数学杂志  2015, Vol. 35 Issue (4): 747-753   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
LIU Yong-quan
GUO Wei-ping
A SUFFICIENT AND NECESSARY CONDITION FOR THE STRONG CONVERGENCE OF ASYMPTOTICALLY HEMI-PSEUDONTRACTIVE MAPPING
LIU Yong-quan, GUO Wei-ping    
School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China
Abstract: In this paper, the asymptotically hemi-pseudocontractive mapping is studied in Banach space.By using the modified Ishikawa iterative scheme with errors, some sufficient and necessary conditions on the strong convergence for approximation of fixed points of the uniformly L-Lipschitzian asymptotically hemi-pseudocontractive mapping are obtained, which extend and improve some corresponding results.
Key words: fixed point     Banach space     asymptotically pseudocontractive mapping     asymptotically hemi-pseudocontractive mapping     uniformly L-Lipshitzian mapping    
渐近半伪压缩映射的强收敛的充分必要条件
刘涌泉, 郭伟平    
苏州科技学院数理学院, 江苏 苏州 215009
摘要:本文研究了渐近半伪压缩映射.应用带误差项的修改的Ishikawa迭代序列, 得到了一致L-Lipschitzian渐近半伪压缩映射逼近其不动点的强收敛的充分必要条件.
关键词不动点    Banach空间    渐近伪压缩映射    渐近半伪压缩映射    一致L-Lipschitzian映射    
1 Introduction and Preliminaries

Throughout this work, we assume that $E$ is a real Banach space, $E^{*}$ is the dual space of $E$ and $J:E \rightarrow 2^{E^{*}}$ is the normalized duality mapping defined by

$J(x)=\{f\in E^{*}:\langle x, f\rangle =\|x\|\|f\|, \|f\|=\|x\|\}, \quad \forall x\in E, $

where $\langle\cdot, \cdot\rangle$ denotes duality pairing between $E$ and $E^{*}$. A single-valued normalized duality mapping is denoted by $j$.

Let $C$ be a nonempty subset of $E$ and $T:C\rightarrow C$ be a mapping. We denote the set of fixed points of $T$ by $F(T)$, i.e., $F(T)=\{x\in C : Tx = x\}.$

Definition 1.1 (1) (see [1]) $T$ is said to be pseudocontractive, if for all $x, y \in C, $ there exists $j(x-y)\in J(x-y)$ such that $\langle Tx-Ty, j(x-y)\rangle \leq \|x-y\|^{2}.$

(2) (see [2]) $T$ is said to be uniformly L-Lipshitzian if there exists $L > 0$ such that

$\|T^{n}x-T^{n}y\| \leq L\|x-y\|$

for all $x, y \in C$ and $n\geq 1$.

(3) (see [3]) $T$ is said to be asymptotically pseudocontractive if there exists a sequence $\{k_n\} \subset [1, \infty) $ with $\lim\limits_{n\rightarrow \infty} k_n =1$, for any $x, y\in C$, there exists $j(x-y)\in J(x-y)$ such that

$\langle T^{n}x-T^{n}y, j(x-y)\rangle \leq k_{n}\|x-y\|^{2}, \quad n \geq 1.$

Recently, Guo Weiping and Guo Qi [4] introduced a new mapping as follows:

Definition 1.2$T$ is said to be asymptotically hemi-pseudocontractive if $F(T)\neq \emptyset$ and there exists a sequence $\{k_n\} \subset [1, \infty) $ with $\lim_{n\rightarrow \infty} k_n =1$ such that, for any $x\in C$ and $p \in F(T)$, there exists $j(x-p)\in J(x-p)$ such that

$\langle T^{n}x-p, j(x-p)\rangle \leq k_{n}\|x-p\|^{2}, \quad n \geq 1.$

Remark 1.1 It is easy to see that if $T$ is an asymptotically pseudocontractive mapping with $F(T)\neq\emptyset$, then $T$ is an asymptotically hemi-pseudocontractive mapping. Conversely, Guo Weiping and Guo Qi [4] give an example to show that the converse is not true in general.

