数学杂志  2025, Vol. 45 Issue (5): 445-455   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
石玉鑫
拟复射影空间的Kähler迷向子流形
石玉鑫    
云南师范大学数学学院, 云南 昆明 650500
摘要:本文研究了拟复射影空间的Kähler迷向子流形Pinching问题, 利用活动标架法, 得到了关于第二基本形式、截面曲率下界, Ricci曲率下界的Pinching定理, 将Pinching常数和外围空间都进行了推广.
关键词拟复射影空间    迷向子流形    第二基本形式    Kähler子流形    
KÄHLER ISOTROPIC SUBMANIFOLDS FOR QUASI COMPLEX PROJECTIVE SPACES
SHI Yu-xin    
School of Mathematics, Yunnan Normal University, Yunnan Kunming 650500, China
Abstract: This article studies the pinching problem of Kähler isotropic submanifolds in quasi complex projective spaces. By utilizing the moving frame method, it establishes pinching theorems related to the second fundamental form, lower bounds of sectional curvature, and lower bounds of Ricci curvature, while generalizing both the pinching constant and the surrounding space to some extent.
Keywords: quasi complex projective spaces     isotropic     submanifolds     the second fundamental form    
1 引言

$ f:M^n\rightarrow N^{n+p} $是等距浸入, 则

1  $ M^n $是全测地子流形的充要条件是$ M^n $是全脐子流形也是极小子流形

2  $ M^n $是极小子流形的必要条件是$ M^n $是伪脐子流形

3   $ M^n $是全脐子流形的必要条件是$ M^n $是迷向子流形

因为Kähler流形的Kähler子流形必是极小子流形, 我们考虑上述结果反过来若要成立的条件.一般地, 对于一个具有度量$g_{ij} $的黎曼流形, 如果其曲率张量满足以下等式:

$ R_{ijkl} = K(g_{ik} g_{jl} - g_{il} g_{jk}), $

则称其为常曲率黎曼流形, 其中K是一个常数.

1972年, Chen和矢野[1]在研究共形平坦空间时提出了拟全脐的概念, 该文中他们得到了这类空间的一个曲率的表达式:

$ K_{kij}^h=\left( k+\alpha ^2 \right) \left( \delta _{k}^{h}g_{ij}-\delta _{j}^{h}g_{ki} \right) +\alpha \beta \left[ \left( \delta _{k}^{h}v_j-\delta _{k}^{j}v_h \right) v_i+\left( v_kg_{ji}-v_jg_{ki} \right) v^h \right]. $

1986年, 白正国[2]将这类空间命名为拟常曲率空间, 定义为曲率张量写作以下形式的黎曼空间:

$ K_{ABCD}=a\left( g_{AC}g_{BD}-g_{AD}g_{BC} \right) +b\left( g_{AC}\lambda _B\lambda _D+g_{BD}\lambda _A\lambda _C-g_{AD}\lambda _B\lambda _C-g_{BC}\lambda _A\lambda _D \right). $

这里的$ a, b $是任意光滑函数, $ \left\{ \lambda _A \right\} $是一组单位向量在标准基下的分量.

而复射影空间的曲率张量可以写作[3]:

$ K_{ABCD}=\delta _{AC}\delta _{BD}-\delta _{AD}\delta _{BC}+J_{AC}J_{BD}-J_{AD}J_{BC}+2J_{AD}J_{BC}. $

类似地, 2011年宋卫东教授在文献[4]中提出了拟复射影空间的概念, 他将拟复射影空间定义为曲率张量满足

$ \begin{equation} \begin{aligned} K_{ABCD}=&a\left( g_{AC}g_{BD}-g_{AD}g_{BC}+J_{AC}J_{BD}-J_{AD}J_{BC}+2J_{AB}J_{CD} \right) \\ &+b\left( g_{AC}\lambda _B\lambda _D+g_{BD}\lambda _A\lambda _C-g_{AD}\lambda _B\lambda _C-g_{BC}\lambda _A\lambda _D \right)\notag. \end{aligned} \end{equation} $

的复$ n+p $维黎曼流形, 做为复射影空间的推广.

一般地, 设$ p\in M, u=\sum_i^{}{u^ie_i\in T_pM} $, 其中$ \sum_i^{}{\left( u^i \right) ^2}=1 $, 称

$ \begin{equation} h_p\left( u, u \right) =\sum\limits_{\alpha , i, j}^{}{h_{ij}^{\alpha}u^iu^je_{\alpha}} \end{equation} $ (1.1)

为关于$ u $$ p $点的法曲率张量.若$ \lVert h_p \rVert =\lambda _p $, 则称$ M^n $$ N^{n+p} $$ \lambda $-迷向子流形[5].

对于复射影空间的$ \lambda- $迷向子流形, 尹松庭证明了如下定理[5].

定理A  设$ M^n $为复射影空间$ CP^{n+p}\left( 4 \right) $中迷向Kähler子流形, 如果$ M^n $第二基本形式模长平方S满足

$ S<\frac{2\left( n+1 \right) \left( n+4 \right)}{4n-1}, $

$ M^n $是全测地的.

定理B  设$ M^n $为复射影空间$ CP^{n+p}\left( 4 \right) $中迷向Kähler子流形, 如果在每一点处$ M^n $截面曲率满足

$ K\ge \frac{3\left( n+1 \right)}{4n^2+10n+3}, $

其中$ K $$ M^n $截面曲率的下确界, 则$ M^n $是全测地的.

定理C  设$ M^n $为复射影空间$ CP^{n+p}\left( 4 \right) $中迷向Kähler子流形, 如果在每一点处$ M^n $的Ricci曲率满足

$ Q>\left( 2n+2 \right) -\frac{\left( n+1 \right) \left( n+4 \right)}{n\left( 4n-1 \right)}, $

其中$ Q $$ M^n $的Ricci曲率的下确界, 则$ M^n $是全测地的.

本文将外围空间扩展到拟复射影空间, 得到如下结果. 首先是在局部对称的条件下, 得到了:

定理1.1  若$ M^n $是局部对称拟复射影空间$ CQ^{n+p} $的迷向Kähler子流形, 则当

$ S<\frac{\left[ a\left( 8n^2+4n-3 \right) -2\left| b \right|\left( 8n^2-6n+2 \right) \right] \left( n+1 \right)}{n\left( 4n-1 \right)} $

时, $ M^n $是全测地的.

