2 Locally Quasidiagonal Extension
Definition 2.1 [2] Let $ 0 \to I \overset{\iota}{\to} E \overset{\pi}{\to} B \to 0 $ be a short exact sequence of C*-algebras. Such a sequence is called a quasidiagonal extension if there exists an increasing approximate unit $ (p_n)_n $ of $ I $ consisting of projections, which satisfies
| $ \begin{align*} \lim\limits_{n \rightarrow \infty} \| p_na - ap_n \| = 0 \end{align*} $ |
for all $ a \in E $.
Definition 2.2 Let $ 0 \to I \overset{\iota}{\to} E \overset{\pi}{\to} B \to 0 $ be a short exact sequence of C*-algebras. Such a sequence is called a locally quasidiagonal(QD) extension, if for any $ \varepsilon > 0 $, finite sets $ \mathcal{F} \subset E $ and $ \mathcal{F'} \subset I $, there exists $ i \in I $, satisfying $ i \geq 0 $ and $ \|i\| \leq 1 $, such that
| $ \begin{align*} \|if'-f'\|<\varepsilon , \quad \|if-i^2f\|<\varepsilon , \mbox{ and } \|if-fi\|<\varepsilon \end{align*} $ |
for all $ f \in \mathcal{F} $ and $ f' \in \mathcal{F'} $.
Theorem 2.3 Let $ \{0 \to I_n \overset{\iota_n}{\to} E_n \overset{\pi_n}{\to} B_n \to 0\} $ be a sequence of short exact sequences of C*-algebras, and let $ \varphi_n :E_n \rightarrow E_{n+1} $ be a sequence of $ * $-homomorphisms with $ \varphi_n(I_n)\subset I_{n+1} $. Let $ I = \lim\limits_{n\to \infty} \varphi_n(I_n) $, $ E = \lim\limits_{n\to \infty} \varphi_n(E_n) $ and $ B = \lim\limits_{n\to \infty} \varphi_n(B_n) $. If for any $ n \in \mathbb{N} $, $ 0 \to I_n \overset{\iota_n}{\to} E_n \overset{\pi_n}{\to} B_n \to 0 $ is locally quasidiagonal, then the extension $ 0 \to I \overset{\iota}{\to} E \overset{\pi}{\to} B \to 0 $ is locally quasidiagonal.
Proof For any $ n \in \mathbb{N} $, there is a natural $ * $-homomorphism $ \varphi^{(n)} :E_n \rightarrow E $. Fix $ \varepsilon > 0 $, finite sets $ \mathcal{F'} \subset I $ and $ \mathcal{F} \subset E $. Then there exists a sufficiently large integer $ n $, finite sets $ \mathcal{F}'_n\subset I_n $ and $ \mathcal{F}_n\subset E_n $ such that for any $ f' \in \mathcal{F'} $ and $ f \in \mathcal{F} $, there exist $ \bar{f'} \in I_n $ and $ \bar{f} \in E_n $ such that
| $ \begin{equation*} \| \varphi^{(n)}(\bar{f'}) - f' \| < \varepsilon, \quad \| \varphi^{(n)}(\bar{f}) - f \| < \varepsilon . \end{equation*} $ |
Since $ 0 \to I_{n} \overset{\iota_{n}}{\to} E_{n} \overset{\pi_{n}}{\to} B_{n} \to 0 $ is loaclly quasidiagonal, for any $ \varepsilon > 0 $ there exists a positive element $ \bar{i} \in I_{n} $ with $ \|\bar{i}\| \leq 1 $ such that
| $ \begin{equation*} \| \bar{i}\bar{f'} - \bar{f'} \| < \varepsilon, \quad \| \bar{i}\bar{f} - \bar{f}\bar{i} \| < \varepsilon , \ and\ \| (\bar{i} - \bar{i}^2)\bar{f} \| < \varepsilon \end{equation*} $ |
for any $ \bar{f'} \in \mathcal{F}'_{n} $, and $ \bar{f} \in
\mathcal{F}_n $.