Let $C$ be a nonempty convex subset of $E$ with $C+C\subset C$ and $T: C\rightarrow C$ be a mapping. For any given $x_{1}\in C$, the sequence $\{x_{n}\}$ defined by

$\left \{\begin{array}{ll} x_{n+1} = (1-\alpha_{n})x_{n}+\alpha_{n}T^{n}y_{n}+u_{n}, \\ y_{n} = (1-\beta_{n})x_{n}+\beta_{n}T^{n}x_{n}+v_{n},\quad\forall n\geq 1,\end{array}\right.$ (1.1)

where $\{\alpha_{n}\}$, $\{\beta_{n}\}$ are two real sequences in [0, 1] and $\{u_{n}\}$, $\{v_{n}\}$ are two bounded sequences in $C$.

Letting $\beta_{n}=0$, $v_{n}=0$, $\forall n\geq 1$ in (1.1), then the sequence $\{x_{n}\}$ defined by (1.1) is reduced to the following iterative scheme:

$x_{n+1} = (1-\alpha_{n})x_{n}+\alpha_{n}T^{n}x_{n}+u_{n}, \quad \forall n\geq 1. $ (1.2)

For any $z\in C$ and a set $K$ in $E$, we denote the distance between $z$ and $K$ by $d(z, K)=\inf\limits_{y\in K}\|z-y\|.$

Recently, Tang et al. [5] proved some sufficient and necessary conditions for strong convergence of Lipschitzian pseudoncontractive mappings in Banach spaces.

In this work, we give a new method and prove some sufficient and necessary conditions for the strong convergence of the iterations sequences (1.1) and (1.2) to a fixed point of asymptotically hemi-pseudocontractive in Banach spaces.

Lemma 1.1 (see [6]) Let $X$ be a Banach space and $x, y\in X.$ Then $\|x\|\leq\|x+ry\|$ for all $r>0$ if and only if there exists $j(x)\in J(x)$ such that $\langle y, j(x)\rangle\geq 0.$

Lemma 1.2 (see [7]) Let $\{a_{n}\}$, $\{\lambda_{n}\}$, $\{\sigma_{n}\}$ be three nonnegative sequences satisfying the following inequality:

$a_{n+1}\leq(1+\lambda_{n})a_{n}+\sigma_{n}, \forall n\geq n_{_{0}}, $

where $n_{0}$ is some nonnegative integer, $\sum\limits_{n=1}^{\infty}\lambda_{n}<\infty$ and $\sum\limits_{n=1}^{\infty}\sigma_{n}<\infty$. Then $\lim\limits_{n\rightarrow\infty}a_{n}$ exists. In particular, if $\liminf\limits_{n\rightarrow\infty}a_{n}=0$, then $\lim\limits_{n\rightarrow\infty}a_{n}=0$.

2 Main Results

First, we prove the following lemmas.

Lemma 2.1 Let $C$ be a nonempty subset of a Banach space $E$ and $T:C\rightarrow C$ be an asymptotically hemi-pseudocontractive mapping with the sequence $\{k_{n}\}\subset [1, \infty)$, $\lim\limits_{n\rightarrow\infty}k_{n}=1$. Then

$\|x-p\|\leq\|x-p+r[(k_{n}I-T^{n})x-(k_{n}I-T^{n})p]\|$ (2.1)

for all $x\in C$, $p\in F(T)$, $r > 0$ and $n\geq 1$, where $I$ is identity mapping.

Proof Since $T$ is an asymptotically hemi-pseudocontractive mapping with the sequence $\{k_{n}\}$, for all $x\in C$ and $p\in F(T)$, there exists $j(x-p)\in J(x-p)$, such that

$\langle T^{n}x-p, j(x-p)\rangle\leq k_{n}\|x-p\|^{2}=k_{n}\langle x-p, j(x-p)\rangle, n\geq 1,$

and so

$\langle(k_{n}I-T^{n})x-(k_{n}I-T^{n})p, j(x-p)\rangle \geq 0.$

Therefore, (2.1) holds by Lemma 1.1. This completes the proof.

