数学杂志  2015, Vol. 35 Issue (5): 1245-1251   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
董建伟
张又林
程少华
一维半导体量子能量输运模型稳态解的唯一性
董建伟a, 张又林b, 程少华a    
a. 郑州航空工业管理学院 数理系, 河南 郑州 450015;
b. 郑州航空工业管理学院 图书馆, 河南 郑州 450015
摘要:本文研究了一维半导体稳态量子能量输运模型的古典解.利用一些不等式技巧证明了当晶格温度充分大且电流密度较小时其解是唯一的, 这在文献[3]中没有得到.
关键词量子能量输运模型    稳态解    唯一性    
UNIQUENESS OF STATIONARY SOLUTIONS TO ONE-DIMENSIONAL QUANTUM ENERGY-TRANSPORT MODEL FOR SEMICONDUCTORS
DONG Jian-weia, ZHANG You-linb, CHENG Shao-huaa    
a. Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, China;
b. Zhengzhou Institute of Aeronautical Industry Management Library, Zhengzhou 450015, China
Abstract: In this paper, we study the classical solutions to the stationary quantum energy-transport model for semiconductors in one space dimension. The uniqueness of the solutions is proved when the lattice temperature is sufficiently large and the current density is relatively small by using some inequality techniques, which is not obtained in [3].
Key words: quantum energy-transport model     stationary solutions     uniqueness    
1 引言及结果

本文研究一个简化的量子能量输运模型[1]:

$n_{t}+\mathrm{div}\left[\frac{\varepsilon^{2}}{6}n\nabla\left(\frac{\triangle\sqrt{n}}{\sqrt{n}}\right) -\nabla(nT)+n\nabla V\right]=0,$ (1.1)
$-\mathrm{div}(n\nabla T)=\frac{n}{\tau}(T_{L}(x)-T),$ (1.2)
$\lambda^{2}\triangle V=n-C(x),$ (1.3)

这里电子浓度$n$, 电子温度$T$和电位势$V$为未知函数; 带电粒子杂质$C(x)$和晶格温度$T_{L}(x)$为给定函数; 普朗克常数$\varepsilon>0$, 能量松弛时间$\tau>0$和标度的德拜长度$\lambda>0$为物理参数.模型 (1.1)-(1.3) 可以从量子流体动力学方程组中通过取大时间及小速度极限推导出[1].文献[1]在周期边界条件下证明了 (1.1)-(1.3) 弱解的整体存在性, 文献[2]得到了其解的半古典极限.

最近文献[3]研究了 (1.1)-(1.3) 一维稳态模型古典解的存在性, 具体来说, 我们考虑了如下边值问题:

$\frac{\varepsilon^{2}}{6}n\left(\frac{(\sqrt{n})_{xx}}{\sqrt{n}}\right)_{x}-(nT)_{x}+nV_{x}=J_{0},$ (1.4)
$-(nT_{x})_{x}=\frac{n}{\tau}(T_{L}(x)-T),$ (1.5)
$\lambda^{2}V_{xx}=n-C(x)\ \ \ \mathrm{in}\ (0,1),$ (1.6)
$n(0)=n(1)=1,\ \ n_{x}(0)=n_{x}(1)=0,\ \ T(0)=T_{0},$ (1.7)
$V(0)=V_{0}=-\frac{\varepsilon^{2}}{6}(\sqrt{n})_{xx}(0)+T_{0},$ (1.8)

其中$J_{0}$表示电流密度, 得到了如下结果:

定理1.1 (见文献[3]) 设$C(x),\ T_{L}(x)\in L^{\infty}(0,1)$, $C(x)>0,\ 0<m_{L}\leq T_{L}(x)\leq M_{L}$, $x\in\ (0,1)$, 则问题 (1.4)-(1.8) 存在古典解$(n,T,V)$使得$n(x)\geq e^{-M}>0$, $x\in(0,1)$, 其中$M$

$M=\sqrt{\frac{e^{2M}}{\tau m_{L}^{2}}(M_{L}-m_{L})M_{L}+\frac{2(e^{-1}+ \parallel C(x)\log C(x)\parallel_{L^{\infty}(0,1)})}{\lambda^{2}m_{L}}}$ (1.9)

的解.

