1965年Zadeh [1]首次提出模糊集定义后, 模糊微分方程[2, 3]得到广泛研究和应用. 近年来, 分数阶模糊微分方程[4, 5]由于其在模拟现实问题方面的优势而备受关注. 分数阶模糊微分方程具有分数阶导数的非局部性和记忆性的优点, 能更精确地描述系统的特性, 同时体现动态系统中的不确定性和模糊性, 描述问题更加贴切. 基于整数阶模糊导数定义[6, 7], 分数阶模糊导数陆续被提出并且被加以应用, 如Caputo型Hukuhara模糊分数阶导数[8]、Caputo型广义Hukuhara模糊分数阶导数[9]、Caputo型强广义Hukuhara模糊分数阶导数[10]等等. 然而, 值得注意的是在使用上述导数时存在一些局限: (1)模糊数之间的Hukuhara差和广义Hukuhara差并不总是存在, 这导致以上所提的导数并不总是存在; (2)解的支撑集必须满足单调递增; (3)建模中非自然行为的出现, 即以下四组方程的解不同:
其中, $ D^{\nu} $代表上述Caputo型分数阶导数之一. 为弥补这些局限性, Mazandarani等[11]在2018年首次提出粒度差的概念. 两个模糊数之间粒度差总是存在保证粒度导数的存在性. 通过使用粒度差, 解支撑集的单调性不再是必须条件, 也有效避免了建模中非自然行为的出现.
由于系统零件老化、信号传输延迟、化学反应缓慢等等因素, 时滞自然地出现在实际情况中. 用于描述未知变量的导数依赖于过去时刻函数值的微分方程被称作时滞微分方程, 时滞微分方程的使用范围非常广泛, 主要包括控制系统、种群模型、生态学以及其他多个科学和工程领域. Wang[12]等人通过Banach不动点原理证明了一类分数阶模糊时滞微分方程初值问题解的存在唯一性和Ulam-Hyers稳定性; Yan[13]等人通过逐次逼近法结合Gronwall不等式研究了一类Caputo分数阶模糊时滞微分系统解的存在唯一性和有限时间稳定性.
但到目前为止, 对分数阶模糊时滞微分方程周期边值问题的研究还很少, 本文在粒度可微性下考虑以下一类带有周期边值条件的分数阶模糊时滞微分方程, 主要研究其解的存在唯一性和Ulam-Hyers稳定性,
其中, $ {}^{gr}D_{a^+}^{\nu}(\nu\in(\frac{1}{2}, 1)) $代表$ \nu $阶粒度Caputo分数阶导数. $ f:[0, T]\times {\mathbb{E}}\rightarrow {\mathbb{E}} $和$ \varphi:[-\ell, 0]\rightarrow {\mathbb{E}} $是连续模糊函数, $ 0<\ell<T $是时滞, $ u(0)=\lambda u(T) $($ \lambda\in {\mathbb{R}} $)是周期边值条件.
$ \forall r\in(0, 1] $, 称$ [u]^r= \{t\in {\mathbb{R}} |u(t)\geqslant r \} := [{\underline{u}}^r, {\overline{u}}^r] $是模糊集$ u $的$ r- $水平截集, $ [u]^r $的直径记为$ d([u]^r)={\overline{u}}^r-{\underline{u}}^r $.
若模糊集$ u $满足以下四条:
(ⅰ) $ u $是正规的, 即$ \exists t_0\in {\mathbb{R}} $使得$ u(t_0)=1 $;
(ⅱ) $ u $是模糊凸的, 即$ \forall x, y\in {\mathbb{R}}, 0\leqslant \lambda\leqslant 1 $有$ u(\lambda x+(1-\lambda)y)\geqslant \min\left\lbrace u(x), u(y)\right\rbrace $;
(ⅲ) $ u $是上半连续的;
(ⅳ) $ [u]^0 $是紧的.
则称$ u $是一个模糊数, 全体一维模糊数的集合记作$ {\mathbb{E}} $.