Lemma 2.2  Let $E$ be a real Banach space and $C$ be a nonempty convex subset of $E$ with $C+C\subset C$ and $T:C\rightarrow C$ be a uniformly $L$-Lipschitzian asymptotically hemi-pseudocontractive mapping with the sequence $\{k_{n}\}\subset [1, \infty)$, $\lim\limits_{n\rightarrow\infty}k_{n}=1$. Let $\{\alpha_{n}\}$, $\{\beta_{n}\}$ be two real sequences in [0, 1] and $\{u_n\}$, $\{v_n\}$ be two bounded sequences in $C$. Suppose that the sequence $\{x_n\}$ is defined by (1.1) satisfying the following conditions:

(ⅰ) $\sum\limits_{n=1}^{\infty}\alpha_{n}^{2}<\infty$, $\sum\limits_{n=1}^{\infty}\alpha_{n}\beta_{n}<\infty$;

(ⅱ)$\sum\limits_{n=1}^{\infty}\|u_{n}\|<\infty$, $\sum\limits_{n=1}^{\infty}\|v_{n}\|<\infty$;

(ⅱ) $\sum\limits_{n=1}^{\infty}\alpha_{n}(k_{n}-1)<\infty$.

Then (1) there exist two sequences $\{r_{n}\}, \{s_{n}\}\subset[0, \infty)$, such that $\sum\limits_{n=1}^{\infty}r_{n}<\infty$, $\sum\limits_{n=1}^{\infty}s_{n}<\infty$ and

$\|x_{n+1}-p\|\leq(1+r_{n})\|x_{n}-p\|+s_{n}$ (2.2)

for all $p\in F(T)$ and $n\geq 1$.

(2) The limit $\lim\limits_{n\rightarrow\infty}d(x_{n}, F(T))$ exists.

Proof (1) Let $p\in F(T)$, by (1.1), we have

$\begin{align} x_{n}&=x_{n+1}+\alpha_{n}x_{n}-\alpha_{n}T^{n}y_{n}-u_{n}\\ &=(1+\alpha_{n})x_{n+1}+\alpha_{n}(k_{n}I-T^{n})x_{n+1}-(1+k_{n})\alpha_{n}x_{n+1}\\ &\quad +\alpha_{n}x_{n}+\alpha_{n}(T^{n}x_{n+1}-T^{n}y_{n})-u_{n}\\ &=(1+\alpha_{n})x_{n+1}+\alpha_{n}(k_{n}I-T^{n})x_{n+1}-(1+k_{n})\alpha_{n}[x_{n}+\alpha_{n}(T^{n}y_{n}-x_{n})+u_{n}]\\ &\quad +\alpha_{n}x_{n}+\alpha_{n}(T^{n}x_{n+1}-T^{n}y_{n})-u_n\\ &=(1+\alpha_{n})x_{n+1}+\alpha_{n}(k_{n}I-T^{n})x_{n+1}-(1+k_{n})\alpha_{n}x_{n}+(1+k_{n})\alpha_{n}^{2}(x_{n}-T^{n}y_{n})\\ &\quad +\alpha_{n}x_{n}+\alpha_{n}(T^{n}x_{n+1}-T^{n}y_{n})-[(1+k_n)\alpha_{n}+1]u_n\\ &=(1+\alpha_{n})x_{n+1}+\alpha_{n}(k_{n}I-T^{n})x_{n+1}-k_{n}\alpha_{n}x_{n}+(1+k_{n})\alpha_{n}^{2}(x_{n}-T^{n}y_{n})\\ &\quad +\alpha_{n}(T^{n}x_{n+1}-T^{n}y_{n})-[(1+k_n)\alpha_{n}+1]u_n \end{align}$ (2.3)

and

$p=(1+\alpha_{n})p+\alpha_{n}(k_{n}I-T^{n})p-k_{n}\alpha_{n}p.$ (2.4)

