数学杂志  2025, Vol. 45 Issue (4): 365-376   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
杨欢
吴浩
丁瑞迪
张龙
一类具有性别结构的淋病SIRS传染病模型研究
杨欢, 吴浩, 丁瑞迪, 张龙    
新疆大学数学与系统科学学院, 新疆 乌鲁木齐 830046
摘要:本文研究了一类具有性别结构的淋病SIRS传染病模型稳定性的相关问题, 考虑了同性与异性的性行为对淋病传播动力学的影响. 首先证明了模型解的非负和有界性. 其次, 通过下一代矩阵的方法计算出基本再生数$ \mathcal{R}_{0} $. 此外, 基于基本再生数并利用比较原理和持久性相关理论证明了当$ \mathcal{R}_{0}<1 $时, 无病平衡点的全局渐近稳定性; 当$ \mathcal{R}_{0}>1 $时, 模型一致持续且存在正平衡点. 进一步, 当淋病具有永久免疫力时, 通过构造Lyapunov函数的方法证明了地方病平衡点的全局渐近稳定性. 最后利用数值模拟演示了理论结果的有效性, 研究表明有效控制男性患者人数将在很大程度上减少淋病在人口中的总体流行.
关键词淋病    基本再生数    性别结构    全局渐近稳定    一致持续    
STUDY ON A GONORRHEA TRANSMISSION SIRS MODEL WITH SEXED-STRUCTURE
YANG Huan, WU Hao, DING Rui-di, ZHANG Long    
School of Mathematics and Systems Science, Xinjiang University, Urumqi 830017, China
Abstract: In this paper, a gonorrhea transmission SIRS model with sexual structure is proposed to characterize the effects of homeosexual and heterosexual behaviour on the transmission dynamics of disease. First, the nonnegativity and boundedness of the solutions for the model are proved. Second, the basic reproduction number $ \mathcal{R}_{0} $ is computed by the next-generation matrix method. Furthermore, based on the basic reproduction number, and using the comparison principle and persistence related theory, it is proved that the disease-free equilibrium is globally asymptotically stable when $ \mathcal{R}_{0}<1 $; and that the model is uniformly persistent and has at least one positive equilibrium when $ \mathcal{R}_{0}>1 $. In addition, the global asymptotic stability of the endemic equilibrium is obtained by constructing the Lyapunov function when gonorrhea is permanently immune. Finally, the validity of the theoretical results is demonstrated by numerical simulations, It is shown that effective control of the male patient population would substantially reduce the overall prevalence of gonorrhea in the general population.
Keywords: gonorrhea     basic regeneration number     sexual structure     global stability     uniform persistence    
1 引言

淋病是全球流行率排名第二的性传播疾病(STD), 是由淋病奈瑟菌感染引起的以泌尿生殖系统, 肛门直肠, 咽部等器官为主要攻击对象, 急慢性化脓性感染为主要特征的性传播疾病[1]. 感染者通常表现为尿痛, 脓性分泌物, 睾丸肿胀, 阴道分泌物增多, 阴道出血, 腹痛或骨盆疼痛等[2]. 据世界卫生组织(WHO) 估计, 全球每年大约有8200万例淋病病例[3], 2015年至2020年, 男性淋病感染率上升了27.9$ \% $, 而同期女性淋病感染率下降了4.1$ \% $ [4]. 同性恋, 双性恋的男性增多是淋病感染率上升的主要原因[5].

近年来, 许多学者已经通过构造数学模型来研究淋病的传播规律并且取得了一些重要成果[6]-[8]. Lajmanovich和Yorke[9]首次建立了一类淋病的传播模型, 根据淋病的传播程度不同将人群分为$ \; {n}\; $组并研究其动力学行为. Hethcote和Yorke[10]研究了如下一类具有性别结构的淋病SIS传染病模型:

$ \begin{equation} \left\{\begin{aligned} \dot{S}_{f}&=-(\lambda_{12}/r) S_{f}I_{m} +I_{f}/d_{f}, \\ \dot{I}_{f}&=(\lambda_{12}/r) S_{f}I_{m} +I_{f}/d_{f}, \\ \dot{S}_{m}&=-(\lambda_{21}/r) S_{m}I_{f} +I_{m}/d_{m}, \\ \dot{I}_{m}&=(\lambda_{21}/r) S_{m}I_{f} +I_{m}/d_{m}, \end{aligned}\right. \end{equation} $ (1.1)

其中$ S_{f}(t), \; S_{m}(t), \; I_{f}(t), \; I_{m}(t) $ 分别表示$ t $时刻女性易感者, 男性易感者, 女性感染者, 男性感染者的数量, $ \lambda_{12}, \; \lambda_{21} $表示女性感染率与男性感染率, $ d $表示平均感染期. 他们计算了基本再生数$ \mathcal{R}_{0} $, 分析了模型的稳定性并讨论地方病平衡点随参数值变化而改变.