定义2.1 [11]设$ u:[a, b]\in {\mathbb{R}} \rightarrow [0, 1] $. “$ gr $”代表粒度信息, $ r\in[0, 1] $是隶属度, $ \lambda_u $是相对距离测度变量, 记$ u $的水平隶属度函数为
为了方便起见, 将$ u^{gr}(r, \lambda_u) $简记为$ \mathcal{H}(u) $. 设$ u, v\in {\mathbb{E}} $, 则$ u, v $之间的距离为
其中$ D_{gr} $表示粒度距离, 粒度度量空间$ ( {\mathbb{E}}, D_{gr}) $具有完备性.
注1 $ u $的$ r- $水平截集可由下式计算得到:
定义2.2 [15]设$ u, v\in {\mathbb{E}} $, 水平隶属度函数分别为$ \mathcal{H}(u), \mathcal{H}(v) $. 基本的运算法则如下:
(ⅰ) $ \mathcal{H}(u+v)=\mathcal{H}(u)+\mathcal{H}(v) $;
(ⅱ) $ \mathcal{H}(u-_{gr}v)=\mathcal{H}(u)-\mathcal{H}(v) $;
(ⅲ) $ \mathcal{H}(u\times_{gr}v)=\mathcal{H}(u)\times\mathcal{H}(v) $;
(ⅳ) $ \mathcal{H}(u\div_{gr}v)=\mathcal{H}(u)\div\mathcal{H}(v) $, $ \mathcal{H}(v)\ne0 $.
注2 $ \forall u, v\in {\mathbb{E}}, c\in {\mathbb{R}} $, 有$ (ⅰ)\mathcal{H}(u+v)=\mathcal{H}(u)+\mathcal{H}(v), (ⅱ)\mathcal{H}(cu)=c\mathcal{H}(u) $, 故$ \mathcal{H} $是线性映射.
引理2.3 [16]设$ u, v, e\in {\mathbb{E}} $, 则以下等式成立:
(ⅰ) $ D_{gr}(u+z, v+z)=D_{gr}(u, v); $
(ⅱ) $ D_{gr}(u-_{gr}v, \hat{0})=D_{gr}(u, v); $
(ⅲ) $ D_{gr}(\eta u, \eta v)=\left| \eta \right| D_{gr}(u, v), \eta\in {\mathbb{R}}. $
引理2.4 [16]设$ u_i, v_i\in {\mathbb{E}}, i=1, 2, \cdots, p $, 有以下不等式成立:
其中, $ \oplus $代表模糊意义下的和运算符号.
定义2.5 [16]设$ f:[a, b]\subseteq\mathbb{R} \rightarrow \mathbb{E} $是一个模糊值函数, $ f(t) $的水平隶属度函数为$ \mathcal{H}(f(t))=f(t;\mathcal{H}(u)) $.
如果存在$ \frac{d^{gr}f(q_0)}{dq}\in {\mathbb{E}} $使得极限$ \frac{d^{gr}f(q_0)}{dq}=\underset{\Delta q\rightarrow 0}{\lim}\frac{f(q_0+\Delta q)-_{gr}f(q_0)}{\Delta q} $. 当$ \Delta q\rightarrow 0 $时成立, 则称模糊值函数$ f $在$ q_0\in(a, b) $处是粒度可导的. 记$ f^{\prime}_{gr}(q_0)=\frac{d^{gr}f(q_0)}{dq} $是$ f $在$ q_0 $处的粒度导数. 如果导数$ f^{\prime}_{gr}(q_0) $对所有的$ q_0\in(a, b) $都存在, 那么称$ f $在区间$ (a, b) $上是粒度可导的. 记区间$ (a, b) $上所有连续且粒度可导的模糊值函数$ f $的集合为$ {\mathbb{C}}([a, b], {\mathbb{E}}) $, 定义度量$ \mathcal{M} $为
度量空间$ ( {\mathbb{C}}([a, b], {\mathbb{E}}), \mathcal{M}) $是完备的.