Together with (2.3) and (2.4), we can obtain

$\begin{align} x_{n}-p=&(1+\alpha_{n})(x_{n+1}-p)+\alpha_{n}[(k_{n}I-T^{n})x_{n+1}-(k_{n}I-T^{n})p]-k_{n}\alpha_{n}(x_{n}-p)\\ &+(1+k_{n})\alpha_{n}^{2}(x_{n}-T^{n}y_{n})+\alpha_{n}(T^{n}x_{n+1}-T^{n}y_{n})-[(1+k_n)\alpha_{n}+1]u_n. \end{align}$ (2.5)

Notice that

$\begin{eqnarray*} && (1+\alpha_{n})(x_{n+1}-p)+\alpha_{n}[(k_{n}I-T^{n})x_{n+1}-(k_{n}I-T^{n})p]\\ &=&(1+\alpha_{n})[(x_{n+1}-p)+\frac{\alpha_{n}}{1+\alpha_{n}}((k_{n}I-T^{n})x_{n+1}-(k_{n}I-T^{n})p)].\end{eqnarray*}$

Using Lemma 2.1, we obtain that

$\|(1+\alpha_{n})(x_{n+1}-p)+\alpha_{n}(k_{n}I-T^{n})(x_{n+1}-p)\| \geq(1+\alpha_{n})\|x_{n+1}-p\|.$ (2.6)

It follows from (2.5) and (2.6) that

$\begin{align} \|x_{n}-p\|&\geq(1+\alpha_{n})\|x_{n+1}-p\|-k_{n}\alpha_{n}\|x_{n}-p\|-(1+k_{n})\alpha_{n}^{2}\|x_{n}-T^{n}y_{n}\|\\ &\quad -\alpha_{n}\|T^{n}x_{n+1}-T^{n}y_{n}\|-[(1+k_n)\alpha_{n}+1]\|u_n\|. \end{align}$

This implies that

$\begin{align} (1+\alpha_{n})\|x_{n+1}-p\|&\leq(1+k_{n}\alpha_{n})\|x_{n}-p\|+(1+k_{n})\alpha_{n}^{2}\|x_{n}-T^{n}y_{n}\|\\ &\quad +\alpha_{n}\|T^{n}x_{n+1}-T^{n}y_{n}\|+[(1+k_n)\alpha_{n}+1]\|u_n\|. \end{align}$ (2.7)

Next, we make the following estimations:

$\begin{align} \|y_{n}-p\|&=\|(1-\beta_{n})(x_{n}-p)+\beta_{n}(T^{n}x_{n}-p)+v_{n}\|\\ &\leq(1-\beta_{n})\|x_{n}-p\|+\beta_{n}\|T^{n}x_{n}-p\|+\|v_{n}\|\\ &\leq(1-\beta_{n})\|x_{n}-p\|+L\beta_{n}\|x_{n}-p\|+\|v_{n}\|\\ &\leq(1-\beta_{n}+L\beta_{n})\|x_{n}-p\|+\|v_{n}\|, \\ \|x_{n}-T^{n}y_{n}\| &\leq\|x_{n}-p\|+\|p-T^{n}y_{n}\|\\ &\leq\|x_{n}-p\|+L\|y_{n}-p\|\\&\leq[1+L(1-\beta_{n}+L\beta_{n})]\|x_{n}-p\|+L\|v_{n}\|, \end{align}$ (2.8)
$\begin{align} \|x_{n}-y_{n}\|&\leq\beta_{n}\|x_{n}-T^{n}x_{n}\|+\|v_{n}\|\\ &\leq\beta_{n}\|x_{n}-p\|+\beta_{n}\|T^{n}x_{n}-p\|+\|v_{n}\|\\ &\leq\beta_{n}(1+L)\|x_{n}-p\|+\|v_{n}\|,\end{align}$ (2.9)
$\begin{align}\|T^{n}x_{n+1}-T^{n}y_{n}\|&\leq L\|x_{n+1}-y_{n}\|\\ &=L\|x_{n}-y_{n}+\alpha_n(T^{n}y_{n}-x_{n})+u_{n}\|\\ &\leq L\|x_{n}-y_{n}\|+\alpha_{n}L\|T^{n}y_{n}-x_{n}\|+L\|u_{n}\|. \end{align}$ (2.10)

