+d^{2}_{1})+\frac{1}{2}B_{0}E_{1}(c_{2}+d_{2}) = (\eta+1)(\eta+2)p^{2}_{2}(q,s)a^{2}_{2}. \end{equation} $ (2.23)

Therefore, by (2.22)–(2.23) we obtain that

$ \begin{equation} a^{2}_{2} = \frac{B^{2}_{0}E^{3}_{1}(c_{2}+d_{2})}{2(\eta+1)[(\eta+2)B_{0}E^{2}_{1}+2(\eta+1)(E_{1}-E_{2})]p^{2}_{2}(q,s)}. \end{equation} $ (2.24)

We follow from Lemma 1.3 and (2.22)–(2.24) that

$ \begin{equation*} \mid a_{2}\mid\leq\frac{\vert B_{0}\vert E_{1}}{(\eta+1)\vert p_{2}(q,s)\vert}, \end{equation*} $
$ \begin{equation*} \mid a_{2}\mid\leq\frac{2\vert B_{0}\vert(\vert E_{2}-E_{1}\vert+ E_{1})}{\sqrt{(\eta+1)(\eta+2)}\vert p_{2}(q,s)\vert} \end{equation*} $

and

$ \begin{equation*} \mid a_{2}\mid\leq\frac{\vert B_{0}\vert E_{1}\sqrt{2E_{1}}}{\sqrt{(\eta+1)\vert(\eta+2)B_{0}E^{2}_{1}+2(\eta+1)(E_{1}-E_{2})\vert}\vert p_{2}(q,s)\vert}, \end{equation*} $

then (2.7) holds. Similarly, from (2.17), (2.19) and (2.21), it also implies that

$ \begin{equation} B_{1}E_{1}(c_{1}-d_{1})+B_{0}E_{1}(c_{2}-d_{2}) = 4(\eta+2)p_{3}(q,s)a_{3}-4(\eta+2)p^{2}_{2}(q,s)a^{2}_{2}. \end{equation} $ (2.25)

Hence, from (2.22) and (2.25), we obtain that

$ \begin{equation*} a_{3} = \frac{B_{1}E_{1}(c_{1}-d_{1})+B_{0}E_{1}(c_{2}-d_{2})}{4(\eta+2)p_{3}(q,s)} +\frac{B^{2}_{0}E^{2}_{1}(c^{2}_{1}+d^{2}_{1})}{8(\eta+1)^{2}p_{3}(q,s)}. \end{equation*} $

Therefore, from Lemma 1.3 it shows that

$ \begin{equation*} \mid a_{3}\mid\leq\frac{(\vert B_{0}+\vert B_{1}\vert) E_{1}}{(\eta+2)\vert p_{3}(q,s)\vert}+\frac{B^{2}_{0}E^{2}_{1}}{(\eta+1)^{2}\vert p_{3}(q,s)\vert}. \end{equation*} $

On the other hand, by (2.23) and (2.25), we infer that

$ \begin{equation*} a_{3} = \frac{B_{1}E_{1}(c_{1}-d_{1})+B_{0}E_{1}(c_{2}-d_{2})}{4(\eta+2)p_{3}(q,s)} +\frac{B_{0}(E_{2}-E_{1})(c^{2}_{1}+d^{2}_{1})+2B_{0}E_{1}(c_{2}+d_{2})}{4(\eta+1)(\eta+2)p_{3}(q,s)}. \end{equation*} $

Thus, from Lemma 1.3, we see that

$ \begin{equation*} \mid a_{3}\mid\leq\frac{(\vert B_{0}+\vert B_{1}\vert) E_{1}}{(\eta+2)\vert p_{3}(q,s)\vert} +\frac{2\vert B_{0}\vert(\vert E_{2}-E_{1}\vert+E_{1})}{(\eta+1)(\eta+2)\vert p_{3}(q,s)\vert}. \end{equation*} $

Next, we consider Fekete-Szegö problems for the class $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) $.

Theorem 2.2 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) $ and $ \delta\in\mathbb{R} $, then

$ \mid a_{3}-\delta a^{2}_{2}\mid\leq\left\{\begin{array}{ll} \frac{\vert B_{0}\vert E_{1}}{2(\eta+2)\vert p_{3}(q,s)\vert},\; \; &\mbox{if}\; \; 2\vert B_{0}\vert E_{1}^{2}(\eta+2)\vert p^{2}_{2}(q,s)-\delta p_{3}(q,s)\vert\leq\mid\Xi\mid p^{2}_{2}(q,s),\\ \frac{2\vert B_{0}\vert^{2}E^{3}_{1}\vert p^{2}_{2}(q,s)-\delta p_{3}(q,s)\vert}{\vert\Xi p_{3}(q,s)\vert p^{2}_{2}(q,s)},\; \; &\mbox{if}\; \; 2\vert B_{0}\vert E_{1}^{2}(\eta+2)\vert p^{2}_{2}(q,s)-\delta p_{3}(q,s)\vert\geq\mid\Xi\mid p^{2}_{2}(q,s), \end{array}\right. $

where $ \Xi = \Xi(\eta,B_{0},E_{1},E_{2}) $ is the same as in Theorem 2.1.