定义2.6 [17]设$ f\in {\mathbb{C}}([a, b], {\mathbb{E}}) $. $ f $的$ \nu $阶$ (\nu\in(0, 1)) $粒度模糊分数阶积分定义为
其中, $ \Gamma(\cdot) $代表Gamma函数.
定义2.7 [17]设$ f\in {\mathbb{C}}([a, b], {\mathbb{E}}) $. $ f $的$ \nu $阶$ (\nu\in(0, 1)) $粒度Caputo分数阶导数定义为
注3 令$ D_{a^+}^{\nu} $表示经典意义下的分数阶Caputo导数. $ ^{gr}D_{a^+}^{\nu}f(t) $的水平隶属度函数如下表示:
命题2.8 [18]设$ \nu\in(0, 1) $, $ ^{gr}I^{\nu}_{a^+} $, $ ^{gr}D^{\nu}_{a^+} $都是经典意义下的运算符号, 有下式成立:
引理2.9 [14]设$ f, g $粒度可积, $ \alpha, \beta \in {\mathbb{R}} $, 那么下述结论成立.
(ⅰ) $ D_{gr}(f, g) $是可积的;
(ⅱ) $ D_{gr}( \oint_a^b f(t)dt, \oint_a^b g(t)dt)\leqslant \int_{a}^{b}D_{gr}(f(t), g(t))dt $.
本节考虑一类带有周期边值条件的Caputo分数阶模糊时滞微分方程(1.1), 主要证明解的存在唯一性和Ulam-Hyers稳定性.
命题3.1 设$ u(t)\in {\mathbb{C}}([-\ell, T], {\mathbb{E}}) $, $ f:[0, T]\times {\mathbb{E}}\rightarrow {\mathbb{E}} $是连续函数, 那么$ u(t) $是系统(1.1)的解当且仅当$ u(t) $满足以下等式:
其中
证 当$ t\in[0, T] $时, 由注3, 有$ \mathcal{H}(\text{ }^{gr}D_{a^+}^{\nu}u(t))=\mathcal{H}(f(t, u(t-\ell))) \Rightarrow D_{a^+}^{\nu}\mathcal{H}(u(t))=f(t, \mathcal{H}(u(t-\ell))) $, 接着在等式两边同时作$ \nu $阶$ (\nu\in(\frac{1}{2}, 1)) $的积分, 有
由命题2.8有
由公式(2.3)可得
另外, 由于满足周期边值条件$ u(0)=\lambda u(T) $, $ \lambda\in {\mathbb{R}} $, 方程(3.3)必须满足
由方程(3.4)解得
将方程(3.5)带入方程(3.3)中, 有
定义函数$ H(t, s) $为
当$ t\in[-\ell, 0] $时, 显然有$ u(t)=\varphi(t) $. 因此, $ u(t) $满足等式(3.1). 证毕.
注4 当$ s $递增时, $ (T-s)^{\nu-1} $和$ (t-s)^{\nu-1} $都递增, 因为$ t-s\leqslant T-s $, 所以$ (T-s)^{\nu-1}\leqslant (t-s)^{\nu-1} $, 故有
通过计算, 可得
本文假设对$ \forall u, v\in {\mathbb{E}}, t\in[-\ell, T] $, $ f:[0, T]\times {\mathbb{E}}\rightarrow {\mathbb{E}} $, 下列条件成立:
$ (H_1) $ $ f $是指数有界函数, 即存在正数$ M $和$ b $使得
$ (H_2) $模糊值函数$ f $关于第二个变量满足Lipschitz条件, 即$ \exists L>0 $, 使得
定义3.2 假设条件$ (H_1), (H_2) $成立, 且满足$ \frac{T^{2\nu} L^2 }{[\Gamma(\nu)(1-\lambda)]^2 (2\nu-1)} \leqslant 1 $, 则周期边值问题(1.1)存在唯一解.