此后, Castillo-Chaves等人[11]-[13]对性病模型做了大量工作, 从不同角度研究了性别交叉传播对疾病传播的影响. Bonyah[14]等人将性活跃人群分为酗酒者和非酗酒者建立了如下一类酒精与淋病交叉传播模型:

$ \begin{equation} \left\{\begin{aligned} \dot{S}_{p}&=(1-a) \Lambda+(1-b) \nu R+\delta S_{d}-\eta \lambda S_{p}-(\mu+\theta) S_{p}, \\ \dot{I}_{p}&=\eta \lambda S_{p}+\tau I_{d}-\left(\mu+\phi+\gamma+\sigma_{1}\right) I_{p}, \\ \dot{S}_{d}&=a \Lambda+b v R+\theta S_{p}-\lambda S_{d}-(\delta+\mu) S_{d} , \\ \dot{I}_{d}&=\lambda S_{d}+\phi I_{p}-\left(\mu+\tau+\gamma+\sigma_{2}\right) I_{d}, \\ \dot{R}&=\sigma_{1} I_{p}+\sigma_{2} I_{d}-(1-b) \nu R-b v R-\mu R, \end{aligned}\right. \end{equation} $ (1.2)

其中$ {S_{p}(t)}, \; {S_{d}(t)} $, $ I_{p}(t), \; I_{d}(t) $, $ R(t) $分别表示$ t $时刻非酗酒易感者, 酗酒易感者, 非酗酒感染者, 酗酒感染者, 康复者的数量. 他们研究了时间依赖性控制的酒精中毒对淋病传播动力学的影响, 证明了当$ \mathcal{R}_{0}<1 $, 无病平衡点的局部及全局渐近稳定, 使用Pontryagin最大值原理, 将时间依赖性控制纳入系统, 讨论了控制酒精消耗和淋病动态的最优控制.

Benjamin[15]等人建立了一类高活跃男性同性(MSM) 之间的淋病传播SIS/SAS模型, 研究了安全行为对淋病流行动力学的影响, 建立了无病平衡点和地方病平衡点的全局稳定性阈值条件. 该模型所代表的人群仅是有效传播的高风险个体, 忽略了男性女性之间的流行病学差异. Asamoah和Sun[16]等人针对异性接触传播提出了具有Caputo分数阶导数的淋病模型, 并研究了分数阶模型的稳定性和敏感性分析. 2024年, Terefe等人[17]提出并分析了淋病作为一种抗生素耐药性疾病在疫苗接种不完善的人群中传播动力学的确定性数学模型. 该模型考虑已接种疫苗和配备自我保护干预措施以减少抗生素耐药情况, 并提出了能够在相对较短的时间内控制疾病最优干预策略. 这些工作从不同方面向我们展示了交叉性别传播对传染病的分布和动力学起着重要影响, 本文在交叉性别传播模型的基础上加入男性与男性之间的传播方式, 以更好刻画淋病通过男女之间和男男之间的性传播动力学.

本文组织如下: 在第二节中, 我们建立并介绍了模型. 第三节中, 证明了模型解的非负性和有界性, 得到模型的平衡点以及基本再生数. 第四节中, 对模型的无病平衡点$ {E}_{0} $和地方病平衡点$ E^{*} $的动力学以及疾病的一致持久性进行分析. 第五节中, 通过数值模拟演示了理论成果的有效性. 最后一节中, 总结本文所得结论.

2 模型的建立与介绍

为了准确分析淋病的传播过程, 我们将人口按照性别进行分组, 考虑同性传播和异性传播. 在同性传播中, 由于女性之间传播淋病的概率相对男性较低, 因此在本文中只讨论男性之间传播. 综上考虑提出一类具有性别结构的淋病SIRS传染病模型, 如下:

$ \begin{equation} \left\{\begin{aligned} \dot{S}_{m}&=\Lambda_m-(\beta_{1}I_{f}+\beta_{2}I_{m})S_{m}-\mu_{m} S_{m}+\gamma_{m} R_{m}, \\ \dot{I}_{m}&=(\beta_{1}I_{f}+\beta_{2}I_{m})S_{m}-(\kappa_{m}+\mu_{m})I_{m}, \\ \dot{R}_{m}&=\kappa_{m}I_{m}-(\gamma_{m}+\mu_{m})R_{m}, \\ \dot{S}_{f}&=\Lambda_f-\beta_{3}I_{m}S_{f}-\mu_{f} S_{f}+\gamma_{f} R_{f}, \\ \dot{I}_{f}&=\beta_{3}I_{m}S_{f}-(\kappa_{f}+\mu_{f})I_{f}, \\ \dot{R}_{f}&=\kappa_{f}I_{f}-(\gamma_{f}+\mu_{f})R_{f}. \end{aligned}\right. \end{equation} $ (2.1)

初始条件为:

$ \begin{eqnarray} S_{m}(0)\geq0, I_{m}(0)\geq0, R_{m}(0)\geq0, S_{f}(0)\geq0, I_{f}(0)\geq0, R_{f}(0)\geq0, \end{eqnarray} $ (2.2)

其中, $ S_{m}, \; I_{m}, \; R_{m}, \; S_{f}, \; I_{f}, \; R_{f} $分别表示男性易感者, 男性感染者, 男性康复者, 女性易感者, 女性感染者, 女性康复者的数量. 基于淋病性传播方式为男女相互传播或者男性之间传播. $ \Lambda_{m}, \; \Lambda_{f} $分别表示男性招募率和女性招募率, $ \mu_{m} $, $ \mu_{f} $分别表示男性和女性的死亡率; $ \beta_{1}, \; \beta_{2}, \; \beta_{3} $分别表示患病女性和易感男性的有效接触率, 患病男性和易感男性的有效接触率以及患病男性和易感女性的有效接触率; $ \kappa_{m}, \; \kappa_{f} $分别表示男性感染者和女性感染者的康复率; $ \gamma_{m}, \; \gamma_{f} $分别表示男性康复者和女性康复者免疫丧失率.