Proof From (2.25), it follows that

$ \begin{equation*} a_{3}-\frac{p^{2}_{2}(q,s)a^{2}_{2}}{p_{3}(q,s)} = \frac{B_{1}E_{1}(c_{1}-d_{1})+B_{0}E_{1}(c_{2}-d_{2})}{4(\eta+2)p_{3}(q,s)}. \end{equation*} $

By (2.24) we easily obtain that

$ \begin{eqnarray*} a_{3}-\delta a^{2}_{2}& = &\frac{B_{0}E_{1}[\Xi p^{2}_{2}(q,s)+2B_{0}E_{1}^{2}(\eta+2)(p^{2}_{2}(q,s)-\delta p_{3}(q,s))]c_{2}}{4(\eta+2)\Xi p_{3}(q,s)p^{2}_{2}(q,s)} \notag\\ &&+\frac{-B_{0}E_{1}[\Xi p^{2}_{2}(q,s)+2B_{0}E_{1}^{2}(\eta+2)(p^{2}_{2}(q,s)-\delta p_{3}(q,s))]d_{2}}{4(\eta+2)\Xi p_{3}(q,s)p^{2}_{2}(q,s)}. \end{eqnarray*} $

Hence, from Lemma 1.3, we imply that

$ \mid a_{3}-\delta a^{2}_{2}\mid\leq\left\{\begin{array}{ll} \frac{\vert B_{0}\vert E_{1}}{2(\eta+2)\vert p_{3}(q,s)\vert},\; \; &\mbox{if}\; \; 2\vert B_{0}\vert E_{1}^{2}(\eta+2)\vert p^{2}_{2}(q,s)-\delta p_{3}(q,s)\vert\leq\mid\Xi\mid p^{2}_{2}(q,s),\\ \frac{2\vert B_{0}\vert^{2}E^{3}_{1}\vert p^{2}_{2}(q,s)-\delta p_{3}(q,s)\vert}{\vert\Xi p_{3}(q,s)\vert p^{2}_{2}(q,s)},\; \; &\mbox{if}\; \; 2\vert B_{0}\vert E_{1}^{2}(\eta+2)\vert p^{2}_{2}(q,s)-\delta p_{3}(q,s)\vert\geq\mid\Xi\mid p^{2}_{2}(q,s). \end{array}\right. $

Corollary 2.3 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) $ and $ \delta\in\mathbb{R} $, then

$ \vert a_{3}\vert\leq\left\{\begin{array}{ll} \frac{\vert B_{0}\vert E_{1}}{2(\eta+2)\vert p_{3}(q,s)\vert},\; \; &\mbox{if}\; \; 2\vert B_{0}\vert E_{1}^{2}(\eta+2)\leq\vert\Xi\vert,\\ \frac{2\vert B_{0}\vert^{2}E^{3}_{1}}{\vert\Xi p_{3}(q,s)\vert },\; \; &\mbox{if}\; \; 2\vert B_{0}\vert E_{1}^{2}(\eta+2)\geq\vert\Xi\vert, \end{array}\right. $

where $ \Xi = \Xi(\eta,B_{0},E_{1},E_{2}) $ is the same as in Theorem 2.1.

Remark 2.4 Without quasi-subordination (i.e., $ \varphi(z)\equiv1 $), if we choose some suitable parameters $ \alpha_{k} $ $ (k = 1,\cdots,q) $, $ \beta_{j} $ $ (j = 1,\cdots,s) $ and $ \eta $, we obtain the following reduced versions for $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) $ in Theorem 2.1.

(Ⅰ) $ \mathcal{QH_{\sum}}^{a,b}_{c}(\alpha;\phi) = \mathcal{J}^{a,b;c}_{\sum}(\alpha,\phi) $, refer to Patil and Naik [46].

Remark 2.5 Without Dziok-Srivastava operator, we can collect the following reduced versions for $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) $ in Theorem 2.1.

(Ⅰ) $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\eta;\phi) = \mathcal{J}^{q}_{\eta}(\phi) $ $ (\eta\geq0) $, refer to Goyal et al. [37].

(Ⅱ) $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(1;\phi) = \mathcal{H}_{\sum}(\phi) $ for $ \varphi(z)\equiv1 $, refer to Ali et al. [50] and Tang et al. [51] for Corollary 2.2; $ \mathcal{QH_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(0;\phi) = \mathcal{S}^{*}_{\sum}(\phi) $ for $ \varphi(z)\equiv1 $, refer to Brannan and Taha. [19] and Tang et al. [51] for Corollary 2.4.

3 Coefficient Bound Estimates for the Function Class $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\mu,\lambda,\gamma;\phi) $

Now, we study the coefficients for the class $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\mu,\lambda,\gamma;\phi) $ and establish the next theorem.

Theorem 3.1 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\mu,\lambda,\gamma;\phi) $, then

$ \begin{equation} \mid a_{2}\mid\leq\min\{\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\} \end{equation} $ (3.1)

for

$ \begin{equation*} \mathcal{F}_{1} = \frac{\mid B_{0}\tau\mid E_{1}(1+\gamma-\gamma\lambda)^{2}}{\vert p_{2}(q,s)\Psi(\mu,\lambda,\gamma)\vert},\quad \mathcal{F}_{2} = \sqrt{\frac{\mid B_{0}\mid(\mid E_{2}-E_{1}\mid+E_{1})\mid\tau\mid (1+\gamma-\gamma\lambda)^{3}}{\mid\Phi(\mu,\lambda,\gamma,p_{2}(q,s), p_{3}(q,s))\mid}} \end{equation*} $

and

$ \begin{equation*} \mathcal{F}_{3} = \frac{\mid B_{0}\tau\mid E^{3/2}_{1}(1+\gamma-\gamma\lambda)^{2}}{\sqrt{\mid B_{0}\tau E^{2}_{1}(1+\gamma-\gamma\lambda)\Phi(\mu,\lambda,\gamma,p_{2}(q,s), p_{3}(q,s))+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}(\mu,\lambda,\gamma)\mid}}, \end{equation*} $

and

$ \begin{equation*} \mid a_{3}\mid\leq\min\{\mathcal{G}_{1}, \mathcal{G}_{2}\} \end{equation*} $