本文继续证明问题 (1.4)-(1.8) 解的唯一性, 我们的主要结果是

定理1.2 设定理1.1中的条件成立, 再若$m_{L}$充分大且$|J_{0}|$较小, 则问题 (1.4)-(1.8) 的解是唯一的.

注1.1 模型 (1.1)-(1.3) 是一种简化的量子能量输运模型, 对于其他类型的量子能量输运模型, 我们可以参考文献[4-6].

注1.2 当晶格温度$T_{L}(x)$和电子温度$T$都为常数时, 则模型 (1.1)-(1.3) 变成量子漂移-扩散模型, 此类模型的研究结果见文献[7-19].

2 定理1.2的证明

文献[3]通过指数变换$n=e^{u}$把问题 (1.4)-(1.8) 变成了如下与之等价的问题

$\frac{\varepsilon^{2}}{12}\left(u_{xx}+\frac{u_{x}^{2}}{2}\right)_{xx}-T_{xx}-(u_{x}T)_{x} +\frac{e^{u}-C(x)}{\lambda^{2}}=J_{0}(e^{-u})_{x},$ (2.1)
$-(e^{u}T_{x})_{x}=\frac{e^{u}}{\tau}(T_{L}(x)-T),$ (2.2)
$V(x)=-\frac{\varepsilon^{2}}{12}\left(u_{xx}+\frac{u_{x}^{2}}{2}\right)(x)+T(x)+\int_{0}^{x}u_{x}(s)T(s)ds +J_{0}\int_{0}^{x}e^{-u(s)}ds,$ (2.3)
$u(0)=u(1)=0,\ \ u_{x}(0)=u_{x}(1)=0,\ \ T(0)=T_{0},\ \ T_{x}(0)=T_{x}(1)=0,$ (2.4)
$V(0)=V_{0}=-\frac{\varepsilon^{2}}{12}u_{xx}(0)+T_{0},$ (2.5)

并证明了此问题存在解$(u,T,V)\in H^{4}(0,1)\times H^{2}(0,1)\times H^{2}(0,1)$, 所以为了得到定理1.2, 只需证明问题 (2.1), (2.2), (2.4) 解的唯一性即可.为此有如下定理

定理2.1 设定理1.1中的条件成立, 再若$m_{L}$充分大且$|J_{0}|$较小, 使得

$m_{L}-\frac{\varepsilon M^{2}}{24}\sqrt{6m_{L}}-\frac{|J_{0}|e^{M}}{\sqrt{2}} -\frac{e^{2M}(\sqrt{2\varepsilon}+\sqrt[4]{6m_{L}}\cdot M)(\sqrt{2}e^{2M}+1)(M_{L}-m_{L})}{2\sqrt{2\varepsilon}\cdot\tau}>0,$ (2.6)

则问题 (2.1), (2.2), (2.4) 的解$(u,T)\in H^{4}(0,1)\times H^{2}(0,1)$是唯一的.

注2.1 由 (1.9) 式知, 当$m_{L}$较大时$M$会较小, 从而可以保证当$m_{L}$充分大且$|J_{0}|$较小时 (2.6) 式成立.

在文献[3]的引理2.1中已经得到了如下估计:

$\frac{\varepsilon^{2}}{12}\parallel u_{xx}\parallel_{L^{2}(0,1)}^{2}+\frac{m_{L}}{2}\parallel u_{x}\parallel_{L^{2}(0,1)}^{2}\nonumber\\ \leq \frac{e^{2M}}{2\tau m_{L}}(M_{L}-m_{L})M_{L}+\lambda^{-2}(e^{-1}+\parallel C(x)\log C(x)\parallel_{L^{\infty}(0,1)}),$ (2.7)
$\parallel u\parallel_{L^{\infty}(0,1)}\leq M,$ (2.8)
$0<m_{L}\leq T\leq M_{L},$ (2.9)