Since $ \varphi^{(n)} $ is $ * $-homomorphism, we have $ \| \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f'}) - \varphi^{(n)}(\bar{f'}) \| < \varepsilon , \quad \| \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f}) - \varphi^{(n)}(\bar{f})\varphi^{(n)}(\bar{i}) \| < \varepsilon , \mbox{ and }\| (\varphi^{(n)}(\bar{i}) - \varphi^{(n)}(\bar{i})^2)\varphi^{(n)}(\bar{f}) \| < \varepsilon .$ Then one easily checks
| $ \begin{align*} &\| \varphi^{(n)}(\bar{i})f' - f'\| \\ \leq &\| \varphi^{(n)}(\bar{i})f' - \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f'}) \| + \| \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f'}) - \varphi^{(n)}(\bar{f'}) \| + \| \varphi^{(n)}(\bar{f'}) - f' \| \\ \leq &\| \varphi^{(n)}(\bar{i}) \| \| f' - \varphi^{(n)}(\bar{f'}) \| + \| \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f'}) - \varphi^{(n)}(\bar{f'}) \| + \| \varphi^{(n)}(\bar{f'}) - f' \|\\ <&\| \varphi^{(n)}(\bar{i}) \| \varepsilon+2\varepsilon , \end{align*} $ |
| $ \begin{align*} &\| \varphi^{(n)}(\bar{i})f - f\varphi^{(n)}(\bar{i}) \| \\ \leq &\| \varphi^{(n)}(\bar{i})f - \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f}) \| + \| \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f}) - \varphi^{(n)}(\bar{f})\varphi^{(n)}(\bar{i}) \| + \| \varphi^{(n)}(\bar{f})\varphi^{(n)}(\bar{i}) - f\varphi^{(n)}(\bar{i}) \|, \\ \leq&\| \varphi^{(n)}(\bar{i}) \| \| f - \varphi^{(n)}(\bar{f}) \| + \| \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f}) - \varphi^{(n)}(\bar{f})\varphi^{(n)}(\bar{i}) \| + \| \varphi^{(n)}(\bar{f}) - f \| \| \varphi^{(n)}(\bar{i}) \|\\ <&2\| \varphi^{(n)}(\bar{i}) \| \varepsilon + \varepsilon , \end{align*} $ |
and
| $ \begin{align*} &\| (\varphi^{(n)}(\bar{i}) - \varphi^{(n)}(\bar{i})^2)f \| \\ \leq &\| \varphi^{(n)}(\bar{i})f - \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f}) \| + \| \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f}) - \varphi^{(n)}(\bar{i})^2\varphi^{(n)}(\bar{f})\| + \| \varphi^{(n)}(\bar{i})^2\varphi^{(n)}(\bar{f}) - \varphi^{(n)}(\bar{i})^2f\| \\ \leq &\| \varphi^{(n)}(\bar{i}) \| \| f - \varphi^{(n)}(\bar{f}) \| + \| \varphi^{(n)}(\bar{i})\varphi^{(n)}(\bar{f}) - \varphi^{(n)}(\bar{i})^2\varphi^{(n)}(\bar{f})\| + \| \varphi^{(n)}(\bar{i})^2 \| \| \varphi^{(n)}(\bar{f}) - f \|\\ < &(2\| \varphi^{(n)}(\bar{i}) \| + \| \varphi^{(n)}(\bar{i})^2 \| )\varepsilon . \end{align*} $ |
Thus $ 0 \to I \overset{\iota}{\to} E \overset{\pi}{\to} B \to 0 $ is locally quasidiagonal.
Theorem 2.4 [3] Let $ 0 \rightarrow I \rightarrow E \rightarrow B \rightarrow 0 $ be a locally quasidiagonal extension of C*-algebras and $ A $ is a nuclear C*-algebra, then $ 0 \rightarrow I\otimes A \rightarrow E\otimes A \rightarrow B\otimes A \rightarrow 0 $ is a locally quasidiagonal extension.