for

$ \begin{equation*} \mathcal{G}_{1} = \frac{\mid\tau\mid(\vert B_{0}\vert+\vert B_{1}\vert) E_{1}(1+\gamma-\gamma\lambda)^{2}}{\vert p_{3}(q,s)\vert\Theta(\mu,\lambda,\gamma)}+\frac{\mid\tau\mid^{2}B_{0}^{2} E_{1}^{2}(1+\gamma-\gamma\lambda)^{4}}{p^{2}_{2}(q,s)\Psi^{2}(\mu,\lambda,\gamma)} \end{equation*} $

and

$ \begin{equation*} \mathcal{G}_{2} = \frac{\mid\tau\mid(\vert B_{0}\vert+\vert B_{1}\vert) E_{1}(1+\gamma-\gamma\lambda)^{2}}{\vert p_{3}(q,s)\vert\Theta(\mu,\lambda,\gamma)}+\frac{\mid\tau B_{0}\mid (\vert E_{2}-E_{1}\vert+E_{1})(1+\gamma-\gamma\lambda)^{3}}{\vert\Phi(\mu,\lambda,\gamma,p_{2}(q,s),p_{3}(q,s))\vert}, \end{equation*} $

where

$ \begin{equation} \Phi(\mu,\lambda,\gamma,p_{2}(q,s),p_{3}(q,s)) = (1+\gamma-\gamma\lambda)\Theta(\mu,\lambda,\gamma)p_{3}(q,s)-[\lambda(1-\gamma)+2\gamma]\Psi(\mu,\lambda,\gamma)p^{2}_{2}(q,s), \end{equation} $ (3.2)
$ \begin{equation} \Psi(\mu,\lambda,\gamma) = 2-\gamma\lambda-\lambda+2\mu(1+\gamma-\gamma\lambda) \end{equation} $ (3.3)

and

$ \begin{equation} \Theta(\mu,\lambda,\gamma) = 3-2\gamma\lambda-\lambda+6\mu(1+\gamma-\gamma\lambda). \end{equation} $ (3.4)

Proof Here, we follow the method of Theorem 2.1. If $ f(z)\in\mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\mu,\lambda,\gamma;\phi) $, then by Definition 1.2 there exist two analytic functions $ u(z),v(z): \Delta\rightarrow\Delta $ with $ u(0) = 0 $ and $ v(0) = 0 $ such that

$ \begin{equation} \frac{1}{\tau} [\frac{z({}_{q}\mathcal{I}_{s}f)'(z)+\mu z^{2}({}_{q}\mathcal{I}_{s}f)''(z)}{(1-\lambda)z+\lambda(1-\gamma){}_{q}\mathcal{I}_{s}f(z)+\gamma z({}_{q}\mathcal{I}_{s}f)'(z)}-\frac{1}{[1+\gamma(1-\lambda)]}] = \varphi(z)[\phi(u(z))-1] \end{equation} $ (3.5)

and

$ \begin{equation} \frac{1}{\tau}[\frac{w ({}_{q}\mathcal{I}_{s}g)'(z)+\mu w^{2}({}_{q}\mathcal{I}_{s}g)''(w)}{(1-\lambda)w+\lambda(1-\gamma)({}_{q}\mathcal{I}_{s}g)(w)+\gamma w({}_{q}\mathcal{I}_{s}g)'(w)}-\frac{1}{[1+\gamma(1-\lambda)]}] = \varphi(w)[\phi(v(w))-1]. \end{equation} $ (3.6)

Expanding the left half parts of (3.5) and (3.6), we have that

$ \begin{eqnarray} &&\frac{1}{\tau} [\frac{z({}_{q}\mathcal{I}_{s}f)'(z)+\mu z^{2}({}_{q}\mathcal{I}_{s}f)''(z)}{(1-\lambda)z+\lambda(1-\gamma){}_{q}\mathcal{I}_{s}f(z)+\gamma z({}_{q}\mathcal{I}_{s}f)'(z)}-\frac{1}{[1+\gamma(1-\lambda)]}] \\ & = &\frac{\Psi(\mu,\lambda,\gamma)}{\tau(1+\gamma-\gamma\lambda)^{2}}p_{2}(q,s)a_{2}z \\&&+ [\frac{\Theta(\mu,\lambda,\gamma)}{\tau(1+\gamma-\gamma\lambda)^{2}}p_{3}(q,s)a_{3} -\frac{[\lambda(1-\gamma)+2\gamma]\Psi(\mu,\lambda,\gamma)}{\tau(1+\gamma-\gamma\lambda)^{3}}p^{2}_{2}(q,s)a^{2}_{2}]z^{2}+\cdots \end{eqnarray} $ (3.7)

and

$ \begin{eqnarray} &&\frac{1}{\tau}[\frac{w ({}_{q}\mathcal{I}_{s}g)'(z)+\mu w^{2}({}_{q}\mathcal{I}_{s}g)''(w)}{(1-\lambda)w+\lambda(1-\gamma)({}_{q}\mathcal{I}_{s}g)(w)+\gamma w({}_{q}\mathcal{I}_{s}g)'(w)}-\frac{1}{[1+\gamma(1-\lambda)]}] \\& = &-\frac{\Psi(\mu,\lambda,\gamma)}{\tau(1+\gamma-\gamma\lambda)^{2}}p_{2}(q,s)a_{2}w \\&& +\frac{1}{\tau} [\frac{\Theta(\mu,\lambda,\gamma)}{(1+\gamma-\gamma\lambda)^{2}}p_{3}(q,s)a_{3} -\frac{[\lambda(1-\gamma)+2\gamma]\Psi(\mu,\lambda,\gamma)}{(1+\gamma-\gamma\lambda)^{3}}p^{2}_{2}(q,s)a^{2}_{2}]w^{2}+\cdots. \end{eqnarray} $ (3.8)