其中 (2.9) 式见文献[3]中引理2.1的证明.为了证明定理2.1, 还需要如下估计

引理2.1 设$(u,T)\in H^{4}(0,1)\times H^{2}(0,1)$是问题 (2.1), (2.2), (2.4) 的解, 则

$\parallel u_{x}\parallel_{L^{\infty}(0,1)}\leq\frac{\sqrt[4]{6m_{L}}\cdot M}{\sqrt{\varepsilon}},$ (2.10)
$\parallel T_{x}\parallel_{L^{\infty}(0,1)}\leq\frac{e^{2M}}{\tau}(M_{L}-m_{L}).$ (2.11)

 由均值不等式及 (2.7) 式, 得

$\frac{\sqrt{m_{L}}}{\sqrt{6}}\varepsilon\parallel u_{xx}\parallel_{L^{2}(0,1)}\parallel u_{x}\parallel_{L^{2}(0,1)}\leq\frac{\varepsilon^{2}}{12}\parallel u_{xx}\parallel_{L^{2}(0,1)}^{2}+\frac{m_{L}}{2}\parallel u_{x}\parallel_{L^{2}(0,1)}^{2}\\ \leq \frac{e^{2M}}{2\tau m_{L}}(M_{L}-m_{L})M_{L}+\lambda^{-2}(e^{-1}+\parallel C(x)\log C(x)\parallel_{L^{\infty}(0,1)}),$

所以再由Hölder不等式及 (1.9) 式, 得

$u_{x}^{2}(x)=2\int_{0}^{x}u_{xx}(s)u_{x}(s)ds\leq2\parallel u_{xx}\parallel_{L^{2}(0,1)}\parallel u_{x}\parallel_{L^{2}(0,1)}\\ \leq \frac{2\sqrt{6}}{\sqrt{m_{L}}\varepsilon}\left[\frac{e^{2M}}{2\tau m_{L}}(M_{L}-m_{L})M_{L}+\lambda^{-2}(e^{-1}+\parallel C(x)\log C(x)\parallel_{L^{\infty}(0,1)})\right]\\ = \frac{2\sqrt{6}}{\sqrt{m_{L}}\varepsilon}\cdot M^{2}\cdot\frac{m_{L}}{2} =\frac{\sqrt{6m_{L}}\cdot M^{2}}{\varepsilon},$

从而 (2.10) 式成立.

(2.2) 式两边在$(0,x)$上积分, 得

$T_{x}=-\frac{e^{-u}}{\tau}\int_{0}^{x}e^{u}(T_{L}(x)-T)dx,$

所以由 (2.8) 及 (2.9) 式知 (2.11) 式成立.

定理2.1的证明 设$(u_{1},T_{1}),\ (u_{2},T_{2})\in H^{4}(0,1)\times H^{2}(0,1)$为问题 (2.1), (2.2), (2.4) 的两个解.用$T_{1}-T_{2}$分别作为

$-(e^{u_{1}}T_{1x})_{x}=\frac{e^{u_{1}}}{\tau}(T_{L}(x)-T_{1})$

$-(e^{u_{2}}T_{2x})_{x}=\frac{e^{u_{2}}}{\tau}(T_{L}(x)-T_{2})$

的试验函数并两式相减, 得

$\int_{0}^{1}e^{u_{1}}(T_{1}-T_{2})_{x}^{2}dx=-\int_{0}^{1}T_{2x}(e^{u_{1}}-e^{u_{2}})(T_{1}-T_{2})_{x}dx -\frac{1}{\tau}\int_{0}^{1}e^{u_{1}}(T_{1}-T_{2})^{2}dx\nonumber\\ +\frac{1}{\tau}\int_{0}^{1}(T_{L}(x)-T_{2}) (e^{u_{1}}-e^{u_{2}})(T_{1}-T_{2})dx\nonumber\\ \leq -\int_{0}^{1}T_{2x}(e^{u_{1}}-e^{u_{2}})(T_{1}-T_{2})_{x}dx\nonumber\\ +\frac{1}{\tau}\int_{0}^{1}(T_{L}(x)-T_{2})(e^{u_{1}}-e^{u_{2}})(T_{1}-T_{2})dx.$ (2.12)

由 (2.8) 式知

$\int_{0}^{1}e^{u_{1}}(T_{1}-T_{2})_{x}^{2}dx\geq e^{-M}\int_{0}^{1}(T_{1}-T_{2})_{x}^{2}dx.$ (2.13)