Proof Fix finite sets $ \mathcal{F}' \subset I $ and $ \mathcal{F} \subset E $. Since $ 0 \rightarrow I \rightarrow E \rightarrow B \rightarrow 0 $ is a locally quasidiagonal extension, for any $ \varepsilon > 0 $ there exists a positive element $ i \in I $ with $ \| i \| \leq 1 $ such that
| $ \begin{align*} \| if' - f' \| < \varepsilon , \quad \| if - fi \| < \varepsilon , \ and\ \| (i-i^2)f \| < \varepsilon \end{align*} $ |
for any $ f' \in \mathcal{F}' $ and $ f \in \mathcal{F} $. Let $ \{ a_{\lambda} \}_{\lambda \in \Lambda} $ be an approximate unit for $ A $. Fix a finite set $ \mathcal{A}' \subset A $. Then for any $ \varepsilon > 0 $, there exists $ a_{\lambda_0} \in \{ a_{\lambda} \}_{\lambda \in \Lambda} $ such that $ \| a_{\lambda_0}a' - a' \| < \varepsilon $ for all $ a' \in \mathcal{A}' $. And $ \mathcal{F}'\otimes \mathcal{A}' $ is the finite set of $ I\otimes A $, $ \mathcal{F}\otimes \mathcal{A}' $ is the finite set of $ E\otimes A $. And for any $ f'\otimes a' \in \mathcal{F}'\otimes \mathcal{A}' $, $ f\otimes a' \in \mathcal{F}\otimes \mathcal{A}' $ and for any $ \varepsilon > 0 $, we have
| $ \begin{align*} &\| (i\otimes a_{\lambda_0}) (f'\otimes a') - f'\otimes a' \| \\ =&\| if'\otimes a_{\lambda_0}a' - f'\otimes a' \| \\ =&\| if'\otimes a_{\lambda_0}a' - if'\otimes a' + if'\otimes a' - f'\otimes a' \| \\ \leq&\| if' \| \| a_{\lambda_0}a' - a' \| + \| if' - f' \| \| a' \| \\ \leq&\| if' \|\varepsilon + \varepsilon\| a' \|, \end{align*} $ |
| $ \begin{align*} &\|(i\otimes a_{\lambda_0})(f\otimes a') - (f\otimes a')(i\otimes a_{\lambda_0}) \| \\ =&\| if\otimes a_{\lambda_0}a' - fi\otimes a'a_{\lambda_0} \| \\ =&\| if\otimes a_{\lambda_0}a' - if\otimes a'a_{\lambda_0} + if\otimes a'a_{\lambda_0} - fi\otimes a'a_{\lambda_0} \| \\ \leq&\| if \| \| a_{\lambda_0}a' - a'a_{\lambda_0} \| + \| if - fi \| \| a'a_{\lambda_0} \| \\ \leq&\| if \|\varepsilon + \varepsilon\| a'a_{\lambda_0} \| , \end{align*} $ |
and
| $ \begin{align*} &\| [i\otimes a_{\lambda_0} - (i\otimes a_{\lambda_0})^2](f\otimes a') \| \\ =&\| [(i - i^2)\otimes a_{\lambda_0}](f\otimes a') + [i^2\otimes (a_{\lambda_0} - a_{\lambda_0}^2)](f\otimes a') \| \\ =&\| (i - i^2)f\otimes a_{\lambda_0}a' + i^2f\otimes (a_{\lambda_0} - a_{\lambda_0}^2)a' \| \\ \leq&\| (i - i^2)f \| \| a_{\lambda_0}a' \| + \| i^2f \| \| a_{\lambda_0} \| \| a' - a_{\lambda_0}a' \| \\ \leq&\varepsilon\| a_{\lambda_0}a' \| + \| i^2f \| \| a_{\lambda_0} \|\varepsilon . \end{align*} $ |
This imples that $ 0 \rightarrow I\otimes A \rightarrow E\otimes A \rightarrow B\otimes A \rightarrow 0 $ is a locally quasidiagonal extension.
Theorem 2.5 Let $ 0 \to I \overset{\iota}{\to} E \overset{\pi}{\to} B \to 0 $ be a locally quasidiagonal extension of C*-algebras. If $ I $ and $ B $ are stably finite, then $ E $ is stably finite.