Therefore, From (2.14)–(2.15) and (3.5)–(3.8), we get that

$ \begin{equation} \frac{\Psi(\mu,\lambda,\gamma)}{\tau(1+\gamma-\gamma\lambda)^{2}}p_{2}(q,s)a_{2} = \frac{1}{2}B_{0}E_{1}c_{1}, \end{equation} $ (3.9)
$ \begin{eqnarray} &&\frac{\Theta(\mu,\lambda,\gamma)}{\tau(1+\gamma-\gamma\lambda)^{2}}p_{3}(q,s)a_{3}- \frac{[\lambda(1-\gamma)+2\gamma]\Psi(\mu,\lambda,\gamma)}{\tau(1+\gamma-\gamma\lambda)^{3}}p^{2}_{2}(q,s)a^{2}_{2} \\ & = &\frac{1}{2}B_{1}E_{1}c_{1}+\frac{1}{2}B_{0}E_{1}(c_{2}-\frac{c^{2}_{1}}{2})+\frac{1}{4}B_{0}E_{2}c^{2}_{1}, \end{eqnarray} $ (3.10)
$ \begin{equation} -\frac{\Psi(\mu,\lambda,\gamma)}{\tau(1+\gamma-\gamma\lambda)^{2}}p_{2}(q,s)a_{2} = \frac{1}{2}B_{0}E_{1}d_{1} \end{equation} $ (3.11)

and

$ \begin{eqnarray} &&\frac{\Theta(\mu,\lambda,\gamma)}{\tau(1+\gamma-\gamma\lambda)^{2}}p_{3}(q,s)(2a^{2}_{2}-a_{3})- \frac{[\lambda(1-\gamma)+2\gamma]\Psi(\mu,\lambda,\gamma)}{\tau(1+\gamma-\gamma\lambda)^{3}}p^{2}_{2}(q,s)a^{2}_{2} \\ & = &\frac{1}{2}B_{1}E_{1}d_{1}+\frac{1}{2}B_{0}E_{1}(d_{2}-\frac{d^{2}_{1}}{2})+\frac{1}{4}B_{0}E_{2}d^{2}_{1}. \end{eqnarray} $ (3.12)

From (3.9) and (3.11), we know that

$ \begin{equation} a_{2} = \frac{B_{0}E_{1}c_{1}\tau(1+\gamma-\gamma\lambda)^{2}}{2p_{2}(q,s)\Psi(\mu,\lambda,\gamma)} = -\frac{B_{0}E_{1}d_{1}\tau(1+\gamma-\gamma\lambda)^{2}}{2p_{2}(q,s)\Psi(\mu,\lambda,\gamma)}. \end{equation} $ (3.13)

Then, it infers that

$ \begin{equation} c_{1} = -d_{1} \end{equation} $ (3.14)

and

$ \begin{equation} B_{0}^{2}E_{1}^{2}(c^{2}_{1}+d^{2}_{1}) = \frac{8p^{2}_{2}(q,s)\Psi(\mu,\lambda,\gamma)^{2}}{\tau^{2}(1+\gamma-\gamma\lambda)^{4}}a^{2}_{2}. \end{equation} $ (3.15)

By (3.10) and (3.12), we have that

$ \begin{equation} \frac{1}{4}B_{0}(c^{2}_{1}+d^{2}_{1})(E_{2}-E_{1})+\frac{1}{2}B_{0}E_{1}(c_{2}+d_{2}) = \frac{2a^{2}_{2}}{\tau(1+\gamma-\gamma\lambda)^{3}}\Phi(\mu,\lambda,\gamma,p_{2}(q,s),p_{3}(q,s)). \end{equation} $ (3.16)

Therefore, by (3.15)–(3.16) we know that

$ \begin{equation} a^{2}_{2} = \frac{\frac{1}{4}B^{2}_{0}E^{3}_{1}\tau^{2}(1+\gamma-\gamma\lambda)^{4}(c_{2}+d_{2})}{B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi(\mu,\lambda,\gamma,p_{2}(q,s), p_{3}(q,s))+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}(\mu,\lambda,\gamma)}. \end{equation} $ (3.17)

Therefore, from (3.15)–(3.17) and Lemma 1.3, we obtain that

$ \begin{eqnarray*} \mid a_{2}\mid&\leq&\frac{\mid B_{0}\tau\mid E_{1}(1+\gamma-\gamma\lambda)^{2}}{\vert p_{2}(q,s)\vert\Psi(\mu,\lambda,\gamma)}, \\ \mid a_{2}\mid&\leq&\sqrt{\frac{\mid B_{0}\mid(\mid E_{2}-E_{1}\mid+E_{1})\mid\tau\mid (1+\gamma-\gamma\lambda)^{3}}{\mid\Phi(\mu,\lambda,\gamma,p_{2}(q,s), p_{3}(q,s))\mid}} \end{eqnarray*} $

and

$ \begin{equation*} \mid a_{2}\mid\leq\frac{\mid B_{0}\tau\mid E^{3/2}_{1}(1+\gamma-\gamma\lambda)^{2}}{\sqrt{\mid B_{0}\tau E^{2}_{1}(1+\gamma-\gamma\lambda)\Phi(\mu,\lambda,\gamma,p_{2}(q,s), p_{3}(q,s))+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}(\mu,\lambda,\gamma)\mid}}. \end{equation*} $

Similarly, from (3.10) and (3.12), it implies that

$ \begin{equation} \frac{1}{2}B_{1}E_{1}(c_{1}-d_{1})+\frac{1}{2}B_{0}E_{1}(c_{2}-d_{2}) = \frac{2p_{3}(q,s)\Theta(\mu,\lambda,\gamma)(a_{3}-a^{2}_{2})}{\tau(1+\gamma-\gamma\lambda)^{2}}. \end{equation} $ (3.18)