由拉格朗日中值定理及 (2.8) 式知

$|e^{u_{1}}-e^{u_{2}}|\leq e^{M}|u_{1}-u_{2}|,$

所以再由 (2.11) 式, Hölder不等式及Poincaré不等式, 得

$-\int_{0}^{1}T_{2x}(e^{u_{1}}-e^{u_{2}})(T_{1}-T_{2})_{x}dx\leq\frac{e^{2M}}{\tau}(M_{L}-m_{L}) \int_{0}^{1}e^{M}|u_{1}-u_{2}|\cdot|(T_{1}-T_{2})_{x}|dx\nonumber\\ \leq \frac{e^{3M}}{\tau}(M_{L}-m_{L})\left[\int_{0}^{1}(u_{1}-u_{2})^{2}dx\right]^{\frac{1}{2}} \left[\int_{0}^{1}(T_{1}-T_{2})_{x}^{2}dx\right]^{\frac{1}{2}}\nonumber\\ \leq \frac{e^{3M}}{\sqrt{2}\tau}(M_{L}-m_{L})\left[\int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx\right]^{\frac{1}{2}} \left[\int_{0}^{1}(T_{1}-T_{2})_{x}^{2}dx\right]^{\frac{1}{2}}.$ (2.14)

利用 (2.9) 式, 类似上式估计, 可以得到

$\frac{1}{\tau}\int_{0}^{1}(T_{L}(x)-T_{2})(e^{u_{1}}-e^{u_{2}})(T_{1}-T_{2})dx\nonumber\\ \leq \frac{e^{M}}{2\tau}(M_{L}-m_{L})\left[\int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx\right]^{\frac{1}{2}} \left[\int_{0}^{1}(T_{1}-T_{2})_{x}^{2}dx\right]^{\frac{1}{2}}.$ (2.15)

由 (2.12)-(2.15) 式可得

$\left[\int_{0}^{1}(T_{1}-T_{2})_{x}^{2}dx\right]^{\frac{1}{2}}\leq\frac{e^{2M}(\sqrt{2}e^{2M}+1)(M_{L}-m_{L})} {2\tau}\left[\int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx\right]^{\frac{1}{2}}.$ (2.16)

$u_{1}-u_{2}$分别作为

$\frac{\varepsilon^{2}}{12}\left(u_{1xx}+\frac{u_{1x}^{2}}{2}\right)_{xx}-T_{1xx}-(u_{1x}T_{1})_{x} +\frac{e^{u_{1}}-C(x)}{\lambda^{2}}=J_{0}(e^{-u_{1}})_{x}$

$\frac{\varepsilon^{2}}{12}\left(u_{2xx}+\frac{u_{2x}^{2}}{2}\right)_{xx}-T_{2xx}-(u_{2x}T_{2})_{x} +\frac{e^{u_{2}}-C(x)}{\lambda^{2}}=J_{0}(e^{-u_{2}})_{x}$

的试验函数并两式相减, 得

$\frac{\varepsilon^{2}}{12}\int_{0}^{1}(u_{1}-u_{2})_{xx}^{2}dx +\frac{\varepsilon^{2}}{24}\int_{0}^{1}(u_{1x}^{2}-u_{2x}^{2})(u_{1}-u_{2})_{xx}dx +\int_{0}^{1}(T_{1}-T_{2})_{x}(u_{1}-u_{2})_{x}dx\nonumber\\ +\int_{0}^{1}T_{1}(u_{1}-u_{2})_{x}^{2}dx+\int_{0}^{1}u_{2x}(T_{1}-T_{2})(u_{1}-u_{2})_{x}dx +\frac{1}{\lambda^{2}}\int_{0}^{1}(e^{u_{1}}-e^{u_{2}})(u_{1}-u_{2})dx\nonumber\\ = -J_{0}\int_{0}^{1}(e^{-u_{1}}-e^{-u_{2}})(u_{1}-u_{2})_{x}dx.$ (2.17)