Proof We just need to verify that for any partial isometry $ v \in E $, if $ vv^* \leq v^*v $, then $ vv^* = v^*v $. We put $ \mathcal{F} = \{v, v^*, vv^*, v^*v\} $ and $ \mathcal{F}' = \{v^*v - vv^*, vv^* - v^*v\} $. From the definition, for any $ \varepsilon > 0 $ there exists $ i \in I $ such that $ i > 0 $, $ \|i\| \leq 1 $ and
| $ \begin{align*} \|if' - f'\|<\varepsilon, \ \ \|if -i^2f \|<\varepsilon, \mbox{ and } \|if - fi\|<\varepsilon \end{align*} $ |
for all $ f' \in \mathcal{F}' $ and $ f\in\mathcal{F} $. Then we have
| $ \begin{align*} &\| ivi + (1-i)v(1-i) - v \| = \| ivi - iv + ivi - vi \| \\ = &\| ivi- i^2v + i^2v - iv + ivi - vi^2 + vi^2 - vi \| \\ \leq & \|i\| \|vi - iv\| + \|i^2v - iv\| + \| iv - vi \| \|i\| + \| vi^2 - vi \| \\ \leq &\|i\|\varepsilon + \varepsilon + \varepsilon\|i\| + \varepsilon = 2(\|i\| + 1)\varepsilon. \end{align*} $ |
So
| $ \begin{equation} \| ivi + (1-i)v(1-i) - v \| \leq 2(\|i\| + 1)\varepsilon. \end{equation} $ |
(2.1) |
On the other hand, we have
| $ \begin{align*} &\| (ivi)^*(ivi) - iv^*vi \| = \| iv^*i^2vi - iv^*vi \| \\ \leq &\| iv^*i^2vi - i^2v^*ivi \| + \| i^2v^*ivi - i^2v^*vi^2 \| + \| i^2v^*vi^2 - i^2v^*vi \| + \| i^2v^*vi - iv^*vi \| \\ \leq &\| i \|\| v^*i-iv^* \|\| ivi \| + \| i^2v^* \|\| iv-vi \|\| i \| + \| i^2v^* \|\| v(i^2 - i) \| + \| (i^2 - i)v^* \|\| vi \| \\ \leq &\|i\|\varepsilon\|ivi\| + \|i^2v^*\|\varepsilon\|i\| + \|i^2v^*\|\varepsilon + \varepsilon\|vi\|. \end{align*} $ |
Since $ ivi \in I $, for any $ \varepsilon > 0 $ there exists a partial isometry $ w \in I $ such that $ ww^* \leq w^*w $ and $ \| w - ivi \| \leq \varepsilon $.
And since $ \| w - ivi \| \leq \varepsilon $, we have $ \| (ww^* - w^*w) - (iv^*vi - ivv^*i) \| \leq \varepsilon $. Note that $ ww^* = w^*w $ since $ I $ is stably finite. We have
| $ \begin{equation} \| iv^*vi - ivv^*i \| \leq \varepsilon. \end{equation} $ |
(2.2) |
Note that
| $ \begin{align*} &\| (1-i)v^*v(1-i) - (1-i)vv^*(1-i) \| \\ = &\| (v^*v - vv^*) - (v^*v - vv^*)i + i(v^*v - vv^*)i - i(v^*v - vv^*) \| \\ \leq &\| (v^*v - vv^*) - (v^*v - vv^*)i \| + \| i \|\| (v^*v - vv^*)i - (v^*v - vv^*) \| \\ \leq &\varepsilon + \|i\|\varepsilon. \end{align*} $ |
Since
| $ \begin{equation*} \| (ivi)(1-i)v(1-i) \| \leq \| iv \|\| (i-i^2)v \|\| 1-i \| \leq \|iv\|\varepsilon\|1 - i\|, \end{equation*} $ |
from $ (2.1) $ and $ (2.2) $ we obtain that $ \| v^*v - vv^* \| $ is sufficiently small. Since $ v^*v - vv^* $ is a projection, $ v^*v =
vv^* $, this means that $ E $ is stably finite.