3 模型的基本性质及基本再生数

定理3.1  模型$ (2.1) $在初始条件$ (2.2) $下的解$ (S_{m}, I_{m}, R_{m}, S_{f}, I_{f}, R_{f}) $$ [0, \infty) $上是非负且最终有界.

  由常微分方程解的存在唯一性定理[18]知, 模型$ (2.1) $$ (2.2) $下的解$ (S_{m}, I_{m}, R_{m}, $ $ S_{f}, I_{f}, R_{f}) $$ [0, T) $上存在唯一, 其中$ T\leq \infty $为饱和解的最大存在范围.

首先证明解的非负性, 只需证明模型$ (2.1) $对满足任意正初始值$ (2.2) $的解$ (S_{m}, I_{m}, R_{m}, $ $ S_{f}, I_{f}, R_{f}) $也为正. 定义

$ m(t)=\min{\{S_{m}(t), I_{m}(t), R_{m}(t), S_{f}(t), I_{f}(t), R_{f}(t)\}}, $
$ m(0)=\min{\{S_{m}(0), I_{m}(0), R_{m}(0), S_{f}(0), I_{f}(0), R_{f}(0)\}}. $

下证存在$ t^{*}>0 $, 使$ m(t^{*})=0 $并且对任意$ t\in [0, t^{*}) $$ m(t)>0 $成立, 所以要讨论下面六种情况:

$ (i) m(t^{*})=S_{m}(t^{*}); (ii) m(t^{*})=I_{m}(t^{*}); (iii) m(t^{*})=R_{m}(t^{*}); $
$ (iv) m(t^{*})=S_{f}(t^{*}); (v) m(t^{*})=I_{f}(t^{*}); (vi) m(t^{*})=R_{f}(t^{*}). $

首先证明情况$ (i) $, 如果在$ t^{*}=t_{1} $时刻, $ m(t_{1})=S_{m}(t_1) $, 此时$ \dot{S_{m}}(t)|_{t=t_{1}}\leq0 $. 由模型$ (2.1) $的第一个方程可得$ \dot{S_{m}}|_{t=t_{1}}=\Lambda_m+\gamma_{m} R_{m}>0 $矛盾, 因此$ S_{m}(t)>0 $, 对所有$ t_{1}\in[0, T) $成立. 同理可证情况$ (iv) $, 则有$ S_{f}(t) $恒正对所有$ t\in[0, T) $成立.

证明情况$ (ii) $, 如果在$ t^{*}=t_{2} $时刻, $ m(t_{2})=I_{m}(t_2) $, 由模型$ (2.1) $的第二个方程可得:

$ \begin{eqnarray*} \dot{I_{m}}\geq-(\kappa_m+\mu_m)I_m(t), \end{eqnarray*} $

因此有

$ \begin{eqnarray*} 0=I_m(t_2)\geq I_m(0)e^{-\int_{0}^{t_2}(\kappa_m+\mu_m)\, dt} > 0 \end{eqnarray*} $

矛盾. 因此$ I_{m}(t)>0 $, 对所有$ t_{2}\in[0, T) $成立. 同理可证情况$ (v) $, 则有$ I_{f}(t) $恒正对所有$ t\in[0, T) $成立.

证明情况$ (iii) $, 如果在$ t^{*}=t_{3} $时刻, $ m(t_{3})=R_{m}(t_3) $, 由模型$ (2.1) $的第三个方程可得:

$ \begin{eqnarray*} \dot{R_{m}}(t)\geq(\gamma_{m}+\mu_{m})R_{m}, \end{eqnarray*} $

因此有

$ \begin{eqnarray*} 0=R_m(t_3)\geq R_m(0)e^{-\int_{0}^{t_3}(\kappa_m+\mu_m)\, dt} > 0 \end{eqnarray*} $

矛盾. 因此$ R_{m}(t)>0 $, 对所有$ t_{3}\in[0, T) $成立. 同理可证情况$ (vi) $, 则有$ R_{f}(t) $恒正对所有$ t\in[0, T) $成立.

下证解的最终有界性.

$ \dot{N}=\dot{N_{m}}+\dot{N_{f}}=\dot{S_{m}}+\dot{I_{m}}+\dot{R_{m}}+\dot{S_{f}}+\dot{I_{f}}+\dot{R_{f}} $, 则

$ \dot{N}=\Lambda_{m}-\mu_{m}N_{m}+\Lambda_{f}-\mu_{f}N_{f}\leq\Lambda-\mu N, $

这里$ \Lambda=\Lambda_{m}+\Lambda_{f}, \mu=\min\{\mu_{m}, \mu_{f}\} $. 由比较原理[19]$ \limsup\limits_{t\rightarrow \infty}N\leq\frac{\Lambda}{\mu} $. 因此存在$ T > 0 $, 当$ t > T $时有$ N\leq\frac{\Lambda}{\mu}. $因此模型($ 2.1 $) 的解$ (S_{m}, I_{m}, R_{m}, S_{f}, I_{f}, R_{f}) $最终有界, 由常微分方程解的延拓定理[20]$ T = \infty $, 定理得证.