定理1.2  若$ M^n $是局部对称$ CQ^{n+p} $的Kähler迷向子流形, 若

$ K>-\frac{a\left( 4n-1 \right)}{8n^2\left( n+1 \right)}+\frac{\text{(}2n^2+4n-1\left( \left[ 2\left| b \right|\left( 8n^2-6n+2 \right) -a\left( 8n^2+4n-3 \right) \right] \right)}{8n^3\left( n+1 \right) \left( 4n-1 \right)}, $

$ M^n $是全测地的, 其中$ K $$ M^n $的截面曲率下确界.

定理1.3  若$ M^n $是局部对称$ CQ^{n+p} $的Kähler迷向子流形, 若

$ Q>2a\left( n+1 \right) +\left| b \right|\left( 2n+1 \right) +\frac{\left( n+1 \right) \left[ 2\left| b \right|\left( 8n^2-6n+2 \right) -a\left( 8n^2+4n-3 \right) \right]}{2n^2\left( 4n-1 \right)}, $

$ M^n $是全测地的, 其中$ Q $$ M^n $的Ricci曲率下确界.

推论1.4  若$ M^n $是局部对称$ CP^{n+p} $的Kähler迷向子流形, 则$ S<\frac{\left( 8n^2+4n-3 \right) \left( n+1 \right)}{n\left( 4n-1 \right)} $时, $ M^n $是全测地的.

推论1.5  若$ M^n $是局部对称$ CP^{n+p} $的Kähler迷向子流形, 则$ K>-\frac{4n-1}{8n^2\left( n+1 \right)}-\frac{\left( 2n^2+4n-1 \right) \left( 8n^2+4n-3 \right)}{8n^3\left( n+1 \right) \left( 4n-1 \right)} $时, $ M^n $是全测地的, 其中$ K $$ M^n $的截面曲率下确界.

推论1.6  若$ M^n $是局部对称$ CP^{n+p} $的Kähler迷向子流形, 则$ Q>2\left( n+1 \right) -\frac{\left( n+1 \right) \left( 8n^2+4n-3 \right)}{2n^2\left( 4n-1 \right)} $时, $ M^n $是全测地的, 其中$ Q $$ M^n $的Ricci曲率下确界.

另一方面, 在没有局部对称条件的情况下, 我们得到了:

定理1.7  若$ M^n $$ CQ^{n+p} $的Kähler迷向子流形, 记$ X=2a\left( 4n^2+2n-1 \right) -\left| b \right|\left( 8n^2-6n+2 \right) $, $ Y=2n\left( 8n^2+2n-1 \right) $, 若

$ \left\{ \begin{array}{l} X>0\\ X^2>b^2Y\\ \, \, 2n\left( n+1 \right) \frac{X-\sqrt{X^2-b^2Y}}{2Y}<S<2n\left( n+1 \right) \frac{X+\sqrt{X^2-b^2Y}}{2Y}\\ \end{array} \right. $

$ M^n $是全测地的.

定理1.8  若$ M^n $$ CQ^{n+p} $的Kähler迷向子流形, 记$ X=2a\left( 4n^2+2n-1 \right) -\left| b \right|\left( 8n^2-6n+2 \right) $, $ Y=2n\left( 8n^2+2n-1 \right) $, 若$ K>-\frac{a\left( 4n-1 \right)}{8n^2\left( n+1 \right)}+\frac{2Y\left[ 2n^2\left( 4n-1 \right) +\frac{1}{4}b^2 \right]}{8n^2\left( n+1 \right) \left( X+\sqrt{X^2-b^2Y} \right)}, $$ M^n $是全测地的, 其中$ K $$ M^n $的截面曲率下确界.

定理1.9  若$ M^n $$ CQ^{n+p} $的Kähler迷向子流形, 记$ X=2a\left( 4n^2+2n-1 \right) -\left| b \right|\left( 8n^2-6n+2 \right) $, $ Y=2n\left( 8n^2+2n-1 \right) $, 若$ Q>2a\left( n+1 \right) +\left| b \right|\left( 2n+1 \right) -\frac{\left( n+1 \right) \left( X+\sqrt{X^2-b^2Y} \right)}{2Y}, $$ M^n $是全测地的, 其中$ Q $$ M^n $的Ricci曲率下确界.

推论1.10  若$ M^n $$ CQ^{n+p} $的Kähler迷向子流形, 若$ S<\frac{2n\left( n+1 \right) \left( 4n^2+2n-1 \right)}{8n^2+2n-1}, $$ M^n $是全测地的.

推论1.11  若$ M^n $$ CQ^{n+p} $的Kähler迷向子流形, 若$ K>-\frac{4n-1}{8n^2\left( n+1 \right)}+\frac{n^2\left( 8n^2+2n-1 \right) \left( 4n-1 \right)}{4n\left( n+1 \right) \left( 4n^2+2n-1 \right)}, $$ M^n $是全测地的.

推论1.12  若$ M^n $$ CQ^{n+p} $的Kähler迷向子流形, 若$ Q>2\left( n+1 \right) -\frac{\left( n+1 \right) \left( 4n^2+2n-1 \right)}{n\left( 8n^2+2n-1 \right)}, $$ M^n $是全测地的.

2 预备知识

约定各类指标的取值范围如下:

$ \begin{equation} A, B, C, \cdots =1, \cdots , n+p, 1^*, \cdots , \left( n+p \right) ^* \notag \end{equation} $
$ \begin{equation} i, j, k, \cdots =1, \cdots, n, 1^*, \cdots , n^*\notag\ \end{equation} $
$ \begin{equation} \alpha , \beta , \gamma , \cdots =n+1, \cdots , n+p, \left( n+1 \right) ^*, \cdots , \left( n+p \right)^*\notag\ \end{equation} $

$ CQ^{n+p} $是具有Kähler度量的复$ n+p $维复黎曼流形, 如果其曲率张量表示为

$ \begin{equation} \begin{aligned} K_{ABCD}&=a\left( g_{AC}g_{BD}-g_{AD}g_{BC}+J_{AC}J_{BD}-J_{AD}J_{BC}+2J_{AB}J_{CD} \right) \\&+b\left( g_{AC}\lambda _B\lambda _D+g_{BD}\lambda _A\lambda _C-g_{AD}\lambda _B\lambda _C-g_{BC}\lambda _A\lambda _D \right), \end{aligned} \end{equation} $ (2.1)

则称$ CQ^{n+p} $为拟复射影空间, 也称拟常曲率复射影空间. 其中, $ g $$ CQ^{n+p} $上的黎曼度量, $ J $$ CQ^{n+p} $的复结构, $ a, b $$ CQ^{n+p} $上的光滑函数, $ \left\{ \lambda _A \right\} $$ CQ^{n+p} $上的单位向量函数, 满足$ \sum\limits_{A, B}^{}{g^{AB}\lambda _A\lambda _B=1} $.