Definition 2.6 [2] A subset $ \Omega \subset B(H) $ is called a quasidiagonal set of operators if for each finite set $ \omega \subset \Omega $, finite set $ \chi \subset H $ and $ \varepsilon > 0 $ there exists a finite rank projection $ P \in B(H) $ such that $ \| TP -PT \| \leq \varepsilon $ and $ \| P(x) - x \| \leq \varepsilon $ for all $ T \in \omega $ and $ x \in \chi $.
Definition 2.7 [2] Let $ A $ be a C*-algebra. Then A is called quasidiagonal(QD) if there exists a faithful representation $ \pi : A \rightarrow B(H) $ such that $ \pi(A) $ is a quasidiagonal set of operators.
Theorem 2.8 Let $ 0 \to I \overset{\iota}{\to} E \overset{\pi}{\to} B \to 0 $ be a locally quasidiagonal extension of C*-algebras. If both $ I $ and $ B $ are quasidiagonal, then $ E $ is quasidiagonal.
Proof To ease notation somewhat, we identify $ I $ with $ \iota{(I)} $. For any finite subsets $ \mathcal{F}\subset E $ and $ \mathcal{F}'\subset I $, there exists $ i \in I $ which satisfies the conditions of Definition 2.2. Now consider the contractive completely positive map $ \varphi :E \rightarrow I\oplus B $, $ \varphi{(a)} = iai\oplus \pi{(a)} $ where $ a \in E $. Evidently these maps are asymptotically multiplicative, and the proof is as follows. For any $ \varepsilon > 0 $ and all $ a, b \in \mathcal{F} \subset E $, we have
| $ \begin{align*} &\| \varphi{(ab)} - \varphi{(a)}\varphi{(b)} \| = \| iabi\oplus \pi{(ab)} - (iai\oplus \pi{(a)})(ibi\oplus \pi{(b)}) \| \\ = &\| (iabi - iaiibi)\oplus (\pi{(ab)} - \pi{(a)}\pi{(b)}) \| = \max{\{ \| iabi - iai^2bi \|, \| \pi{(ab)} - \pi{(a)}\pi{(b)} \| \}} \\ = &\| iabi - iai^2bi \| \leq \| iabi - i^2abi \| + \| i^2abi - iai^2bi \| \leq \| (i - i^2)ab \| \| i \| + \| i^2abi - iaibi \| \\ &+ \| iaibi - iai^2bi \| \\ \leq &\| (i - i^2)ab \| \| i \| + \| i \| \| ia - ai \| \| bi \| + \| ia \| \| (i-i^2)b \| \| i \| \\ \leq &(\|i\| + \|i\|\|bi\| + \|ia\|\|i\|)\varepsilon, \end{align*} $ |
and $ \|\varphi(a)\|>\|a\|-\varepsilon $. Since $ I $ and $ B $ are quasidiagonal, by Lemma 4.1 of [2], there exists a contractive completely positive map $ \psi:I\oplus B\to M_n(\mathbb{C}) $ such that
| $ \|\psi(\varphi(a)\varphi(b)) - \psi(\varphi(a))\psi(\varphi(b))\|<\varepsilon, \mbox{ and } \|\psi(\varphi(a))\|>\|\varphi(a)\|-\varepsilon. $ |
Let $ \rho=\psi\circ\varphi $. We compute that
| $ \begin{align*} &\|\rho(ab)-\rho(a)\rho(b)\| \leq \|\psi(\varphi(ab)) - \psi(\varphi(a) \varphi(b))\| + \|\psi(\varphi(a) \varphi(b))-\psi(\varphi(a)) \psi(\varphi(b))\| \\ \leq &(\|i\| + \|i\|\|bi\| + \|ia\|\|i\|+1)\varepsilon \end{align*} $ |
and
| $ \|\rho(a)\|>\|\varphi(a)\|-\varepsilon>\|a\|-2\varepsilon $ |
for all $ a, b\in\mathcal{F} $. Consequently, by Lemma 4.1 of [2], $ E $ is quasidiagonal.