进一步得到模型$ (2.1) $的正不变集$ \Gamma $, 其中

$ \begin{eqnarray} \Gamma=\{(S_{m}, I_{m}, R_{m}, S_{f}, I_{f}, R_{f})|\, S_{m}, I_{m}, R_{m}, S_{f}, I_{f}, R_{f}\geq0, \, N\leq\frac{\Lambda}{\mu}\}. \end{eqnarray} $ (3.1)

模型($ 2.1 $) 存在无病平衡点$ E_{0}=(S_{m0}, 0, 0, S_{f0} , 0, 0) $, $ S_{m0}=\frac{\Lambda_{m}}{\mu_{m}}, S_{f0}=\frac{\Lambda_{f}}{\mu_{f}} $. 接下来利用下一代矩阵方法[21]计算模型$ (2.1) $的基本再生数, 模型$ (2.1) $的感染仓室为: $ I_{m}, I_{f}. $将这些仓室改写为: $ \mathcal{M}=\mathcal{F} -\mathcal{V} $, 其中

$ \begin{eqnarray} \mathcal{F}=\left(\begin{array}{l} (\beta_{1}I_{f}+\beta_{2}I_{m})S_{m}\\ \quad\quad\quad0 \end{array}\right), \mathcal{V}=\left(\begin{array}{l} \quad\quad(\kappa_{m}+\mu_{m})I_{m} \\ -\beta_{3}I_{m}S_{f}+(\kappa_{f}+\mu_{f})I_{f} \end{array}\right), \end{eqnarray} $ (3.2)

$ E_{0} $处的Jacobi矩阵为:

$ \begin{eqnarray} M=F-V=\left[\begin{array}{cccccc} \beta_{2}S_{m0} & \beta_{1}S_{m0} \\ 0 & 0 \end{array}\right] -\left[\begin{array}{cccccc} (\kappa_{m}+\mu_{m})& 0 \\ -\beta_{3}S_{f0} & (\kappa_{f}+\mu_{f}) \end{array}\right], \end{eqnarray} $ (3.3)

运用下一代矩阵方法得到:

$ \mathcal{R}_{0}=\rho(FV^{-1})=\frac{\beta_{2}\Lambda_{m}}{(\kappa_{m}+\mu_{m})\mu_{m}}+\frac{\beta_{1}\beta_{3}\Lambda_{m}\Lambda_{f}}{(\kappa_{m}+\mu_{m})(\kappa_{f}+\mu_{f})\mu_{m}\mu_{f}}. $
4 模型动力学分析

定理4.1  当$ \mathcal{R}_{0}<1 $时, 模型$ (2.1) $的无病平衡点$ E_{0} $局部渐近稳定.

  模型$ (2.1) $$ E_{0} $处的Jacobi矩阵为:

$ \begin{eqnarray*} \mathcal{J}(E_{0})= \begin{bmatrix} -\mu_{m} & -\beta_{2}S_{m0} & \gamma_{m} & 0 & -\beta_{1}S_{m0} &0 \\ 0& \beta_{2}S_{m0}-a_{1} & 0 & 0 & \beta_{1}S_{m0} & 0 \\ 0& \kappa_{m} & -b_{1} & 0 & 0 & 0 \\ 0 & -\beta_{3}S_{f0} & 0& -\mu_{f} & 0 &\gamma_{f} \\ 0& \beta_{3}S_{f0}& 0 & 0 & -a_{2} & 0 \\ 0& 0 & 0 & 0 & \kappa_{f} & -b_{2} \end{bmatrix}, \end{eqnarray*} $

其中

$ \begin{eqnarray} a_{1}=\kappa_{m}+\mu_{m}, \; a_{2}=\kappa_{f}+\mu_{f}, \; b_{1}=\gamma_{m}+\mu_{m}, \; b_{2}=\gamma _{f}+\mu_{f} \end{eqnarray} $ (4.1)

容易看出, $ \mathcal{J}(E_{0}) $有四个负的特征值$ \lambda_{1}=-\mu_{m}, \; \lambda_{2}=-b_{1}=-(\mu_{m}+\gamma _{m}), \; \lambda_{3}=-\mu_{f}, \, \lambda_{4}=-b_{2}=-(\mu_{f}+\gamma _{f}) $, 而其他特征根满足方程:

$ \begin{eqnarray} \lambda^{2}+D_{1}\lambda+D_{2}=0, \end{eqnarray} $ (4.2)

其中, $ D_{1}=a_{1}+a_{2}-\beta_{2}S_{m0}=1-\frac{\beta_{2}S_{m0}}{a_{1}}+a_{2} $, $ D_{2}=a_{1}a_{2}-a_{2}\beta_{2}S_{m0}-\beta_{1}\beta_{3}S_{m0}S_{f0}=1-\mathcal{R}_{0}.\, $$ \mathcal{R}_{0}<1 $时, 可得$ D_{1}>0, $$ \, D_{1}D_{2}>0.\, $根据Routh-Hurwitz准则, 特征方程的所有特征值都有负实部, 模型$ (2.1) $的无病平衡点$ E_{0} $局部渐近稳定. 证毕.