$ a=\frac{c}{4}, b=0 $时, 拟复射影空间$ CQ^{n+p} $是全纯截面曲率为$ c $的复射影空间$ CP^{n+p} $. 设$ M^n $$ CQ^{n+p} $$ n $维全实子流形, $ J $$ CQ^{n+p} $的复结构, 取$ CQ^{n+p} $的局部规范正交标架场$ e_1, \cdots e_{n+p}, e_{1^*}, \cdots , e_{\left( n+p \right) ^*} $满足

$ \begin{equation} Je_1=e_{1^*}, \cdots , Je_{n+p}=e_{\left( n+p \right) ^*}. \end{equation} $ (2.2)

因为$ J $是复结构, 满足$ J^2=-1 $, 对(2.2)式两边用$ J $作用, 得

$ \begin{equation} Je_{1^*}=-e_1, \cdots , Je_{\left( n+p \right) ^*}=-e_{n+p}. \end{equation} $ (2.3)

$ \left( J_{AB} \right) $为复结构, 视为线性变换$ J $关于$ \left\{ e_A \right\} $的变换矩阵, 则由(2.2),(2.3)两式得

$ \begin{equation} J_{AB}=\left( \begin{matrix} 0& I_{n+p}\\ -I_{n+p}& 0\\ \end{matrix} \right). \end{equation} $ (2.4)

这里, $ I_{n+p} $$ n+p $阶单位矩阵. 用$ \left\{ \omega _A \right\} $表示$ \left\{ e_A \right\} $的对偶标架场, 则$ CQ^{n+p} $的结构方程为

$ \begin{equation} d\omega _A=-\sum\limits_B^{}{\omega _{AB}\land \omega _B, \omega _{AB}}+\omega _{BA}=0\notag, \end{equation} $
$ \begin{equation} d\omega _{AB}=-\sum\limits_C^{}{\omega _{AC}\land \omega _{CB}+\frac{1}{2}}\sum\limits_{C, D}^{}{K_{ABCD}\omega _C\land \omega _D}\notag, \end{equation} $

其中$ K_{ABCD} = a (\delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC} + J_{AC} J_{BD} - J_{AD} J_{BC} + 2J_{AB} J_{CD}) + b (\delta_{AC} \lambda_{B} \lambda_{D} + \delta_{BD} \lambda_{A} \lambda_{C} - \delta_{AD} \lambda_{B} \lambda_{C} - \delta_{BC} \lambda_{A} \lambda_{D}), \quad \left( \sum\limits_{A} \lambda_{A}^{2} = 1 \right). $$ \left\{ \omega _{AB} \right\} $$ CQ^{n+p} $的联络1-形式, 将上述形式限制在$ M^n $上, 有[5]

$ \begin{equation} \omega_{\alpha} = 0, \quad \omega _{\alpha i}=\sum\limits_j^{}{h_{ij}^{\alpha}\omega _j}, \quad h=\sum\limits_{\alpha , i, j}^{}{h_{ij}^{\alpha}\omega _i\otimes \omega _j\otimes e_{\alpha}}, \quad d\omega_{ij} = -\sum\limits_{j} \omega_{ij} \wedge \omega_{j}.\notag \end{equation} $
$ \begin{equation} d\omega_{ij} = -\sum\limits_{k} \omega_{ik} \wedge \omega_{kj} + \frac{1}{2} \sum\limits_{k, l} R_{ijkl} \omega_{k} \wedge \omega_{l}.\notag \end{equation} $
$ \begin{equation} d\omega_{\alpha \beta} = -\sum\limits_{\gamma} \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta} + \frac{1}{2} \sum\limits_{k, l} R_{\alpha \beta kl} \omega_{k} \wedge \omega_{l}.\notag \end{equation} $
$ \begin{equation} R_{ijkl} = K_{ijkl} + \sum\limits_{\alpha} \left( h_{ ik}^\alpha h_{jl}^\alpha - h_{ il}^\alpha h_{jk}^\alpha \right). \end{equation} $ (2.5)
$ \begin{equation} R_{\alpha \beta ij} = K_{\alpha \beta ij} + \sum\limits_{k} \left( h_{ik}^ \alpha h_{jk}^\beta - h_{jk}^ \alpha h_{ik}^\beta \right). \end{equation} $ (2.6)

其中, $ h, R_{ijkl}, R_{\alpha \beta ij} $分别是$ M^n $的第二基本形式, 黎曼曲率张量和法曲率张量场关于$ {e_A} $的分量, $ K_{ABCD} $$ CQ^{n+p} $的曲率张量的分量.

进一步, $M^n $的平均曲率向量场\(\xi\), 平均曲率H, 第二基本形式模长平方S可分别表示为

$ \begin{equation} \xi = \frac{1}{n} \sum\limits_{\alpha} \left( \sum\limits_{i} h_{ii}^{\alpha} \right) e_{\alpha}, \quad H = \| \xi \|, \quad S = \| h \|^2. \end{equation} $ (2.7)

下面用$h_{ijk}^{\alpha} $$h_{ijkl}^{\alpha} $分别表示$h_{ij}^{\alpha} $的一阶共变导数和二阶共变导数[6],

$ \begin{equation} -\sum\limits_{k} h_{ijk}^{\alpha} \omega_{k} = dh_{ij}^{\alpha} - \sum\limits_{k} h_{ik}^{\alpha} \omega_{kj} - \sum\limits_{l} h_{lj}^{\alpha} \omega_{il} - \sum\limits_{\beta} h_{ij}^{\beta} \omega_{\beta \alpha}\notag, \end{equation} $
$ \begin{equation} -\sum\limits_{l} h_{ijkl}^{\alpha} \omega_{l} = dh_{ijk}^{\alpha} - \sum\limits_{m} h_{ijm}^{\alpha} \omega_{mk} - \sum\limits_{l} h_{ljk}^{\alpha} \omega_{il} - \sum\limits_{\beta} h_{ijk}^{\beta} \omega_{\beta \alpha}\notag, \end{equation} $