Definition 2.9 Let $ 0 \to I \overset{\iota}{\to} E \overset{\pi}{\to} B \to 0 $ be a short exact sequence of C*-algebras. We call this a generalized quasidiagonal extension if there exists an approximate unit $ (e_{\lambda})_{\lambda} $ of $ I $ such that
| $ \begin{align*} \lim\limits_{\lambda}\| e_{\lambda} a-ae_{\lambda}\|=0 \ and\ \lim\limits_{\lambda}\| (e_{\lambda} -{e_{\lambda}}^2)a\|=0 \end{align*} $ |
for all $ a\in E $.
Theorem 2.10 Let $ 0 \to I \overset{\iota}{\to} E \overset{\pi}{\to} B \to 0 $ be a locally quasidiagonal extension of C*-algebras. If $ E $ is separable, then $ 0 \to I \overset{\iota}{\to} E \overset{\pi}{\to} B \to 0 $ is generalized quasidiagonal.
Proof Since $ E $ is separable, $ I $ is separable. Then there exist countable sets $ T \subset E $ and $ T'\subset I $ such that $ \overline{T}=E $ and $ \overline{T'}=I $. We may assume that $ T= \{ x_1, \dots, x_n, \dots |x_i \in E \} $ and $ T' = \{a_1, \dots, a_n, \dots |a_i \in I \} $. Put $ T_n = \{ x_1, \dots, x_n |x_i \in E\} $, $ T'_n = \{ a_1, \dots, a_n |a_i \in I\} $, $ \mathcal{F}_1 = \{ x_1 \} $ and $ \mathcal{F}'_1 = \{ a_1 \} $. Then for any $ \varepsilon > 0 $ and for $ \mathcal{F}_1 $ and $ \mathcal{F}'_1 $, there exists a positive element $ e_1 \in I $ with $ \| e_1 \| \leq 1 $ such that
| $ \begin{align*} \|e_1a-a\|<\varepsilon, \quad \|e_1f-e_1^2f\|<\varepsilon, \mbox{ and } \|e_1f-fe_1\|<\varepsilon \end{align*} $ |
for any $ f \in \mathcal{F}_1 $ and $ a\in \mathcal{F}'_1 $. Set $ \mathcal{F}_n = \mathcal{F}_{n-1}\cup \{ x_n, e_{n-1} \} $, $ \mathcal{F}'_n = \mathcal{F}'_{n-1}\cup \{ a_n, e_{n-1} \} $, $ (n \in \mathbb{N}) $. Then for any $ n \in \mathbb{N} $, there exists a positive element $ e_n \in I $ with $ \|e_n\|\leq 1 $ such that
| $ \begin{align*} \| e_na - a \| < \frac{1}{2^n2n(2n+1)}, \quad \|e_nf -e_n^2f\| < \frac{1}{2^n2n(2n+1)}, \mbox{ and } \|e_nf -fe_n\| < \frac{1}{2^n2n(2n+1)} \end{align*} $ |
for any $ a \in \mathcal{F}'_n $ and $ f\in\mathcal{F}_n $.
Now we set $ e_i^{(n)} = e_n\ldots e_1\ldots e_n (i < n) $. If $ m < n $, then
| $ \begin{align*} e_i^{(n)} - e_i^{(m)} =& e_n\ldots e_1\ldots e_n - e_m\ldots e_1\ldots e_m \\ =& e_n\ldots e_1\ldots e_n - e_n\ldots e_1\ldots e_{n-1}+ e_n\ldots e_1\ldots e_{n-1} - e_{n-1}\ldots e_1\ldots e_{n-1}\\ &+ \ldots + e_{m+1}\ldots e_1\ldots e_m - e_m\ldots e_1\ldots e_m \\ =& e_n\ldots e_1\ldots e_{n-2}(e_{n-1}e_n - e_{n-1})+ (e_ne_{n-1}-e_{n-1})e_{n-2}\ldots e_1\ldots e_{n-1}\\ &+ \ldots + (e_{m+1}e_m - e_m)e_{m-1}\ldots e_1\ldots e_m \\ <& 2(n - m)\frac{1}{2^n2n(2n+1)} < \frac{1}{2^n(2n+1)}. \end{align*} $ |
So there exists $ \alpha_i $ such that
| $ \begin{equation*} \lim\limits_{n\to\infty} e_i^{(n)} = \alpha_i . \end{equation*} $ |
Note that $ \| e_i^{(n)} - \alpha_i \| \leq \frac{1}{2^n(2n+1)} $ and
| $ \begin{align*} \| \alpha_i - e_i \| \leq \| \alpha_i - e_i^{(n)} \| + \| e_i^{(n)} - e_i \| < \frac{1}{2^n(2n+1)} + 2n\frac{1}{2^n2n(2n+1)} < \frac{1}{2^n}. \end{align*} $ |
Thus $ \{\alpha_i\} $ is the approximate unit of $ I $. Since $ \| \alpha_i - e_i \| \leq \frac{1}{2^n} $, we have
| $ \begin{align*} \| \alpha_if - f\alpha_i \| \leq \frac{1}{2^n2n(2n+1)}, \ and\ \| (\alpha_i - \alpha_i^2)f \| \leq \frac{1}{2^n2n(2n+1)} . \end{align*} $ |
Therefore $ 0 \to I \overset{\iota}{\to} E \overset{\pi}{\to} B \to 0 $ is generalized quasidiagonal by the definition.