定理4.2  当$ \mathcal{R}_{0}<1 $时, 模型$ (2.1) $的无病平衡点$ E_{0} $全局渐近稳定.

  本文采用文献[22]中的方法研究了模型$ (2.1) $的无病平衡点的全局渐近稳定性. 将模型$ (2.1) $写成如下形式:

$ \begin{eqnarray} \left\{ {\begin{array}{*{20}{l}} \frac{dQ}{dt}&=&F(Q, Z), \\ \frac{dZ}{dt}&=&G(Q, Z), \, G(Q, 0)=0, \end{array}} \right. \end{eqnarray} $ (4.3)

其中$ Q=(S_{m}(t), R_{m}(t), S_{f}(t), R_{f}(t))^{T} $表示未感染的仓室, $ Z=(I_{m}(t), I_{f}(t))^{T} $表示已经感染的仓室. 由文献[22]可知, 保证全局渐近稳定性必须满足两个条件:

$ H_{1}: \frac{dQ}{dt}=F(Q_{0}, 0), $其中$ \; Q_{0} $是全局渐近稳定的.

$ H_{2}: G(Q, Z)=AZ-\hat{G}(Q, Z). $对于任意的$ (Q, Z)\in{\varGamma} $都有$ \hat{G}(Q, Z)\geq0 $, 并且这里$ A=D_{z}G(Q_{0}, 0) $是一个Metzler矩阵.

不妨令$ Q_{0}=(S_{m0}, 0, S_{f0}, 0 )=(\frac{\Lambda_{m}}{\mu_{m}}, 0, \frac{\Lambda_{f}}{\mu_{f}}, 0) $. 显然

$ \begin{eqnarray*} \frac{dQ}{dt}=F(Q, 0)=\left(\begin{array}{l} \Lambda_{m}-\mu_{m}S_{m}\\ \quad\quad0 \\ \Lambda_{f}-\mu_{f}S_{f}\\ \quad\quad0 \end{array}\right), \end{eqnarray*} $

$ Q_{0} $是全局渐近稳定的. 对于$ H_{2}: G(Q, Z)=AZ-\hat{G}(Q, Z) $

$ \begin{eqnarray} A=&D_{z}G(Q_{0}, 0)=\begin{bmatrix} \beta_{2}S_{m0}-a_{1} & \beta_{1}S_{m0} \\ \beta_{3}S_{f0} & -a_{2} \end{bmatrix}, \end{eqnarray} $ (4.4)

是一个非对角元素非负的Metzler矩阵, 对于任意的$ (Q, Z)\in{\varGamma} $都有

$ \begin{eqnarray*} \hat{G}(Q, Z)&=&AZ-G(Q, Z)\\ &=&\left(\begin{array}{l} (\beta_{1}I_{f}+\beta_{2}I_{m})S_{m0}-a_{1}I_{m}\\ \quad\quad\beta_{3}I_{m}S_{f0}-a_{2}I_{f} \end{array}\right)- \left(\begin{array}{l} (\beta_{1}I_{f}+\beta_{2}I_{m})S_{m}-a_{1}I_{m}\\ \quad\quad\beta_{3}I_{m}S_{f}-a_{2}I_{f} \end{array}\right)\\ &=&\left(\begin{array}{l} (\beta_{1}I_{f}+\beta_{2}I_{m})(S_{m0}-S_{m})\\ \quad\quad\beta_{3}I_{m}(S_{f0}-S_{f}) \end{array}\right), \\ \end{eqnarray*} $

因此$ \hat{G}(Q, Z)\geq0 $, 当$ \mathcal{R}_{0}<1 $时, 无病平衡点$ E_{0} $全局渐近稳定. 证毕.

定理4.3  当$ \mathcal{R}_{0}>1 $时, 存在一个正常数$ k $, 模型$ (2.1) $满足初始条件:

$ \begin{eqnarray*} x_{0}=\{(S_{m}(0), I_{m}(0), R_{m}(0), S_{f}(0), I_{f}(0), R_{f}(0))\in\, X|\, I_{m}(0)>0, \, I_{f}(0)>0\}, \end{eqnarray*} $

的任意解$ \varphi_{t}(x_{0})=(S_{m}(t), I_{m}(t), R_{m}(t), S_{f}(t), I_{f}(t), R_{f}(t)) $满足$ \min\{\liminf\limits_{t\rightarrow \infty}I_{m}(t), \liminf\limits_{t\rightarrow \infty}I_{f}(t)\}>k, $即模型$ (2.1) $是一致持续的.

  当$ \mathcal{R}_{0}>1 $时, 定义$ X=\{(S_{m}, I_{m}, R_{m}, S_{f}, I_{f}, R_{f})\in \Gamma|\, I_{m}>0, \, I_{f}>0\}. $ $ X $的边界为

$ \partial X=\{(S_{m}, I_{m}, R_{m}, S_{f}, I_{f}, R_{f})\in \Gamma|\, I_{m}=0\, \text{或者}\, I_{f}=0\}. $

接下来证明$ \partial X $一致排斥$ X $中模型$ (2.1) $的解. 显然$ X $$ \Gamma $都是正不变集, 且$ \partial X $$ \Gamma $中相对封闭, 此外, 由定理3.1知模型$ (2.1) $是点耗散的. 由$ (3.3) $得到