则有

$ \begin{equation} h_{ijk}^{\alpha} - h_{ikj}^{\alpha} = -K_{aijk}. \end{equation} $ (2.8)
$ \begin{equation} h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum\limits_{m} \left( h_{im}^{\alpha} R_{mjkl} + h_{jm}^{\alpha} R_{mikl} \right) - \sum\limits_{\beta} h_{ij}^{\beta} R_{\beta \alpha kl}. \end{equation} $ (2.9)
$ \begin{equation} K_{\alpha \beta ij} = a \left( J_{\alpha k} J_{\beta j} - J_{\alpha j} J_{\beta k} \right). \end{equation} $ (2.10)

引理2.1  [7] $ f:M^n\rightarrow CQ^{n+p} $$ \lambda $-迷向浸入当且仅当

$ \begin{equation} \sum\limits_{\alpha}^{}{\left( h_{ii}^{\alpha} \right) ^2=\lambda ^2, \sum\limits_{\alpha}^{}{h_{ii}^{\alpha}h_{ij}^{\alpha}=0}}, \end{equation} $ (2.11)
$ \begin{equation} \sum\limits_{\alpha}^{}{h_{ii}^{\alpha}h_{jj}^{\alpha}+2\sum\limits_{\alpha}^{}{\left( h_{ij}^{\alpha} \right) ^2=\lambda ^2}}, \end{equation} $ (2.12)
$ \begin{equation} \sum\limits_{\alpha}^{}{\left( h_{ii}^{\alpha}h_{jk}^{\alpha}+2h_{ij}^{\alpha}h_{ik}^{\alpha} \right) =\sum\limits_{\alpha}^{}{\left( h_{ij}^{\alpha}h_{kl}^{\alpha}+h_{il}^{\alpha}h_{jk}^{\alpha}+h_{ik}^{\alpha}h_{jl}^{\alpha} \right) =0}}, \end{equation} $ (2.13)

其中$ i, j, k, l $互不相同.

引理2.2  [8]$ M^n $$ N^{n+p} $的极小子流形, 则$ M^n $是伪脐子流形; Kähler流形的Kähler子流形必是极小子流形.

引理2.3  [5]$ f:M^n\hookrightarrow CP^{n+p}\left( 4 \right) $为Kähler迷向浸入, 则

$ \left\{ \begin{array}{l} \sum\nolimits_{\alpha , k}^{}{h_{ik}^{\alpha}h_{kj}^{\alpha}}=\left( n+1 \right) \lambda ^2\delta _{ij}\\ S=2n\left( n+1 \right) \lambda ^2.\\ \end{array} \right. $
3 主要结果的证明

首先我们证明定理1.1

  同引理2.3的证明和(2.1) 可知, 引理2.3对拟复射影空间也成立

$ \begin{equation} \begin{aligned} &\frac{1}{2}\sum\limits_i^{}{\varDelta \left[ \sum\limits_{\alpha}^{}{\left( h_{ii}^{\alpha} \right) ^2} \right]}\\ =&\sum\limits_{\alpha , i, k}^{}{\left( h_{iik}^{\alpha} \right) ^2}+\sum\limits_{\alpha , i, k}^{}{h_{ii}^{\alpha}h_{iikk}^{\alpha}}\\ =&\sum\limits_{\alpha , i, k}^{}{\left( h_{iik}^{\alpha} \right) ^2}-\sum\limits_{\alpha , i, k}^{}{h_{ii}^{\alpha}\left( K_{\alpha kiki}+K_{\alpha iikk} \right)}+\sum\limits_{\alpha .\beta , m, i, k}^{}{h_{ii}^{\alpha}\left( h_{mk}^{\alpha}R_{miik}+h_{mi}^{\alpha}R_{mkik} \right)} \\ &+h_{ii}^{\alpha}h_{ki}^{\beta}R_{\alpha \beta ki}+\sum\limits_{\alpha , i, k}^{}{h_{kkii}^{\alpha}h_{ii}^{\alpha}} . \end{aligned} \end{equation} $ (3.1)

首先对于$ \sum\limits_{\alpha , \beta , m, k}^{}{h_{ii}^{\alpha}h_{mk}^{\alpha}R_{miik}} $$ m=i $$ k=i $时, 由引理2.1有$ \sum\limits_{\alpha}^{}{h_{ii}^{\alpha}h_{mk}^{\alpha}}=0 $, 下面考虑$ m, k\ne i $的情况.

$ \begin{equation} \begin{aligned} &\sum\limits_{\alpha , \beta , k, i, m}^{}{h_{ii}^{\alpha}h_{mk}^{\alpha}R_{miik}}\\ =&\sum\limits_{\alpha , \beta , m, i, k}^{}{h_{ii}^{\alpha}h_{mk}^{\alpha}\left[ a\left( \delta _{mi}\delta _{ik}-\delta _{mk}\delta _{ii} \right) +b\left( \delta _{mi}\lambda _i\lambda _k+\delta _{ik}\lambda _m\lambda _i-\delta _{mk}\lambda _{i}^{2}-\delta _{ii}\lambda _m\lambda _k \right) \right]}\\ &+\sum\limits_{\alpha , \beta , m, i, k}^{}{+h_{ii}^{\alpha}h_{mk}^{\alpha}\left( h_{mi}^{\beta}h_{ik}^{\beta}-h_{mk}^{\beta}h_{ii}^{\beta} \right)}\\ =&\sum\limits_{\alpha , \beta , k, i, m}^{}{a\left( h_{ii}^{\alpha} \right) ^2-2anh_{ii}^{\alpha}h_{kk}^{\alpha}-bh_{ii}^{\alpha}h_{kk}^{\alpha}\lambda _{i}^{2}-\delta _{ii}bh_{ii}^{\alpha}h_{mk}^{\alpha}\lambda _m\lambda _k+h_{ii}^{\alpha}h_{mk}^{\alpha}h_{mi}^{\beta}h_{ik}^{\beta}-h_{ii}^{\alpha}h_{mk}^{\alpha}h_{mk}^{\beta}h_{ii}^{\beta}} . \end{aligned} \end{equation} $ (3.2)