Substituting (2.8) and (2.9) into (2.10), we have

$\begin{align}\label{E:2.11} \|T^{n}x_{n+1}-T^{n}y_{n}\|&\leq[\alpha_{n}L+\alpha_{n}L^{2}(1-\beta_{n}+L\beta_{n})+\beta_{n}L(1+L)]\|x_{n}-p\|\\ &\quad+L(1+\alpha_{n}L)\|v_{n}\|+L\|u_{n}\|. \end{align}$ (2.11)

Substituting (2.8) and (2.11) into (2.7), we have

$\begin{align} (1+\alpha_{n})\|x_{n+1}-p\|&\leq(1+k_{n}\alpha_{n})\|x_{n}-p\|\\ &\quad+(1+k_{n})\alpha_{n}^{2}[(1+L(1-\beta_{n}+L\beta_{n}))\|x_{n}-p\|+L\|v_{n}\|]\\ &\quad+\alpha_{n}[\alpha_{n}L+\alpha_{n}L^{2}(1-\beta_{n}+L\beta_{n})+\beta_{n}L(1+L)] \|x_{n}-p\|\\ &\quad+\alpha_{n}L(1+\alpha_{n}L)\|v_{n}\|+\alpha_{n}L\|u_{n}\|+ [(1+k_n)\alpha_{n}+1]\|u_n\|. \end{align}$

By $1+\alpha_{n}\geq 1$, this implies that

$\begin{align} \|x_{n+1}-p\|&\leq(1+(k_{n}-1)\alpha_{n})\|x_{n}-p\|\\ &\quad+(1+k_{n})\alpha_{n}^{2}[(1+L(1-\beta_{n}+L\beta_{n}))\|x_{n}-p\|+L\|v_{n}\|]\\ &\quad+\alpha_{n}[\alpha_{n}L+\alpha_{n}L^{2}(1-\beta_{n}+L\beta_{n})+\beta_{n}L(1+L)]\|x_{n}-p\|\\ &\quad+\alpha_{n}L(1+\alpha_{n}L)\|v_{n}\|+\alpha_{n}L\|u_{n}\|+[(1+k_n)\alpha_{n}+1]\|u_n\|\\ &=[1+(k_{n}-1)\alpha_{n}+(1+k_{n})(1+L(1-\beta_{n}+L\beta_{n}))\alpha_{n}^{2}\\ &\quad+\alpha_{n}^{2}L(1+L(1-\beta_{n}+L\beta_{n}))\\ &\quad+\alpha_{n}\beta_{n}L(1+L)]\|x_{n}-p\|+L[(1+k_{n})\alpha_{n}^{2}+\alpha_{n}(1+\alpha_{n}L)]\|v_{n}\|\\ &\quad+[1+(1+k_{n})\alpha_{n}+\alpha_{n}L]\|u_{n}\|\\ &=(1+r_{n})\|x_{n}-p\|+s_{n}, \end{align}$

where

$\begin{eqnarray*}r_{n}&=&(k_{n}-1)\alpha_{n}+(1+k_{n})(1+L(1-\beta_{n}+L\beta_{n}))\alpha_{n}^{2}\\ && +\alpha_{n}^{2}L(1+L(1-\beta_{n}+L\beta_{n}))+\alpha_{n}\beta_{n}L(1+L), \\ s_{n}&=& L[(1+k_{n})\alpha_{n}^{2}+\alpha_{n}(1+\alpha_{n}L)]\|v_{n}\|+[1+(1+k_{n})\alpha_{n}+\alpha_{n}L]\|u_{n}\|, \end{eqnarray*}$

and $\sum\limits_{n=1}^{\infty}r_{n}< \infty$, $\sum\limits_{n=1}^{\infty}s_{n}< \infty$ by conditions (ⅰ)-(ⅲ). This completes the proof of (1).

(2) Taking the infimum over all $p\in F(T)$ on both sides in (2.2), we get

$d(x_{n+1}, F(T))\leq (1+r_{n})d(x_{n}, F(T))+s_{n}.$

It follows from Lemma 1.2 that the limit $\lim\limits_{n\rightarrow\infty}d(x_{n}, F(T))$ exists.