证 由命题3.1可知, 只需要考虑积分问题(3.1), 定义算子$ {\mathcal{A}}: {\mathbb{E}}\rightarrow {\mathbb{E}} $, 具体如下
设$ \mathbb{F}([-\ell, T], {\mathbb{E}}) $是所有$ u\in {\mathbb{C}}([-\ell, T], {\mathbb{E}}) $使得在$ [-\ell, T] $上$ u(t)=\varphi(t) $, 在$ [0, T] $上存在$ \rho>0 $使得$ \underset{t\in[0, T]}{\sup}D^2_{gr}(u(t), \hat{0})<\rho e^{at} $的集合.
分为以下两个步骤完成该定理的证明.
步骤1. 算子$ {\mathcal{A}} $映射到自身. 设$ u\in {\mathbb{F}}([-\ell, T], {\mathbb{E}}) $, 对任意的$ t\in[0, T] $, 通过引理2.9中的条件(ⅱ)结合H$ \ddot{\mathrm{o}} $lder不等式有
通过引理2.4以及条件$ (H_1), (H_2) $有
又由于$ u\in {\mathbb{F}}([-\ell, T], {\mathbb{E}}) $, 有$ D^2_{gr}(u(t), \hat{0})\leqslant \rho e^{at} $, 所以有
在不等式两边同时除以$ e^{at} $并且取上确界, 有
因此, 可知$ {\mathcal{A}} u\in {\mathbb{F}}([-\ell, T], {\mathbb{E}}) $.
步骤2. $ {\mathcal{A}} $是一个压缩算子. 设$ u, v\in {\mathbb{C}}([-\ell, T], {\mathbb{E}}), t\in[0, T] $, 有以下估计
所以有
所以, $ {\mathcal{A}} $是压缩算子.
综合以上步骤, 由Banach压缩映像原理可知周期边值问题(1.1)存在唯一的不动点.
设$ \varepsilon>0, u\in {\mathbb{C}}([-\ell, T], {\mathbb{E}}) $, 假设
定义3.3 [19]如果存在实数$ \delta>0 $, 使得每一个满足(3.9)式的$ u $, 都存在一个$ v\in {\mathbb{C}}([-\ell, T], {\mathbb{E}}) $满足
则称周期边值问题(1.1)的解是Ulam-Hyers稳定的.
注5 如果$ u\in {\mathbb{C}}([-\ell, T], {\mathbb{E}}) $, 则存在$ g\in {\mathbb{C}}([-\ell, T], {\mathbb{E}}) $使得
(1) $ D^2_{gr}( \int_0^T g(s)ds, \hat{0})\leqslant\varepsilon $,
(2) $ u(t)= \oint_0^T H(t, s)f(s, u(s-\ell))ds + \oint_0^T H(t, s)g(s) ds $.
定理3.4 假设条件$ (H_2) $成立, 则周期边值问题(1.1)的解是Ulam-Hyers稳定的.
证 设$ u, v\in {\mathbb{C}}([-\ell, T], {\mathbb{E}}) $, 由方程(1.1)和注5中的式(2)有以下推断:
由Gronwall不等式[20]有
其中$ \delta=\frac{2 T^{2\nu}}{[\Gamma(\nu)(1-\lambda)]^2 (2\nu-1)} \exp \left( \frac{2L^2 T^{2\nu}}{[\Gamma(\nu)(1-\lambda)]^2 (2\nu-1)}\right) $, 即有
故根据定义3.3, 周期边值问题(1.1)的解是Ulam-Hyers稳定的.
本文在粒度可微意义下, 研究了一类带有周期边值条件的分数阶模糊时滞微分方程. 利用Banach压缩映像原理证明了周期边值问题(1.1)解的存在唯一性, 结合Gronwall不等式证明了问题(1.1)的解是Ulam-Hyers稳定的. 本文所用的方法基于粒度Caputo分数阶导数, 是对Caputo分数阶广义Hukuhara可微意义下证明方法的推广. 在后续的研究中, 可以考虑其他类型的周期边值问题和分数阶模糊微分系统解的相关性质.