首先, 由引理2.1和$ M^n $的极小性,

$ \begin{equation} \begin{aligned} \sum\limits_{\alpha , i, i\ne k}^{}{\left( h_{ii}^{\alpha} \right) ^2}=2n\lambda ^2 , \end{aligned} \end{equation} $ (3.3)
$ \begin{equation} \begin{aligned} -an\sum\limits_{\alpha , i, k, i\ne k}^{}{h_{ii}^{\alpha}h_{kk}^{\alpha}}=-an\left[ \sum\limits_{\alpha , i, k}^{}{h_{ii}^{\alpha}h_{kk}^{\alpha}}-\sum\limits_{\alpha , i}^{}{\left( h_{ii}^{\alpha} \right) ^2} \right] =4an^2\lambda ^2 . \end{aligned} \end{equation} $ (3.4)

同理, 由上式

$ \begin{equation} -b\sum\limits_{\alpha , i, k, k\ne i}^{}{h_{ii}^{\alpha}h_{kk}^{\alpha}\lambda _{i}^{2}}=2bn\lambda ^2\sum\limits_{i, i\ne k}^{}{\lambda _{i}^{2}} . \end{equation} $ (3.5)

对于第四项

$ \begin{equation} \begin{aligned} &-b\sum\limits_{\alpha , i, m, k, m\ne i, k\ne i}^{}{\delta _{ii}h_{ii}^{\alpha}h_{mk}^{\alpha}\lambda _m\lambda _k}\\ =& -b\left[ \sum\limits_{\alpha , i, m, k, m\ne i, k, k\ne i}^{}{\delta _{ii}h_{ii}^{\alpha}h_{mk}^{\alpha}\lambda _m\lambda _k}+\sum\limits_{\alpha , i, m, k, k\ne i}^{}{\delta _{ii}h_{ii}^{\alpha}h_{kk}^{\alpha}\lambda _{k}^{2}} \right] \\ =&b\left(2n-1 \right)2n\lambda ^2\sum\limits_{i, i\ne k}^{}{\lambda _{i}^{2}} . \end{aligned} \end{equation} $ (3.6)

最后两项

$ \begin{equation} \begin{aligned} &\sum\limits_{\alpha , \beta , i, m, k, i\ne k, m}^{}{h_{ii}^{\alpha}h_{mk}^{\alpha}h_{mi}^{\beta}h_{ik}^{\beta}-h_{ii}^{\alpha}h_{mk}^{\alpha}h_{mk}^{\beta}h_{ii}^{\beta}}\\ =&\sum\limits_{\alpha , \beta , i, k, m, i\ne k, m, k\ne m}^{}{h_{ii}^{\alpha}h_{mk}^{\alpha}h_{mi}^{\beta}h_{ik}^{\beta}-h_{ii}^{\alpha}h_{mk}^{\alpha}h_{mk}^{\beta}h_{ii}^{\beta}}+\sum\limits_{\alpha , \beta , i, k, i\ne k}^{}{h_{ii}^{\alpha}h_{kk}^{\alpha}h_{ki}^{\beta}h_{ki}^{\beta}-h_{ii}^{\alpha}h_{kk}^{\alpha}h_{kk}^{\beta}h_{ii}^{\beta}}\\ =&\sum\limits_{\alpha , \beta , i, k, m, i\ne k, m, k\ne m}^{}{-2h_{mi}^{\alpha}h_{ki}^{\alpha}h_{mi}^{\beta}h_{ki}^{\beta}-4h_{mi}^{\alpha}h_{ki}^{\alpha}h_{mi}^{\beta}h_{ki}^{\beta}}+\sum\limits_{\alpha , i, k, i\ne k}^{}{h_{ii}^{\alpha}h_{kk}^{\alpha}}\sum\limits_{\beta , i, k, i\ne k}^{}{\left( h_{ki}^{\beta} \right) ^2}\\ &-\sum\limits_{\alpha , \beta , i, k, i\ne k}^{}{h_{ii}^{\alpha}h_{kk}^{\alpha}h_{kk}^{\beta}h_{ii}^{\beta}}\\ =&-4n^2\lambda ^4\left( n+1 \right) . \end{aligned} \end{equation} $ (3.7)

综上所述, 我们有

$ \begin{equation} \begin{aligned} \sum\limits_{\alpha , \beta , i, k, m}^{}{h_{ii}^{\alpha}h_{mk}^{\alpha}R_{miik}}=a\left( 4n^2+2n-1 \right) \lambda ^2+2bn\lambda ^2\sum\limits_{i, i\ne k}^{}{\lambda _{i}^{2}}-4n^3\lambda ^4-4n^2\lambda ^4 . \end{aligned} \end{equation} $ (3.8)

再来估计$ \sum\limits_{\alpha , m, k}^{}{h_{ii}^{\alpha}h_{mi}^{\alpha}R_{mkik}} $.

$ m\ne i $时, $ \sum\limits_{\alpha , m}^{}{h_{ii}^{\alpha}h_{mi}^{\alpha}}=0 $, $ k=i $时, $ R_{mkik}=0 $, 所以接下来考虑$ m=i\ne k $的情况.

$ \begin{equation} \begin{aligned} &\sum\limits_{\alpha , k}^{}{\left( h_{ii}^{\alpha} \right) ^2R_{ikik}}\\ =&\sum\limits_{\alpha , \beta , i, k, i\ne k}^{}{a\left( h_{ii}^{\alpha} \right) ^2\delta _{ii}\delta _{kk}+b\delta _{ii}\left( h_{ii}^{\alpha} \right) ^2\lambda _{k}^{2}+b\delta _{kk}\left( h_{ii}^{\alpha} \right) ^2\lambda _{i}^{2}+\left( h_{ii}^{\alpha} \right) ^2\left( h_{ii}^{\beta} \right) \left( h_{kk}^{\beta} \right) -\left( h_{ii}^{\alpha} \right) ^2\left( h_{ik}^{\beta} \right) ^2}\\ =&2an\left( 2n-1 \right) ^2\lambda ^2+2b\left(2n-1 \right) ^2\sum\limits_{k, k\ne i}^{}{\lambda _{k}^{2}}+\left( 2n-1 \right) \lambda ^2\left\{ -2n\lambda ^2-\left[ \sum\limits_{\beta , i, k}^{}{\left( h_{ik}^{\beta} \right) ^2}-\sum\limits_{\beta , i}^{}{\left( h_{ii}^{\alpha} \right) ^2} \right] \right\}\\ =&2an\left( 2n-1 \right) \lambda ^2+2b\left( n-1 \right) ^2\lambda ^2\sum\limits_{k, k\ne i}^{}{\lambda _{k}^{2}}-\left( 4n^3+2n^2-2n \right) \lambda ^4 . \end{aligned} \end{equation} $ (3.9)