3 Locally AF Algebra
Theorem 3.1 [5] If $ A $ is a locally AF algebra, then there exists a net $ (p_{\lambda})_{\lambda\in\Lambda} $ of projections in $ A $ such that $ a=\lim\nolimits_\lambda ap_\lambda $ for all $ a\in A $.
Proof Let $ \mathcal{S} $ be the set of all finite subsets of the closed unit ball of $ A $. Put $ \Lambda=\{(S, \frac{1}{n}):s\in\mathcal{S}, n\in\mathbb{N}\} $. Define a partial ordering relation in $ \Lambda $ by $ (S_1, \frac{1}{n_1}) \leq (S_2, \frac{1}{n_2}) $ if and only if $ S_1 \subseteq S_2 $ and $ \frac{1}{n_1}\geq \frac{1}{n_2} $. It is easily checked that $ \Lambda $ is a directed set. For each $ \lambda=(S, \frac{1}{n}) $ in $ \Lambda $, there exists a finite dimensional C*-subalgebra $ A_\lambda $ of $ A $ such that $ S_0\subset_{1/n}A_0 $. Denote by $ p_\lambda $ the identity of $ A_\lambda $.
For any $ a \in A $ and $ \varepsilon>0 $, take $ \lambda_0=(\{a\}, 1/N) $, where $ N $ is a positive integer with $ 1/N\leq\varepsilon $. It is easy to see that if $ \lambda\geq\lambda_0 $, then $ \| p_{\lambda}a - a \|<\varepsilon $.
The following two lemmas are used to prove Theorem 3.4, but we refer to the proofs of {[4], Lemma $ \rm Ⅲ $.6.1 and $ \rm Ⅲ $.6.2} for details.
Lemma 3.2 (see [4]) Suppose that $ J $ is an locally AF ideal of a C*-algebra $ A $. Then for each projection $ p $ in $ A/J $, there exists a projection $ P $ in $ A $ such that $ P + J = p $.
Lemma 3.3 (see [4]) Suppose that $ J $ is a locally AF ideal of a C*-algebra $ A $ and that $ B $ is a finite dimensional subalgebra of $ A/J $. Then there is a (not necessarily unital)$ * $-monomorphism $ \rho $ of $ B $ into $ A $ such that $ \tau\rho = id_{B} $.
Theorem 3.4 Suppose that $ 0 \to J \overset{j}{\to} A \overset{\tau}{\to} B \to 0 $ is an exact sequence of C*-algebra and that $ J $ and $ B $ are locally AF algebras. Then $ 0 \to J \overset{j}{\to} A \overset{\tau}{\to} B \to 0 $ is locally quasidiagonal.