$ \begin{eqnarray} M=F-V=\left[\begin{array}{cccccc} \beta_{2}S_{m0}-a_{1} & \beta_{1}S_{m0} \\ \beta_{3}S_{f0} & -a_{2} \end{array}\right], \end{eqnarray} $ (4.5)

定义$ s(M)=\max\{Re\lambda:\, \lambda \, \text{是} \, M \, \text{的特征值}\}, $以下结论成立[21]:

$ \mathcal{R}_{0}>1\Longleftrightarrow s(M)>0, \, \mathcal{R}_{0}<1\Longleftrightarrow s(M)<0. $

定义

$ M_{\partial}=\{x_{0}|\, \varphi(x_{0})\, \in\, \partial X, \, \forall t\geq0\}, \, D=\{x_{0}\, \in\, \Gamma|\, I_{m}=I_{f}=0.\}. $

下面证明$ D=M_{\partial}, $即在$ M_{\partial} $只有唯一点$ E_{0} $. 显然$ D\subseteq M_{\partial} $成立, 下面只需要证明$ M_{\partial}\subseteq D $. 若有$ (S_{m}(0), I_{m}(0), R_{m}(0), S_{f}(0), I_{f}(0), R_{f}(0))\in M_{\partial} $则有$ I_{m}=I_{f}=0, \, \forall\, t>0 $$ D=M_{\partial} $成立. 如若不然, 假设存在$ t_{0}>0 $, 不失一般性设$ I_{m}(t_{0})=0, I_{f}(t_0)>0 $. 由模型$ (2.1) $的第二个方程得到:

$ \begin{eqnarray*} \dot{I_{m}}(t_0)=(\beta_{1}I_{f}(t_0)+\beta_{2}I_{m}(t_0))S_{m}-(\kappa_{m}+\mu_{m})I_{m}(t_0)=\beta_{1}I_{f}(t_0)S_{m}, \end{eqnarray*} $

可得, 存在正常数$ \eta $$ t_{0} < t < t_{0} + \eta $上, 使得$ I_{m}(t_{0})> 0 $, 故当在$ t_{0} < t < t_{0} + \eta $时, 有

$ (S_{m}, I_{m}, R_{m}, S_{f}, I_{f}, R_{f})\notin \partial X. $

这与$ x_{0}\in M_{\partial} $矛盾, 于是得到$ M_{\partial}\subseteq D $, 则$ D=M_{\partial} $.

$ W^{S}(E_{0}) $$ E_{0} $的稳定流形, 下证: 当$ \mathcal{R}_{0}>1 $时有$ W^{S}(E_{0})\cap X=\varnothing. $

$ \begin{eqnarray} M_{\varepsilon}=F-V-\left[\begin{array}{cccccc} \beta_{2}\varepsilon & \beta_{1} \varepsilon\\ \beta_{3}\varepsilon & 0 \end{array}\right]. \end{eqnarray} $ (4.6)

因为$ \mathcal{R}_{0}>1\Longleftrightarrow s(M)>0, $则存在一个$ \varepsilon_{1}>0 $, 当$ \varepsilon\in[0, \varepsilon_{1}] $时, 有$ s(M_{\varepsilon})>0 $, 选择足够小的$ \epsilon $使得

$ S_{m}(0)> 1- \varepsilon_{1}, \, S_{f}(0)> 1- \varepsilon_{1} , \, I_{f}\leq \varepsilon_{1}, \, I_{m}\leq \varepsilon_{1}. $

$ ||x_{0}-E_{0}||<\epsilon $时, 有$ \limsup\limits_{t\rightarrow \infty}||\varphi_{t}(x_{0})-E_{0}||>\epsilon $, $ \forall x_{0}\in X $. 利用反证法, 假设不然, 则存在$ x_{0}\in X $使得对任意$ t\geq0 $, 有$ ||x_{0}-E_{0}||\leq\epsilon $, 因此

$ \dot{I_{m}}(t)\geq(\beta_{1}I_{f}(t)+\beta_{2}I_{m}(t))(1- \varepsilon_{1})-(\kappa_{m}+\mu_{m})I_{m}(t), $
$ \dot{I_{f}}(t)\geq\beta_{3}I_{m}(t)(1- \varepsilon_{1})-(\kappa_{f}+\mu_{f})I_{f}(t). $

即对整个模型有

$ \begin{eqnarray*} \dot{I}(t)\geq M_{\varepsilon 1}\, \left(\begin{array}{l} I_{m}(t)\\ I_{f}(t) \end{array}\right). \end{eqnarray*} $

由于$ M_{\varepsilon 1} $有一个正特征向量相关的正特征值$ s(M_{\varepsilon 1}) $, 根据比较原理$ (I_{m}(t), I_{f}(t))\rightarrow \infty, \, t\rightarrow \infty $矛盾. 因为$ E_0 $$ M_{\partial} $中是全局渐近稳定的, 则$ E_{0} $$ M_{\partial} $上是孤立不变的且是无环的. 根据文献 [23]得, 当$ \mathcal{R}_{0}>1 $时, 模型$ (2.1) $是一致持续的. 证毕.