Hence, by (3.15) and (3.18), it follows that

$ \begin{equation*} a_{3} = \frac{\tau [B_{1}E_{1}(c_{1}-d_{1})+B_{0}E_{1}(c_{2}-d_{2})](1+\gamma-\gamma\lambda)^{2}}{4p_{3}(q,s)\Theta(\mu,\lambda,\gamma)}+\frac{\tau^{2} B_{0}^{2}E_{1}^{2}(1+\gamma-\gamma\lambda)^{4}(c^{2}_{1}+d^{2}_{1})}{8p^{2}_{2}(q,s)\Psi^{2}(\mu,\lambda,\gamma)}. \end{equation*} $

So, we obtain from Lemma 1.3 that

$ \begin{equation*} \mid a_{3}\mid\leq\frac{\mid\tau\mid(\vert B_{0}\vert+\vert B_{1}\vert) E_{1}(1+\gamma-\gamma\lambda)^{2}}{\mid p_{3}(q,s)\Theta(\mu,\lambda,\gamma)\mid}+\frac{\mid\tau\mid^{2}B_{0}^{2} E_{1}^{2}(1+\gamma-\gamma\lambda)^{4}}{p^{2}_{2}(q,s)\Psi^{2}(\mu,\lambda,\gamma)}. \end{equation*} $

On the other hand, by (3.16) and (3.18), we infer that

$ \begin{eqnarray*} a_{3}& = &\frac{\tau [B_{1}E_{1}(c_{1}-d_{1})+B_{0}E_{1}(c_{2}-d_{2})](1+\gamma-\gamma\lambda)^{2}}{4p_{3}(q,s)\Theta(\mu,\lambda,\gamma)} \notag\\ &&+\frac{\tau B_{0}[(E_{2}-E_{1})(c^{2}_{1}+d^{2}_{1})+2E_{1}(c_{2}+d_{2})](1+\gamma-\gamma\lambda)^{3}}{8\Phi(\mu,\lambda,\gamma,p_{2}(q,s),p_{3}(q,s))}. \end{eqnarray*} $

Thus, from Lemma 1.3 we see that

$ \begin{equation*} \mid a_{3}\mid\leq\frac{\mid\tau\mid(\vert B_{0}\vert+\vert B_{1}\vert) E_{1}(1+\gamma-\gamma\lambda)^{2}}{\mid p_{3}(q,s)\mid\Theta(\mu,\lambda,\gamma)}+\frac{\mid\tau B_{0}\mid (\vert E_{2}-E_{1}\vert+E_{1})(1+\gamma-\gamma\lambda)^{3}}{\vert\Phi(\mu,\lambda,\gamma,p_{2}(q,s),p_{3}(q,s))\vert}. \end{equation*} $

Next, we consider Fekete-Szegö problems for the class $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\mu,\lambda,\gamma;\phi) $.

Theorem 3.2 Let $ f(z) $ given by (1.1) belong to the class $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\mu,\lambda,\gamma;\phi) $ and $ \delta\in\mathbb{R} $. Then

$ \begin{equation*} \mid a_{3}-\delta a^{2}_{2}\mid\leq\frac{\vert B_{1}\tau\vert E_{1}(1+\gamma-\gamma\lambda)^{2}}{\vert p_{3}(q,s)\vert\Theta}+\frac{\vert1-\delta\vert B^{2}_{0}E^{3}_{1}\vert\tau\vert(1+\gamma-\gamma\lambda)^{4}}{\vert B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}\vert}, \end{equation*} $

if

$ \begin{equation*} \vert B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}\vert\leq\vert(1-\delta)B_{0}\tau p_{3}(q,s)\vert\Theta E_{1}^{2}(1+\gamma-\gamma\lambda)^{2}, \end{equation*} $

or

$ \begin{equation*} \mid a_{3}-\delta a^{2}_{2}\mid\leq\frac{(\vert B_{0}\vert+\vert B_{1}\vert)\vert\tau\vert E_{1}(1+\gamma-\gamma\lambda)^{2}}{\vert p_{3}(q,s)\vert\Theta}, \end{equation*} $

if

$ \begin{equation*} \vert B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}\vert\geq\vert(1-\delta)B_{0}\tau p_{3}(q,s)\vert\Theta E_{1}^{2}(1+\gamma-\gamma\lambda)^{2}, \end{equation*} $

where $ \Phi = \Phi(\mu,\lambda,\gamma,p_{2}(q,s),p_{3}(q,s)) $, $ \Theta = \Theta(\mu,\lambda,\gamma) $ and $ \Psi = \Psi(\mu,\lambda,\gamma) $ are the same as in Theorem 3.1.

Proof From (3.18), it follows that

$ \begin{equation*} a_{3}-a^{2}_{2} = \frac{B_{1}E_{1}\tau(c_{1}-d_{1})(1+\gamma-\gamma\lambda)^{2}}{4p_{3}(q,s)\Theta(\mu,\lambda,\gamma)}+\frac{B_{0}E_{1}\tau(c_{2}-d_{2})(1+\gamma-\gamma\lambda)^{2}}{4p_{3}(q,s)\Theta(\mu,\lambda,\gamma)}. \end{equation*} $

By (3.17) we easily obtain that

$ a_{3}-\delta a^{2}_{2} = \frac{B_{1}E_{1}\tau(c_{1}-d_{1})(1+\gamma-\gamma\lambda)^{2}}{4p_{3}(q,s)\Theta(\mu,\lambda,\gamma)} $

$ \begin{equation*} +\frac{B_{0}E_{1}\tau(1+\gamma-\gamma\lambda)^{2}[B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}+(1-\delta)B_{0}E_{1}^{2}\tau p_{3}(q,s)\Theta(1+\gamma-\gamma\lambda)^{2} ]c_{2}}{4p_{3}(q,s)\Theta(\mu,\lambda,\gamma)[B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}]} \end{equation*} $
$ \begin{equation*} +\frac{B_{0}E_{1}\tau(1+\gamma-\gamma\lambda)^{2}[B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}-(1-\delta)B_{0}E_{1}^{2}\tau p_{3}(q,s)\Theta(1+\gamma-\gamma\lambda)^{2} ]d_{2}}{4p_{3}(q,s)\Theta(\mu,\lambda,\gamma)[B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}]} \end{equation*} $