最后考虑$ \sum\limits_{\alpha , \beta , k}^{}{h_{ii}^{\alpha}h_{ki}^{\beta}R_{\alpha \beta ki}}. $由(2.1), (2.6) 得

$ R_{\alpha \beta ki}=K_{\alpha \beta ki}+\sum\limits_l^{}{\left( h_{kl}^{\alpha}h_{li}^{\beta}-h_{il}^{\alpha}h_{kl}^{\beta} \right) =}a\left( J_{\alpha k}J_{\beta i}-J_{\alpha i}J_{\beta k} \right) +\sum\limits_l^{}{\left( h_{kl}^{\alpha}h_{li}^{\beta}-h_{il}^{\alpha}h_{kl}^{\beta} \right)}, $

其中

$ \begin{equation} \begin{aligned} \sum\limits_{\alpha .k.i, k\ne i}^{}{ah_{ii}^{\alpha}h_{ki}^{\beta}\left( J_{\alpha k}J_{\beta i}-J_{\alpha i}J_{\beta k} \right)} =a\sum\limits_{k, i, k\ne i}^{}{\left( h_{ii}^{k^*}h_{ii}^{k^*}-h_{ii}^{i^*}h_{kk}^{i^*} \right)} =a\left( 4n-1 \right) \lambda ^2 , \end{aligned} \end{equation} $ (3.10)
$ \begin{equation} \begin{aligned} &\sum\limits_{\alpha , \beta , k, l, i}^{}{h_{ii}^{\alpha}h_{ki}^{\beta}h_{kl}^{\alpha}h_{li}^{\beta}-h_{ii}^{\alpha}h_{ki}^{\beta}h_{il}^{\alpha}h_{lk}^{\beta}}\\ =&\sum\limits_{\alpha , \beta , k, l, i, i\ne k, l}^{}{h_{ii}^{\alpha}h_{ki}^{\beta}h_{kl}^{\alpha}h_{li}^{\beta}-h_{ii}^{\alpha}h_{ki}^{\beta}h_{il}^{\alpha}h_{lk}^{\beta}}+\sum\limits_{\alpha , \beta , k, i, i\ne k}^{}{h_{ii}^{\alpha}h_{ki}^{\beta}h_{ki}^{\alpha}h_{ii}^{\beta}-h_{ii}^{\alpha}h_{ki}^{\beta}h_{ii}^{\alpha}h_{ik}^{\alpha}}\\ =&\sum\limits_{\alpha , \beta , k, l, i, i\ne k, l}^{}{h_{ii}^{\alpha}h_{kl}^{\alpha}h_{ki}^{\beta}h_{li}^{\beta}}+\sum\limits_{\alpha , \beta , k, i, i\ne k}^{}{-\left( h_{ii}^{\alpha} \right) ^2\left( h_{ki}^{\beta} \right) ^2}\\ =&-2n^2\left( 4n-1 \right) \lambda ^4 . \end{aligned} \end{equation} $ (3.11)

又由$ CQ^{n+p} $的局部对称性和$ M^n $的极小性, 有

$ \begin{equation} \begin{aligned} &-\sum\limits_{\alpha , i, k}^{}{h_{ii}^{\alpha}\left( K_{\alpha kiki}+K_{\alpha iikk} \right)}\\ =&-\sum\limits_{\alpha , \beta , i, k}^{}{h_{ii}^{\alpha}h_{ii}^{\beta}K_{\alpha k\beta k}}-\sum\limits_{\alpha , \beta , i, k}^{}{h_{ii}^{\alpha}h_{kk}^{\beta}K_{\alpha ii\beta}}+\sum\limits_{\alpha , i, k, m}^{}{h_{ii}^{\alpha}\left( h_{mk}^{\alpha}K_{miik}+h_{mi}^{\alpha}K_{mkik} \right)}\\ =&a\left( 4n^2-1 \right) \lambda ^2+b\left( 8n^2-6n+2 \right) \lambda ^2\sum\limits_{i, i\ne k}^{}{\lambda _{i}^{2}} . \end{aligned} \end{equation} $ (3.12)

综上所述, 我们有

$ \begin{equation} \begin{aligned} \frac{1}{2}\varDelta \left( n\lambda ^2 \right) =\lambda ^2\left[ \left( -2n^2\left( 4n-1 \right) \right) \lambda ^2+a\left( 8n^2+4n-3 \right) +2b\left( 8n^2-6n+2 \right) \sum\limits_{i, i\ne k}^{}{\lambda _{i}^{2}} \right] . \end{aligned} \end{equation} $ (3.13)

因为$ \sum_A^{}{\lambda _{A}^{2}}=1 $, 所以$ \sum_{i, i\ne k}^{}{\lambda _{i}^{2}}\le 1 $, $ n\ge 1 $时, $ -2n^2\left( 4n-1 \right) <0 $, $ 8n^2-6n+2>0 $, $ 8n^2+4n-3>0 $, 于是我们有

$ \begin{equation} \begin{aligned} \int_{M^n}{\lambda ^2\left[ -2n^2\left( 4n-1 \right) \lambda ^2+a\left( 8n^2+4n-3 \right) -2\left| b \right|\left( 8n^2-6n+2 \right) \right]}dV\le 0 . \end{aligned} \end{equation} $ (3.14)

所以当$ \lambda ^2<\frac{a\left( 8n^2+4n-3 \right) -2\left| b \right|\left( 8n^2-6n+2 \right)}{2n^2\left( 4n-1 \right)} $结合引理2.3可得

$ S<\frac{\left( n+1 \right) \left[ \left( 8n^2+4n-3 \right) -2\left| b \right|\left( 8n^2-6n+2 \right) \right]}{n\left( 4n-1 \right)} $

时, 有$ S=2n\left( n+1 \right) \lambda ^2=0. $证毕.