Theorem 2.1  Let $E$ be a real Banach space and $C$ be a nonempty closed convex subset of $E$ with $C+C\subset C$ and $T:C\rightarrow C$ be a uniformly $L$-Lipschitzian asymptotically hemi-pseudocontractive mapping with the sequence $k_{n}\subset [1, \infty)$, $\lim\limits_{n\rightarrow\infty}k_{n}=1$. Let $\{\alpha_{n}\}$, $\{\beta_{n}\}$ be two real sequences in [0, 1] and $\{u_n\}$, $\{v_n\}$ be two bounded sequences in $C$. Suppose that the sequence $\{x_n\}$ is defined by (1.1) satisfying the following conditions:

(ⅰ) $\sum\limits_{n=1}^{\infty}\alpha_{n}^{2}<\infty$, $\sum\limits_{n=1}^{\infty}\alpha_{n}\beta_{n}<\infty$;

(ⅱ) $\sum\limits_{n=1}^{\infty}\|u_{n}\|<\infty$, $\sum\limits_{n=1}^{\infty}\|v_{n}\|<\infty$;

(ⅲ) $\sum\limits_{n=1}^{\infty}\alpha_{n}(k_{n}-1)<\infty$.

Then $\{x_{n}\}$ converges strongly to a fixed point of $T$ if and only if $\liminf\limits_{n\rightarrow\infty}d(x_{n}, F(T))=0.$

Proof The necessary of Theorem 2.1 is obvious. We just need to prove the sufficiency. Assume that $\liminf\limits_{n\rightarrow\infty}d(x_{n}, F(T))=0$, by Lemma 1.2, then $\lim\limits_{n\rightarrow\infty}d(x_{n}, F(T))=0$.

Next, we show that $\{x_{n}\}$ is a Cauchy sequence. In fact, for any $p\in F(T)$ and any positive integers $m, n$, $m>n$, from inequality $1+x\leq e^{x}$, $x\geq 0$ and Lemma 2.2, we have

$\begin{align} \|x_{m}-p\|&\leq \prod\limits_{j=n}^{m-1}(1+r_{j})\|x_{n}-p\|+\sum\limits_{j=n}^{m-1}s_{j}\prod\limits_{j=n}^{m-1}(1+r_{j})\\ &\leq e^{\sum\limits_{j=n}^{m-1}r_{j}}\|x_{n}-p\|+e^{\sum\limits_{j=n}^{m-1}r_{j}}\sum\limits_{j=n}^{m-1}s_{j} \leq M\|x_{n}-p\|+M\sum\limits_{j=n}^{m-1}s_{j}, \end{align}$

where $M=e^{\sum\limits_{j=1}^{\infty}r_{j}}$. Thus, we have

$ \|x_{n}-x_{m}\|\leq\|x_{n}-p\|+\|x_{m}-p\| \leq(1+M)\|x_{n}-p\|+M\sum\limits_{j=n}^{\infty}s_{j}. $

Taking the infimum over all $p\in F(T)$, we have

$\|x_{n}-x_{m}\|\leq (1+M) d(x_{n}, F(T))+ M\sum\limits_{j=n}^{\infty}s_{j}.$

It follows from $\sum\limits_{j=1}^{\infty}s_{j}<\infty$ and $\lim\limits_{n\rightarrow\infty}d(x_{n}, F)=0$ that $\{x_{n}\}$ is a Cauchy sequence. Since $C$ is a nonempty closed convex subset of $E$, so there exists a $p_{0}\in C$ such that $x_{n}\rightarrow p_{0}$ as $n\rightarrow \infty.$ Further, since $T$ is uniformly $L$-Lipschitzian, it is easy to prove that $F(T)$ is closed. Again since $\lim\limits_{n\rightarrow\infty}d(x_{n}, F(T))=0$ and so $p_{0}\in F(T)$. This shows that $\{x_{n}\}$ converges strongly to a fixed point of $T$. This completes the proof.