Hence, from Lemma 1.3, we imply that

$ \begin{equation*} \mid a_{3}-\delta a^{2}_{2}\mid\leq\frac{\vert B_{1}\tau\vert E_{1}(1+\gamma-\gamma\lambda)^{2}}{\vert p_{3}(q,s)\vert\Theta}+\frac{\vert1-\delta\vert B^{2}_{0}E^{3}_{1}\vert\tau\vert(1+\gamma-\gamma\lambda)^{4}}{\vert B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}\vert}, \end{equation*} $

when

$ \begin{equation*} \vert B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}\vert\leq\vert(1-\delta) B_{0}\tau p_{3}(q,s)\vert\Theta E_{1}^{2}(1+\gamma-\gamma\lambda)^{2}, \end{equation*} $

or

$ \begin{equation*} \mid a_{3}-\delta a^{2}_{2}\mid\leq\frac{(\vert B_{0}\vert+\vert B_{1}\vert)\vert\tau\vert E_{1}(1+\gamma-\gamma\lambda)^{2}}{\vert p_{3}(q,s)\vert\Theta}, \end{equation*} $

when

$ \begin{equation*} \vert B_{0}E^{2}_{1}\tau(1+\gamma-\gamma\lambda)\Phi+(E_{1}-E_{2})p^{2}_{2}(q,s)\Psi^{2}\vert\geq\vert(1-\delta)B_{0}\tau p_{3}(q,s)\vert\Theta E_{1}^{2}(1+\gamma-\gamma\lambda)^{2}. \end{equation*} $

Remark 3.3 In fact, from Theorems 3.1 and 3.2, we may consider the coefficient bound estimates and Fekete-Szegö problem for the classes $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\gamma,1,\gamma;\phi) $, $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}} $ $ (\tau,1,0,1;\phi) $, $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(1,\mu,0,0;\phi) $, $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(1,0,1,\gamma;\phi) $ and $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(1,0,\lambda,0;\phi) $, etc. Similarly, if we choose some suitable parameters $ \alpha_{k}(k = 1,\cdots,q) $, $ \beta_{j}(j = 1,\cdots,s) $, $ \tau, \mu, \lambda $ and $ \gamma $ without quasi-subordination (i.e., $ \varphi(z)\equiv1 $), we provide the following reduced versions for $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\mu,\lambda,\gamma;\phi) $ in Theorem 3.1.

(Ⅰ) $ \mathcal{QS_{\sum}}^{a,1}_{ a}(1,0,1,0;\phi) = \mathcal{S}_{\sum}(\phi) $, refer to Ma and Minda [52];

(Ⅱ) $ \mathcal{QS_{\sum}}^{a,1}_{ a}(1,0,\lambda,0;\phi) = \mathcal{G}^{\phi,\phi}_{\sum}(\gamma) $, refer to Magesh and Yamini [53];

(Ⅲ) $ \mathcal{QS_{\sum}}^{a,1}_{ a}(\tau,\mu,0,0;\phi) = \sum(\tau,\mu,\phi) $, refer to Srivastava and Bansal [35];

(Ⅳ) $ \mathcal{QS_{\sum}}^{a,1}_{ a}(\tau,\gamma,1,\gamma;\phi) = \mathcal{S}_{\sum}(\gamma,\tau;\phi) $, refer to Deniz [21];

(Ⅴ) $ \mathcal{QS_{\sum}}^{a,b}_{c}(\tau,\gamma,1,\gamma;\phi) \equiv\mathcal{S}^{a,b,c}_{\sum}(\tau,\gamma;\phi) $, $ \mathcal{QS_{\sum}}^{a,b}_{c}(\tau,\mu,0,0;\phi) \equiv\mathcal{K}^{a,b,c}_{\sum}(\tau,\mu;\phi) $ and $ \mathcal{QS_{\sum}}^{a,b}_{ c}(1,0,1,0;\phi) = \mathcal{J}_{\sum}(0,\phi) $, refer to refer to Patil and Naik [46];

(Ⅵ) $ \mathcal{QS_{\sum}}^{a,1}_{ a}(\tau,1,0,1;\phi) = \mathcal{S}_{\sum}(\tau,1,0,1;\phi) $ and $ \mathcal{QS_{\sum}}^{a,1}_{ a}(\tau,\gamma,\lambda,\gamma;\phi) = \mathcal{S}_{\sum}(\tau,\gamma,\lambda,\gamma;A,B) $, refer to srivastava et al. for Corollary 1 and Example 10 in [32], respectively. Here, the function $ \phi $ in the second equality is defined by

$ \begin{equation} \phi(z) = \frac{1+Az}{1+Bz}\; \; \; \; (-1\leq A<B\leq1). \end{equation} $ (3.19)

Remark 3.4 Let $ \varphi(z)\equiv1 $ and $ \phi(z) = \frac{1+(1-2\beta)z}{1-z} $ for $ 0\leq\beta<1 $. If we take some suitable parameters $ \tau, \mu, \lambda $ and $ \gamma $, we also have the following reduced versions for $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\mu,\lambda,\gamma;\phi) $ in Theorems 3.1 and 3.2. For example, $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,0,1,0;\beta) = {}_{q}\mathcal{S}_{s}(\tau,\beta) $, $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,1,1,1;\beta) = {}_{q}\mathcal{C}_{s}(\tau,\beta) $, refer to Al-Hawary et al. [47] for the classes of analytic and univalent (but not bi-univalent) functions.