由 (2.10) 式及Young不等式, 得

$\frac{\varepsilon^{2}}{24}\int_{0}^{1}(u_{1x}^{2}-u_{2x}^{2})(u_{1}-u_{2})_{xx}dx =\frac{\varepsilon^{2}}{24}\int_{0}^{1}(u_{1x}+u_{2x})(u_{1}-u_{2})_{x}(u_{1}-u_{2})_{xx}dx\nonumber\\ \geq-\frac{\varepsilon^{\frac{3}{2}}\cdot\sqrt[4]{6m_{L}}\cdot M}{12}\int_{0}^{1}|(u_{1}-u_{2})_{x}| \cdot|(u_{1}-u_{2})_{xx}|dx\nonumber\\ \geq -\frac{\varepsilon^{2}}{24}\int_{0}^{1}(u_{1}-u_{2})_{xx}^{2}dx -\frac{\varepsilon M^{2}}{24}\sqrt{6m_{L}}\int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx.$ (2.18)

由Hölder不等式及 (2.16) 式, 得

$\int_{0}^{1}(T_{1}-T_{2})_{x}(u_{1}-u_{2})_{x}dx\geq-\left[\int_{0}^{1}(T_{1}-T_{2})_{x}^{2}dx\right]^{\frac{1}{2}} \left[\int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx\right]^{\frac{1}{2}}\nonumber\\ \geq-\frac{e^{2M}(\sqrt{2}e^{2M}+1)(M_{L}-m_{L})}{2\tau}\int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx.$ (2.19)

由 (2.9) 式知

$\int_{0}^{1}T_{1}(u_{1}-u_{2})_{x}^{2}dx\geq m_{L}\int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx.$ (2.20)

由 (2.10) 式, Hölder不等式, Poincaré不等式及 (2.16) 式, 得

$\int_{0}^{1}u_{2x}(T_{1}-T_{2})(u_{1}-u_{2})_{x}dx\geq-\frac{\sqrt[4]{6m_{L}}\cdot M}{\sqrt{\varepsilon}} \int_{0}^{1}|T_{1}-T_{2}|\cdot|(u_{1}-u_{2})_{x}|dx\nonumber\\ \geq-\frac{\sqrt[4]{6m_{L}}\cdot M}{\sqrt{2\varepsilon}} \left[\int_{0}^{1}(T_{1}-T_{2})_{x}^{2}dx\right]^{\frac{1}{2}} \left[\int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx\right]^{\frac{1}{2}}\nonumber\\ \geq-\frac{\sqrt[4]{6m_{L}}\cdot M\cdot e^{2M}(\sqrt{2}e^{2M}+1)(M_{L}-m_{L})}{2\sqrt{2\varepsilon}\cdot\tau} \int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx.$ (2.21)

由函数$e^{x}$的单调递增性可知

$\frac{1}{\lambda^{2}}\int_{0}^{1}(e^{u_{1}}-e^{u_{2}})(u_{1}-u_{2})dx\geq0.$ (2.22)

由格朗日中值定理, Hölder不等式及Poincaré不等式, 得

$-J_{0}\int_{0}^{1}(e^{-u_{1}}-e^{-u_{2}})(u_{1}-u_{2})_{x}dx \leq|J_{0}|e^{M}\int_{0}^{1}|u_{1}-u_{2}|\cdot|(u_{1}-u_{2})_{x}|dx\nonumber\\ \leq\frac{|J_{0}|e^{M}}{\sqrt{2}}\int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx.$ (2.23)

由 (2.17)-(2.23) 式可得

$\frac{\varepsilon^{2}}{24}\int_{0}^{1}(u_{1}-u_{2})_{xx}^{2}dx +C_{0}\int_{0}^{1}(u_{1}-u_{2})_{x}^{2}dx\leq0,$ (2.24)

其中

$C_{0}=m_{L}-\frac{\varepsilon M^{2}}{24}\sqrt{6m_{L}}-\frac{|J_{0}|e^{M}}{\sqrt{2}} -\frac{e^{2M}(\sqrt{2\varepsilon}+\sqrt[4]{6m_{L}}\cdot M)(\sqrt{2}e^{2M}+1)(M_{L}-m_{L})}{2\sqrt{2\varepsilon}\cdot\tau}.$

由 (2.24) 式及条件 (2.6) 式可知$u_{1}=u_{2}$, 再由 (2.16) 式得$T_{1}=T_{2}$.