下面证明定理1.2.

  记$ K $$ M^n $截面曲率的下确界, 则

$ \begin{equation} \sum\limits_{\alpha , i, k, m}^{}{h_{ii}^{\alpha}\left( h_{mk}^{\alpha}R_{miik}+h_{mi}^{\alpha}R_{mkik} \right)}\ge 2nKS=4n^2\left( n+1 \right) K\lambda ^2 . \end{equation} $ (3.15)

将(3.10)、(3.11)、(3.12)、(3.15) 代入(3.1) 得:

$ \begin{equation} 0\ge \int_{M^n}{\lambda ^2\left[ 8n^2\left( n+1 \right) K+a\left( 4n-1 \right) +2n\lambda ^2\left( 2n^2+4n-1 \right) \right]}dV. \end{equation} $ (3.16)

于是当$ K>-\frac{a\left( 4n-1 \right) +2n\lambda ^2\left( 2n^2+4n-1 \right)}{8n^2\left( n+1 \right)} $时, $ \lambda =0 $, 进而$ M^n $是全测地的.

将定理1.1代入可得, 当

$ K>-\frac{a\left( 4n-1 \right)}{8n^2\left( n+1 \right)}+\frac{\left( 2n^2+4n-1 \right) \left[ 2\left| b \right|\left( 8n^2-6n+2 \right) -a\left( 8n^2+4n-3 \right) \right]}{8n^3\left( n+1 \right) \left( 4n-1 \right)} $

时, $ M^n $是全测地的. 证毕.

下面证明定理1.3

  记$ Q $$ M^n $Ricci曲率的下确界, 则由(2.1)可得:

$ \begin{equation} Q\le R_{ii}=\sum\limits_j^{}{R_{ijij}}\le 2a\left( n+1 \right) +\left| b \right|\left( 2n+1 \right) +\sum\limits_{\alpha , j}^{}{\left[ h_{ii}^{\alpha}h_{jj}^{\alpha}-\left( h_{ij}^{\alpha} \right) ^2 \right]} \end{equation} $ (3.17)

其中$ \sum\limits_{\alpha , j}^{}{\left[ h_{jj}^{\alpha}h_{ii}^{\alpha}-\left( h_{ij}^{\alpha} \right) ^2 \right]}=\sum\limits_{\alpha , j\left( j\ne i \right)}^{}{\left[ h_{jj}^{\alpha}h_{ii}^{\alpha}-\left( h_{ij}^{\alpha} \right) ^2 \right]} $将引理2.1代入上式, 结合$ M^n $的极小性可得

$ \sum\limits_{\alpha , j\left( j\ne i \right)}^{}{\left[ h_{jj}^{\alpha}h_{ii}^{\alpha}-\left( h_{ij}^{\alpha} \right) ^2 \right]}=\sum\limits_{j\left( j\ne i \right)}^{}{\sum\limits_{\alpha}^{}{\left[ h_{ii}^{\alpha}h_{jj}^{\alpha}-\frac{1}{2}\left( \lambda ^2-h_{ii}^{\alpha}h_{jj}^{\alpha} \right) \right]}}=-\left( n+1 \right) \lambda ^2. $

于是有

$ Q\le 2a\left( n+1 \right) +\left| b \right|\left( 2n+1 \right) -\left( n+1 \right) \lambda ^2. $

由上式, 当

$ Q>2a\left( n+1 \right) +\left| b \right|\left( 2n+1 \right) +\frac{\left( n+1 \right) \left[ 2\left| b \right|\left( 8n^2-6n+2 \right) -a\left( 8n^2+4n-3 \right) \right]}{2n^2\left( 4n-1 \right)}. $

时, 由定理1可得$ M^n $是全测地的.这就证明了定理1.3. 证毕.

下面我们在没有局部对称的条件下讨论这个问题, 证明定理1.6.

  由引理2.2可知, $ M^n $是伪脐的, 设$ \omega =\sum_{\alpha , i, j, k}^{}{\left( h_{ik}^{\alpha}K_{\alpha jij}+h_{ij}^{\alpha}K_{\alpha ijk} \right)} $, 则

$ div\omega =\sum\limits_{\alpha , i, j, k}^{}{\nabla _k\left( h_{ik}^{\alpha}K_{\alpha jij}+h_{ij}^{\alpha}K_{\alpha ijk} \right)}. $

于是得

$ \begin{equation} -\sum\limits_{\alpha , i, j, k}^{}{h_{ij}^{\alpha}\left( K_{kikj}^{\alpha}+K_{ijkk}^{\alpha} \right)} =\sum\limits_{\alpha , i, j, k}^{}{\left( h_{ikk}^{\alpha}K_{\alpha jij}+h_{ijk}^{\alpha}K_{\alpha ijk} \right)}-div\omega . \end{equation} $ (3.18)

于是$ \sum\limits_{\alpha , i, k}^{}{\left( h_{iik}^{\alpha} \right) ^2}-\sum\limits_{\alpha , i, k}^{}{h_{ii}^{\alpha}\left( K_{\alpha kiki}+K_{\alpha iikk} \right)}=\sum\limits_{\alpha , i, k}^{}{\left( h_{iik}^{\alpha} \right) ^2}+\sum\limits_{\alpha , i, k}^{}{h_{iik}^{\alpha}K_{\alpha iik}}-div\omega. $又由(2.1)得

$ \sum\limits_{\alpha , i, k}^{}{\left( h_{iik}^{\alpha} \right) ^2}+\sum\limits_{\alpha , i, k}^{}{h_{iik}^{\alpha}K_{\alpha iik}}=\sum\limits_{\alpha , i, k}^{}{\left( h_{iik}^{\alpha} \right) ^2}+\sum\limits_{\alpha , i, k}^{}{h_{iik}^{\alpha}\left( \delta _{ik}\lambda _{i}^{2}-\delta _{ii}\lambda _{\alpha}\lambda _k \right)}. $

因为$ \sum_A^{}{\lambda _{A}^{2}}=1 $, 也就是$ \sum_i^{}{\lambda _{i}^{2}}+\sum_{\alpha}^{}{\lambda _{\alpha}^{2}}=1 $, 所以