Corollary 2.1  Under the assumptions of Theorem 2.1. Then $\{x_{n}\}$ converges strongly to a fixed point $p$ of $T$ if and only if there exists a subsequence $\{x_{n_{k}}\}$ of $\{x_{n}\}$ which converges strongly to $p$.

Proof It follows from $\liminf\limits_{n\rightarrow\infty}d(x_{n}, F)\leq\liminf\limits_{k\rightarrow\infty}d(x_{n_{k}}, F) \leq \lim\limits_{k\rightarrow\infty}\|x_{n_{k}}-p\|=0$ and Theorem 2.1 that Corollary 2.1 holds. This completes the proof.

Letting $\beta_{n}=0$ and $v_{n}=0$ for all $n\geq 1$ in Theorem 2.1, we obtain the following results:

Theorem 2.2  Let $E$ be a real Banach space and $C$ be a nonempty closed convex subset of $E$ with $C+C\subset C$ and $T:C\rightarrow C$ be a uniformly $L$-Lipschitzian asymptotically hemi-pseudocontractive mapping with the sequence $\{k_{n}\}\subset [1, \infty)$, $\lim\limits_{n\rightarrow\infty}k_{n}=1$. Let $\{\alpha_{n}\}$ be a real sequence in [0, 1] and $\{u_n\}$ be a bounded sequence in $C$. Suppose that the sequence $\{x_n\}$ is defined by (1.2) satisfying the following conditions:

(ⅰ)$\sum\limits_{n=1}^{\infty}\alpha_{n}^{2}<\infty$; (ⅱ)$\sum\limits_{n=1}^{\infty}\|u_{n}\|<\infty$; (ⅲ)$\sum\limits_{n=1}^{\infty}\alpha_{n}(k_{n}-1)<\infty$.

Then $\{x_{n}\}$ converges strongly to a fixed point of $T$ if and only if $\liminf\limits_{n\rightarrow\infty}d(x_{n}, F(T))=0.$

Corollary 2.2  Under the assumptions of Theorem 2.2. Then $\{x_{n}\}$ converges strongly to a fixed point $p$ of $T$ if and only if there exists a subsequence $\{x_{n_{k}}\}$ of $\{x_{n}\}$ which converges strongly to $p$.

Remark 2.1 By Remark 1.1, clearly Theorems 2.1, 2.2 and Corollaries 2.1, 2.2 hold for uniformly $L$-Lipschitzian and asymptotically pseudoncontractive mappings with $F(T)\neq\emptyset$.

References
[1] Chidume C E, Udomene A. Strong convergence theorems for uniformly continuous pseudocontractive maps[J]. J. Math. Anal. Appl., 2006, 323(1): 88–99. DOI:10.1016/j.jmaa.2005.10.026
[2] Schu J. Iterative construction of flxed point of asymptotically nonexpansive mappings[J]. J. Math.Anal. Appl., 1991, 158(2): 407–413. DOI:10.1016/0022-247X(91)90245-U
[3] Gu F. Approximate flxed point sequence for a flnite family of asymptotically pseudocontractive mappings[J]. Comput. Math. Appl., 2007, 53(12): 1792–1799. DOI:10.1016/j.camwa.2006.12.017
[4] Guo W, Guo Q. Convergence theorems of flxed points for asymptotically hemi-pseudoconractive mappings[J]. Appl. Math. Comput., 2009, 215(1): 16–21.
[5] Tang Y C, Peng J G, Hu L G, Liu L W. A necessary and su–cient condition for the strong convergence of Lipschitzian pseudocontractive mapping in Banach spaces[J]. Appl. Math. Lett., 2011, 24(11): 1823–1826. DOI:10.1016/j.aml.2011.04.041
[6] Rhoades B E, Soltuz S M. The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically pseudocontractive map[J]. J. Math. Anal. Appl., 2003, 283(2): 681–688. DOI:10.1016/S0022-247X(03)00338-X
[7] Liu Q. Iterative sequences for asymptotically qusi-nonexpansive mappings with error member[J]. J.Math. Anal. Appl., 2001, 259(1): 18–24. DOI:10.1006/jmaa.2000.7353