根据Zhao[24]中的定理2.4可知模型$ (2.1) $至少存在一个地方病平衡点$ E^{*}=(S_{m}^{*}, I_{m}^{*}, R_{m}^{*}, $ $ S_{f}^{*}, I_{f}^{*}, R_{f}^{*}) $, 满足以下方程组:

$ \begin{equation} \left\{ {\begin{array}{*{20}{l}} \Lambda_m-(\beta_{1}I_{f}^{*}+\beta_{2}I_{m}^{*})S_{m}^{*}-\mu_{m} S_{m}^{*}+\gamma_{m} R_{m}^{*}=0, \\ (\beta_{1}I_{f}^{*}+\beta_{2}I_{m}^{*})S_{m}^{*}-(\kappa_{m}+\mu_{m})I_{m}^{*}=0, \\ \kappa_{m}I_{m}^{*}-(\gamma_{m}+\mu_{m})R_{m}^{*}=0, \\ \Lambda_f-\beta_{3}I_{m}^{*}S_{f}^{*}-\mu_{f} S_{f}^{*}+\gamma_{f} R_{f}^{*}=0, \\ \beta_{3}I_{m}^{*}S_{f}^{*}-(\kappa_{f}+\mu_{f})I_{f}^{*}=0, \\ \kappa_{f}I_{f}^{*}-(\gamma_{f}+\mu_{f})R_{f}^{*}=0. \end{array}} \right. \end{equation} $ (4.7)

得到:

$ S_{m}^{*}=\frac{(\kappa_{m}+\mu_{m})I_{m}^{*}}{\beta_{1}I_{f}^{*}+\beta_{2}I_{m}^{*}}, \, R_{m}^{*}=\frac{\kappa_{m}I_{m}^{*}}{(\mu_{m}+\gamma_{m})}, \, S_{f}^{*}=\frac{(\kappa_{f}+\mu_{f})I_{f}^{*}}{\beta_{3}I_{m}^{*}}, $
$ I_{f}^{*}=\frac{\Lambda_{f}(\gamma_{f}+\mu_{f})\beta_{3}I_{m}^{*}}{(\kappa_{f}+\mu_{f}+\gamma_{f})\mu_{f}\beta_{3}I_{m}^{*}+\mu_{f}(\mu_{f}+\gamma_{f})(\kappa_{f}+\mu_{f})}, \, R_{f}^{*}=\frac{\kappa_{f}I_{f}^{*}}{(\mu_{f}+\gamma_{f})}, $

$ S_{m}^{*}, R_{m}^{*}, S_{f}^{*}, I_{f}^{*} $以及式$ (4.1) $代入模型$ (2.1) $的第一个方程, 可得

$ E(I_{m}^{*})^{2}+FI_{m}^{*}+G=0, $

其中

$ \begin{equation*} \begin{aligned} E&=(\gamma_{m}\kappa_{m}-a_{1}b_{1})(a_{2}b_{2}-\gamma_{f}\kappa_{f})\beta_{2}\beta_{3}<0, \\ F&=(a_{2}b_{2}-\gamma_{f}\kappa_{f})\beta_{3}b_{1}(\Lambda_{m}\beta_{2}-\mu_{m}a_1)+(\kappa_{m}\gamma_{m}-a_{1}b_{1})b_{2}(\Lambda_{f}\beta_{1}\beta_{3}+\beta_{2}\mu_{f}a_{2}), \\ G&={ \Lambda_{m}\Lambda_{f}\beta_{1}\beta_{3}b_{1}b_{2}+(\Lambda_{m}\beta_{2}-\mu_{m}a_{1})\mu_{f}a_{2}b_{1}b_{2}=(\mathcal{R}_{0}-1)\mu_{m}\mu_{f}a_{1}a_{2}b_{1}b_{2}.} \end{aligned} \end{equation*} $

根据笛卡尔符号准则, 当$ R_0>1 $时, 有$ E<0, G>0 $则模型$ (2.1) $有唯一的正根, 因此模型$ (2.1) $存在唯一的地方病平衡点.

接下来, 当模型$ (2.1) $$ \gamma_{m}=\gamma_{f}=0 $时, 我们重点讨论SIR模型地方病平衡点的全局渐近稳定性, 即假设模型$ (2.1) $具有永久免疫力. 证毕.

定理4.4  假设$ \gamma_{m}=\gamma_{f}=0 $, 当$ \mathcal{R}_{0}>1 $时, 模型$ (2.1) $的唯一地方病平衡点$ E^{*} $全局渐近稳定.

  假设$ \gamma_{m}=\gamma_{f}=0 $时, 模型$ (2.1) $简化为

$ \begin{equation} \left\{\begin{aligned} \dot{S}_{m}&=\Lambda_m-(\beta_{1}I_{f}+\beta_{2}I_{m})S_{m}-\mu_{m} S_{m}, \\ \dot{I}_{m}&=(\beta_{1}I_{f}+\beta_{2}I_{m})S_{m}-(\kappa_{m}+\mu_{m})I_{m}, \\ \dot{R}_{m}&=\kappa_{m}I_{m}-\mu_{m}R_{m}, \\ \dot{S}_{f}&=\Lambda_f-\beta_{3}I_{m}S_{f}-\mu_{f} S_{f}, \\ \dot{I}_{f}&=\beta_{3}I_{m}S_{f}-(\kappa_{f}+\mu_{f})I_{f}, \\ \dot{R}_{f}&=\kappa_{f}I_{f}-\mu_{f}R_{f}. \end{aligned}\right. \end{equation} $ (4.8)