Remark 3.5 In addition, if we only choose some suitable parameters $ \tau, \mu, \lambda $ and $ \gamma $, we give some reduced versions for $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\mu,\lambda,\gamma;\phi) $ without Dziok-Srivastava operator in Theorem 3.1. For example, $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(\tau,\gamma,0,0;\phi) = \mathcal{K}^{q}_{\gamma,\tau}(\phi) $$ (1\geq\gamma\geq0) $, $ \mathcal{QS_{\sum}}^{\alpha_{1},\cdots,\alpha_{q}}_{ \beta_{1},\cdots,\beta_{s}}(1,\alpha,1,0;\phi) = \mathcal{H}^{q}_{\alpha}(\phi) $$ (\alpha\geq0) $, refer to Goyal et al. [37].

References
[1] Hayman W K. Univalent functions[M]. Grundlehren der Mathematischen Wissenschaften 259, New York: Springer, 1983.
[2] Dziok J, Srivastava H M. Classes of analytic functions associated with the generalized hypergometric function[J]. Appl. Math. Comput., 1999, 103: 1–13. DOI:10.1016/S0377-0427(98)00235-0
[3] Dziok J, Srivastava H M. Certain subclasses of analytic functions associated with the generalized hypergometric function[J]. Integral Transform. Spec. Funct., 2003, 14: 7–18. DOI:10.1080/10652460304543
[4] Bernardi S D. Convex and starlike univalent functions[J]. Trans. Am. Math. Soc., 1969, 135: 429–446. DOI:10.1090/S0002-9947-1969-0232920-2
[5] Carlson B C, Shaffer D B. Starlike and pre-starlike hypergometric functions[J]. SLAM. J. Math. Anal., 1984, 15: 737–745. DOI:10.1137/0515057
[6] Choi J H, Saigo M, Srivastava H M. Some inclusion properties of a certain family of integral operators[J]. J. Math. Anal. Appl., 2002, 276: 432–445. DOI:10.1016/S0022-247X(02)00500-0
[7] Hohlov Yu E. Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions[J]. Dokl. Akad. Nauk Ukrain. SSR Ser. A, 1984, 7: 25–27.
[8] Hohlov Yu E. Convolution operators that preserve univalent functions[J]. Ukrain. Mat. Zh., 1985, 37: 220–226.
[9] Noor K I. On new classes of integral operators[J]. J. Nat. Geom., 1999, 16: 71–80.
[10] Mishra A K, Gochhayat P. The Fekete-Szegö problem for k-uniformly convex functions and for a class defined by the Owa-Srivastava operator[J]. J. Math. Anal. Appl., 2008, 397(9): 563–572.
[11] Owa S, Srivastava H M. Univalent and starlike generalized hypergeometric functions[J]. Canad. J. Math., 1987, 39(5): 1057–1077. DOI:10.4153/CJM-1987-054-3
[12] Ruscheweyh S. A new criteria for univalent function[J]. Proc. Amer. Math. Soc., 1975, 49(1): 109–115. DOI:10.1090/S0002-9939-1975-0367176-1
[13] Lewin M. On a coefficients problem for bi-univalent functions[J]. Proc. Amer. Math. Soc., 1967, 18: 63–68. DOI:10.1090/S0002-9939-1967-0206255-1
[14] Brannan D A, Clunie J G (Editors). Aspects of contemporary complex analysis[C]. Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; July 1âǍŞ 20, 1979). New York, London: Academic Press, 1980.
[15] Netanyahau U H. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1[J]. Arch. Rational Mech. Anal., 1969, 32: 100–112. DOI:10.1007/BF00247676
[16] Orhan H, Rǎducanu D. The Fekete-Szegö problems for strongly starlike functions associted with generalized hypergeometric functions[J]. Math. Comput. Model, 2009, 50: 430–438. DOI:10.1016/j.mcm.2009.04.014
[17] Styer D, Wright J. Result on bi-univalent functions[J]. Proc. Amer. Math. Soc., 1981, 82: 243–248. DOI:10.1090/S0002-9939-1981-0609659-5
[18] Tan D L. Coefficient estimates for bi-univalent functions[J]. Chin. Ann. Math. Ser. A, 1984, 5: 559–568.
[19] Brannan D A, Taha T S. On some class of bi-univalent functions[J]. Stud. Univ. Babeş-Bolyai Math., 1986, 31(2): 70–77.
[20] Srivastava H M, Mishra A K, Gochhayat P. Certain subclasses of analytic and bi-univalent functions[J]. Appl. Math. Lett., 2010, 23: 1188–1192. DOI:10.1016/j.aml.2010.05.009
[21] Deniz E. Certain subclasses of bi-univalent functions satisfying subordinate conditions[J]. J. Class. Anal., 2013, 2(1): 49–60.
[22] Frasin B A, Aouf M K. New subclasses of bi-univalent functions[J]. Appl. Math. Lett., 2011, 24: 1569–1573. DOI:10.1016/j.aml.2011.03.048
[23] Hayami T, Owa S. Coefficient bounds for bi-univalent functions[J]. Pan. Am. Math. J., 2012, 22(4): 15–26.
[24] Patil A B, Naik U H. Initial coefficient bounds for a general subclasses of bi-univalent functions defined by Al-Oboudi differential operator[J]. J. Analysis, 2015, 23: 111–120.
[25] Patil A B, Naik U H. Estimates on initial coefficients of certain subclasses of bi-univalent functions associted with quasi-subordination[J]. Global J. of Math. Anal., 2017, 5(1): 6–10.
[26] Srivastava H M, Bulut S, Çaǧlar M, Yaǧmur N. Coefficient estimates for a general subclasses of analytic and bi-univalent functions[J]. Filomat, 2013, 27: 831–842. DOI:10.2298/FIL1305831S