Proof Take finite sets $ \mathcal{F}\subseteq A $, $ \mathcal{F}'\subseteq J $ and $ \varepsilon > 0 $. Since $ \tau(\mathcal{F}) = \{ \tau(f) | f \in \mathcal{F} \} $ lies in the locally AF algebra $ B $, there exists a finite dimensional C*-subalgebra $ B_0 $ of $ B $ such that, for any $ f\in\mathcal{F} $, there exists $ b $ in $ B_0 $ such that $ \|\tau(f) - b \| < \varepsilon/3 $. Put $ A_0=\rho(B_0) $. By the last lemma, there exists a $ * $-monomorphism $ \rho:B\to A $ such that $ \tau\rho = \mathrm{id}_{B} $. Since $ \tau(f-\rho\circ\tau(f))=0 $ for all $ f\in\mathcal{F} $, there exists a finite dimensional C*-subalgebra $ J_0 $ of $ J $ such that, for each $ f_i\in\mathcal{F} $, there exists $ c_i $ in $ J_0 $ such that $ \|f_i - \rho\circ\tau(f_i)-c_i \| < \varepsilon/3 $.
Let $ e^{(s)}_{ij} $ for $ 1 \leq s \leq k , 1 \leq i, j \leq n_s $ be a set of matrix units for $ A_0 $; and let $ p $ be the unit of $ A_0 $. For each $ s $, $ e^{(s)}_{11}Je^{(s)}_{11} $ is loaclly AF. And thus there exists a net $ (p^{(s)}_{\lambda})_{\lambda\in\Lambda} $ of projections in $ e^{(s)}_{11}Je^{(s)}_{11} $ such that $ a=\lim\nolimits_\lambda ap^{(s)}_\lambda $ for all $ a\in e^{(s)}_{11}Je^{(s)}_{11} $. Similarly, there exists a net $ (q_{\theta})_{\theta\in\Theta} $ of projections in $ p^{\bot}Jp^{\bot} $ such that $ a=\lim\nolimits_\theta aq_{\theta} $ for all $ a\in p^{\bot}Jp^{\bot} $. It is clear that $ q_{\theta}a=aq_{\theta}=0 $ for all $ a\in A_0 $. Define
| $ \begin{equation*} p_{\lambda} = \sum\limits_{s=1}^{k}\sum\limits_{i=1}^{n_s} e^{(s)}_{i1} p^{(s)}_{\lambda} e^{(s)}_{1i}. \end{equation*} $ |
In addition,
| $ \begin{align*} e^{(s)}_{ij}p_{\lambda} = e^{(s)}_{ij}e^{(s)}_{j1}p^{(s)}_{\lambda}e^{(s)}_{1j} = e^{(s)}_{i1}p^{(s)}_{\lambda}e^{(s)}_{1j} = e^{(s)}_{i1}p^{(s)}_{\lambda}e^{(s)}_{1i}e^{(s)}_{ij} = p_{\lambda}e^{(s)}_{ij} . \end{align*} $ |
Hence each $ p_{\lambda} $ commutes with $ A_0 $.
For each $ a\in A_0 $ and $ c $ in $ J $, we have
| $ \begin{equation*} \lim\limits_{\lambda, \theta} (p_{\lambda}+q_{\theta})(a+c)(p_{\lambda}+q_{\theta}) +(p_{\lambda}+q_{\theta})^\bot a (p_{\lambda}+q_{\theta})^\bot= a+ \lim\limits_{\lambda, \theta} (p_{\lambda}+q_{\theta})c(p_{\lambda}+q_{\theta}) = a+c. \end{equation*} $ |
So there exist sufficiently large $ \lambda $ and $ \theta $ such that
| $ \begin{equation*} \|\rho\circ\tau(f_i)+c_i- (p_{\lambda}+q_{\theta})(\rho\circ\tau(f_i)+c_i)(p_{\lambda}+q_{\theta}) -(p_{\lambda}+q_{\theta})^\bot (\rho\circ\tau(f_i)) (p_{\lambda}+q_{\theta})^\bot\|<\varepsilon \end{equation*} $ |
and $ \|(p_{\lambda}+q_{\theta})f'-f'\|<\varepsilon $ for all $ f'\in\mathcal{F}' $. This implies that $ 0 \to J \overset{j}{\to} A
\overset{\tau}{\to} B \to 0 $ is locally quasidiagonal.