$ \sqrt{\sum\limits_i^{}{\lambda _{i}^{2}\sum\limits_{\alpha}^{}{\lambda _{\alpha}^{2}}}}\le \frac{\sum\limits_i^{}{\lambda _{i}^{2}}+\sum\limits_{\alpha}^{}{\lambda _{\alpha}^{2}}}{2}=\frac{1}{2}. $

于是, $ 0\le \sum\limits_{i, \alpha}^{}{\left( \lambda _i\lambda _{\alpha} \right) ^2\le \frac{1}{4}}. $

因为指标$ i $$ 2n $个取值, 指标$ \alpha $$ 2p $个取值, 所以$ \frac{\sum\limits_{i, \alpha}^{}{\lambda _i\lambda _{\alpha}}}{4np}\le \sqrt{\frac{\sum\limits_{i, \alpha}^{}{\left( \lambda _i\lambda _{\alpha} \right) ^2}}{4np}}\le \sqrt{\frac{1}{4np}} $由柯西不等式, 有

$ \left( \sum\limits_{i, \alpha}^{}{\lambda _i\lambda _{\alpha}} \right) ^2\le \sum\limits_{i, \alpha}^{}{1^2}\sum\limits_{i, \alpha}^{}{\left( \lambda _i\lambda _{\alpha} \right) ^2\le np}, $

化简得

$ \begin{equation} -\sqrt{np}\le \sum\limits_{i, \alpha}^{}{\lambda _i\lambda _{\alpha}}\le \sqrt{np} \notag. \end{equation} $

$ A=\sum_{\alpha , k}^{}{\lambda _{k}^{2}-n\lambda _{\alpha}\lambda _k} $, 则$ -\sqrt{np}\le A\le \sqrt{np}+1 . $由二次函数的性质, 有

$ \begin{equation} \sum\limits_{\alpha , i, k}^{}{\left( h_{iik}^{\alpha} \right) ^2+bAh_{iik}^{\alpha}}\ge \frac{b^2A\left( A-2 \right)}{4}\ge -\frac{1}{4}b^2 . \end{equation} $ (3.19)

结合(3.1)、(3.8)、(3.10)、(3.11)、(3.19), 得

$ \begin{equation} \int_{M^n}{\left\{ \lambda ^2\left[ 2a\left( 4n^2+2n-1 \right) +2n\lambda ^2\left( -8n^2-2n+1 \right) -\left| b \right|\left( 8n^2-6n+2 \right) \right] -\frac{1}{4}b^2 \right\}}dV\le 0 . \end{equation} $ (3.20)

考虑关于$ \lambda ^2 $的二次函数

$ f\left( \lambda ^2 \right) =-2n\left( 8n^2+2n-1 \right) \lambda ^4+\left[ 2a\left( 4n^2+2n-1 \right) -\left| b \right|\left( 8n^2-6n+2 \right) \right] \lambda ^2-\frac{1}{4}b^2. $

$ \varDelta =\left[ 2a\left( 4n^2+2n-1 \right) -\left| b \right|\left( 8n^2-6n+2 \right) \right] ^2-2nb^2\left( 8n^2+2n-1 \right). $

$ X=2a\left( 4n^2+2n-1 \right) -\left| b \right|\left( 8n^2-6n+2 \right) $, $ Y=2n\left( 8n^2+2n-1 \right) $, 结合二次函数的图像性质可知, 若

$ \left\{ \begin{array}{l} X>0\\ X^2>b^2Y\\ \, \, \frac{X-\sqrt{X^2-b^2Y}}{2Y}<\lambda ^2<\frac{X+\sqrt{X^2-b^2Y}}{2Y}, \end{array} \right. $

$ \lambda ^2=0 $, 进而$ M^n $是全测地的. 证毕.

类似定理1.2、1.3的证明过程, 我们证明定理1.8、定理1.9.

  由(3.1)、(3.8)、(3.10)、(3.11)、(3.15) 我们可以得到

$ 0\ge \int_{M^n}{\left[ 8n^2\left( n+1 \right) K\lambda ^2+a\left( 4n-1 \right) \lambda ^2-2n^2\left( 4n-1 \right) -\frac{1}{4}b^2 \right]}dV. $

$ K>\frac{2Y\left[ 2n^2\left( 4n-1 \right) +\frac{1}{4}b^2 \right]}{8n^2\left( n+1 \right) \left( X+\sqrt{X^2-b^2Y} \right)}-\frac{a\left( 4n-1 \right)}{8n^2\left( n+1 \right)} $时, 由定理1.7, $ M^n $是全测地的, 这样就证明了定理1.8. 证毕.

  同定理1.3的讨论, 当$ Q>2a\left( n+1 \right) +\left| b \right|\left( 2n+1 \right) -\frac{\left( n+1 \right) \left( X+\sqrt{X^2-b^2Y} \right)}{2Y} $时, 由定理1.7, 可知$ M^n $是全测地的, 就得到了定理1.9. 证毕.

特别地, 在上述的六个定理中取$ a=1, b=0 $, 即可得对应条件下关于复射影空间的推论.

参考文献
[1] Chen Bang-Yen. Hypersurfaces of a conformally flat space[J]. Tensor, NS, 1972, 26: 318–322.
[2] 白正国. 拟常曲率黎曼流形在常曲率空间中的等距嵌入[J]. 数学年刊A辑(中文版), 1986(04): 445–449.
[3] 黄宣国. 复射影空间的常数量曲率复超曲面[J]. 数学年刊A辑(中文版), 1984(06): 739–745.
[4] 徐茂, 宋卫东. 拟常全纯截面曲率空间中的全实极小子流形[J]. 吉林大学学报(理学版), 2011, 49(02): 169–172.
[5] 尹松庭, 宋卫东. 复射影空间中拟全实极小子流形[J]. 吉林大学学报(理学版), 2011, 49(01): 56–60.
[6] 黄宣国. 微分几何十六讲[M]. 上海: 复旦大学出版社有限公司, 2017.
[7] Itoh T., Ogiue K.. Isotropic immersions and Veronese manifolds[J]. Transactions of the American Mathematical Society, 1975, 209: 109–117.
[8] 纪永强. 子流形几何[M]. 北京: 科学出版社, 2004.