参考文献
[1] Jüngel A, Milišić J P. A simplifled quantum energy-transport model for semiconductors[J]. Nonlinear Analysis: Real World Applications, 2011, 12: 1033–1046. DOI:10.1016/j.nonrwa.2010.08.026
[2] Chen L, Chen X Q, Jüngel A. Semiclassical limit in a simplifled quantum energy-transport model for semiconductors[J]. Kinetic and Related Models, 2011, 4: 1049–1062. DOI:10.3934/krm
[3] Dong J W, Zhang Y L, Cheng S H. Existence of classical solutions to a stationary simplifled quantum energy-transport model in 1-dimensional space[J]. Chin. Ann. Math., 2013, 34(5): 691–696. DOI:10.1007/s11401-013-0794-8
[4] Grubin H, Kreskovsky J. Quantum moment balance equations and resonant tunnelling structures[J]. Solid-State Electr., 1989, 32: 1701. DOI:10.1016/0038-1101(89)90298-0
[5] Degond P, Gallego S and Méhats F. On quantum hydrodynamic and quantum energy transport models[J]. Commun. Math. Sci., 2007, 5: 887–908. DOI:10.4310/CMS.2007.v5.n4.a8
[6] Chen R C and Liu J L. A quantum corrected energy-transport model for nanoscale semiconductor devices[J]. J. Comput. Phys., 2005, 204: 131–156. DOI:10.1016/j.jcp.2004.10.006
[7] Ju Q C, Chen L. Semiclassical limit for bipolar quantum drift-difiusion model[J]. Acta Mathematica Scientia, 2009, 29B(2): 285–293.
[8] Chen X Q, Chen L, Jian H Y. Existence, semiclassical limit and long-time behavior of weak solution to quantum drift-difiusion model[J]. Nonlinear Analysis: Real World Applications, 2009, 10(3): 1321–1342. DOI:10.1016/j.nonrwa.2008.01.008
[9] Jüngel A, Violet I. The quasineutral limit in the quantum drift-difiusion equations[J]. Asymptotic Analysis, 2007, 53(3): 139–157.
[10] Chen L, Ju Q C. Existence of weak solution and semiclassical limit for quantum drift-difiusion model[J]. Z. Angew. Math. Phys., 2007, 58: 1–15. DOI:10.1007/s00033-005-0051-4
[11] Chen X Q, Chen L, Jian H Y. The Dirichlet problem of the quantum drift-difiusion model[J]. Nonlinear Analysis, 2008, 69: 3084–3092. DOI:10.1016/j.na.2007.09.003
[12] Chen X Q, Chen L. The bipolar quantum drift-difiusion model[J]. Acta Mathematica Sinica, 2009, 25(4): 617–638.
[13] Chen X Q. The global existence and semiclassical limit of weak solutions to multidimensional quantum drift-difiusion model[J]. Advanced Nonlinear Studies, 2007, 7: 651–670.
[14] Chen X Q, Chen L. Initial time layer problem for quantum drift-difiusion model[J]. J. Math. Anal. Appl, 2008(343): 64–80.
[15] Chen X Q. The isentropic quantum drift-difiusion model in two or three space dimensions[J]. Z.angew. Math. Phys, 2009, 60(3): 416–437. DOI:10.1007/s00033-008-7068-4
[16] Chen X Q, Chen L, Jian H Y. The existence and long-time behavior of weak solution to bipolar quantum drift-difiusion model[J]. Chin. Ann. Math., 2007, 28B(6): 651–664.
[17] Chen L, Ju Q C. The semiclassical limit in the quantum drift-difiusion equations with isentropic pressure[J]. Chin. Ann. Math., 2008, 29B(4): 369–384.
[18] Abdallah N B, Unterreiter A. On the stationary quantum drift-difiusion model[J]. Z. Angew. Math. Phys, 1998(49): 251–275.
[19] Nishibata S, Shigeta N, Suzuki M. Asymptotic behaviors and classical limits of solutions to a quantum drift-difiusion model for semiconductors[J]. Math. Models Methods Appl. Sciences, 2010, 20(6): 909–936. DOI:10.1142/S0218202510004477