[27] Srivastava H M, Eker S S, Ali R M. Coefficient bounds for a certain classes of analytic and biunivalent functions[J]. Filomat, 2015, 29: 1839–1845. DOI:10.2298/FIL1508839S
[28] Tang H, Srivastava H M, Sivasubramanian S, Gurusamy P. The Fekete-Szegö functional problems for some classes of m-mold symmetric bi-univalent functions[J]. J. Math. Inequal., 2016, 10: 1063–1092.
[29] Xu Q H, Gui Y C, Srivastava H M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions[J]. Appl. Math. Lett., 2012, 25: 990–994. DOI:10.1016/j.aml.2011.11.013
[30] Xu Q H, Xiao H G, Srivastava H M. A Certain general subclass of analytic and bi-univalent functions and associated coefficient estimates problems[J]. Appl. Math. Comput., 2012, 218: 11461–11465.
[31] Srivastava H M, Gaboury S, Ghanim F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions[J]. Afr. Mat., 2017, 28: 693–706. DOI:10.1007/s13370-016-0478-0
[32] Srivastava H M, Gaboury S, Ghanim F. Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type[J]. RACSAM, 2018, 112: 1157–1168. DOI:10.1007/s13398-017-0416-5
[33] Frasin B A. Coefficcient bounds for certain classes of bi-univalent functions[J]. Hacet. J. Math. Stat., 2014, 43(3): 383–389.
[34] Keerthi B S, Raja B. Coefficient inequality for certain new subclasses of analytic bi-univalent functions[J]. Theor. Math. Appl., 2013, 3(1): 1–10.
[35] Srivastava H M, Bansal D. Coefficient estimates for a subclasses of analytic and bi-univalent functions[J]. J. Egypt. Math. Soc., 2015, 23: 242–246. DOI:10.1016/j.joems.2014.04.002
[36] Srivastava H M, Murugusundaramoorthy G, Magesh N. Certain subclasses of bi-univalent functions associated with the Hohlov operator[J]. Global J. Math. Anal., 2013, 1(2): 67–73.
[37] Goyal S P, Singh O, Mukherjee R. Certain results on a subclass of analytic and bi-univalent functions associted with coefficient estimates and quasi-subordination[J]. Palestine J. Math., 2016, 5(1): 79–85.
[38] Fekete M, Szegö G. Eine bemerkung über ungerade schlichte funktionen[J]. J. London Math. Soc., 1933, 8: 85–89.
[39] Abdel-Gawad H R. On the Fekete-Szegö problem for alpha-quasi convex functions[J]. Tamkang J. Math., 2000, 31(4): 251–255.
[40] Koepf W. On the Fekete-Szegö problems for close-to-convex functions[J]. Proc. Amer. Math. Soc., 1987, 101: 89–95.
[41] Magesh N, Balaji V K. Fekete-Szegö problem for a class of λ-convex and μ-starlike functions associted with k-th root transformation using quasi-subordination[J]. Afr. Mat., 2018, 29: 775–782. DOI:10.1007/s13370-018-0575-3
[42] Orhan H, Magesh N, Balaji V K. Fekete-Szegö problem for certain class of Ma-Minda bi-univalent functions[J]. Afr. Mat., 2016, 27: 889–897. DOI:10.1007/s13370-015-0383-y
[43] Panigrahi T, Raina R K. Fekete-Szegö coefficient functional for quasi-subordination classes[J]. Afr. Mat., 2017, 28: 707–716. DOI:10.1007/s13370-016-0477-1
[44] Panigrahi T, Murugusundaramoorthy G. Coefficient bounds for bi-univalent functions analytic functions associated with Hohlov operator[J]. Proc. Jangjeon Math. Soc., 2013, 16(1): 91–100.
[45] Srivastava H M, Murugusundaramoorthy G, Vijaya K. Coefficient estimates for some families of bi-Bazilevic functions of the Ma-Minda type involving the Hohlov operator[J]. J. Class. Anal., 2013, 2: 167–181.
[46] Patil A B, Naik U H. Estimates on initial coefficients of certain subclasses of bi-univalent functions associted with the Hohlov operator[J]. Palestine J. Math., 2018, 7(2): 487–497.
[47] Al-Hawary T, Frasin B A, Darus M. Fekete-Szegö problem for certain classes of analytic functions of complex order defined by the Dziok-Srivastava operator[J]. Acta. Math. Vietnam, 2014, 39: 185–192. DOI:10.1007/s40306-014-0059-y
[48] Robertson M S. Quasi-subordination and coefficient conjecture[J]. Bull. Amer. Math. Soc., 1970, 76: 1–9. DOI:10.1090/S0002-9904-1970-12356-4
[49] Goodman A W. Univalent functions[M]. Vol.I, Washington, New Jersey: Polygonal Publishing House, 1983.
[50] Ali R M, Lee S K, Ravichandran V, Supramaniam S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions[J]. Appl. Math. Lett., 2012, 25: 344–351. DOI:10.1016/j.aml.2011.09.012
[51] Tang H, Deng G T, Li S H. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions[J]. J. Ineq. Appl., 2013, 2013: 317. DOI:10.1186/1029-242X-2013-317
[52] Ma W C, Minda D. A unified treatment of some special classes of univalent functions.[A]. Li Zhong, Ren, Fuyao, Yang, Lo, Zhang Shunyan (eds.) Proceedings of the Conference on Complex Analysis (Tianjin, June 19-23, 1992)[C]. Conference Proceedings and Lecture Notes in Analysis, Vol. I, Cambridge: Intertional Press, 1994, 127-169.
[53] Magesh N, Yamini J. Coefficient estimates for a certain general subclass of analytic and bi-univalent functions[J]. Appl. Math. Soc., 2014, 5: 1047–1052. DOI:10.4236/am.2014.57098