构造如下Lyapunov函数来证明地方病平衡点$ E^{*} $的全局渐近稳定性, $ V=V_1+k V_2, $其中

$ \begin{equation} \left\{\begin{aligned} v_{1}&=(S_{m}-S_{m}^{*}-S_{m}^{*}\ln\frac{S_{m}}{S_{m}^{*}})+(I_{m}-I_{m}^{*}-I_{m}^{*}\ln\frac{I_{m}}{I_{m}^{*}}), \\ v_{2}&=k \left((S_{f}-S_{f}^{*}-S_{f}^{*}\ln\frac{S_{f}}{S_{f}^{*}})+(I_{f}-I_{f}^{*}-I_{f}^{*}\ln\frac{I_{f}}{I_{f}^{*}})\right). \end{aligned}\right. \end{equation} $ (4.9)

显然$ V $是定正的且具有无穷大性质.接下来证明$ \dot{V} $是定负的.

$ \begin{equation} \begin{aligned} \dot{V}&=(1-\frac{S_{m}^{*}}{S_{m}})\left(\Lambda_m-(\beta_{1}I_{f}+\beta_{2}I_{m})S_{m}-\mu_{m} S_{m}\right)-(1-\frac{I_{m}^{*}}{I_{m}})(\kappa_{m}+\mu_{m})I_{m}\\ &\; \; \; +(1-\frac{I_{m}^{*}}{I_{m}})(\beta_{1}I_{f}+\beta_{2}I_{m})S_{m}+k \left((1-\frac{S_{f}^{*}}{S_{f}})(\Lambda_f-\beta_{3}I_{m}S_{f}-\mu_{f} S_{f})\right)\\ &\; \; \; +k\left((1-\frac{I_{f}^{*}}{I_{f}})(\beta_{3}I_{m}S_{f}-(\kappa_{f}+\mu_{f})I_{f})\right), \\ \end{aligned} \end{equation} $ (4.10)

$ k=\frac{\beta_{1}S_{m}^{*}I_{f}^{*}}{\beta_{3}S_{f}^{*}I_{m}^{*}} $, 则有

$ \begin{eqnarray} \begin{aligned} \dot{V}&=\left(\mu_{m}S_{m}^{*}+\beta_{2}S_{m}^{*}I_{m}^{*}\right)\left(2-\frac{S_{m}}{S_{m}^{*}}-\frac{S_{m}^{*}}{S_{m}}\right)+\mu_{f}S_{f}^{*}\left(2-\frac{S_{f}}{S_{f}^{*}}-\frac{S_{f}^{*}}{S_{f}}\right)\\ &\; \; \; +\beta_{1}S_{m}^{*}I_{f}^{*}\left(4-\frac{S_{m}}{S_{m}^{*}}-\frac{S_{f}}{S_{f}^{*}}-\frac{I_{m}S_{f}I_{f}^{*}}{I_{m}^{*}S_{f}^{*}I_{f}}-\frac{I_{f}S_{m}I_{m}^{*}}{I_{f}^{*}S_{m}^{*}I_{m}}\right), \end{aligned} \end{eqnarray} $ (4.11)

利用广义的均值不等式有

$ \begin{equation*} \begin{aligned} &2-\frac{S_{m}}{S_{m}^{*}}-\frac{S_{m}^{*}}{S_{m}}<0, \; \; \; 2-\frac{S_{f}}{S_{f}^{*}}-\frac{S_{f}^{*}}{S_{f}}<0, \\ &4-\frac{S_{m}}{S_{m}^{*}}-\frac{S_{f}}{S_{f}^{*}}-\frac{I_{m}S_{f}I_{f}^{*}}{I_{m}^{*}S_{f}^{*}I_{f}}-\frac{I_{f}S_{m}I_{m}^{*}}{I_{f}^{*}S_{m}^{*}I_{m}}<0, \end{aligned} \end{equation*} $

综上$ \dot{V} $是定负的. $ \dot{V}=0 $当且仅当$ S_{m}=S_{m}^{*}, \, I_{m}=I_{m}^{*}, \, R_{m}=R_{m}^{*}, \, S_{f}=S_{f}^{*}, \, I_{f}=I_{f}^{*}, \, R_{f}=R_{f}^{*}. $因此, 在$ \{(S_{m}, I_{m}, R_{m}, S_{f}, I_{f}, R_{f})\in \Gamma:\, \dot{V}=0 \} $中的最大不变集是单点集$ \{E^{*}\} $. 根据Lasalle不变原理[25]以及Teng和Zhang[26]中的定理8.5可得模型$ (4.8) $地方病平衡点$ E^{*} $全局渐近稳定. 证毕.

5 数值模拟

本节主要对模型$ (2.1) $的两类平衡点进行数值模拟, 并运用PRCC进行敏感性分析.

5.1 平衡点稳定性

图 1中取初值如下$ (S_{m}, I_{m}, R_{m}, S_{f}, I_{f}, R_{f})=(17+10*(-1)^k*\sin(k), 12+5*(-1)^k*\sin(k), 10+7*(-1)^k*\sin(k), 20+4*(-1)^k*\sin(k), 10+5*(-1)^k*\sin(k), 9+4*(-1)^k*\sin(k)) $, 其中$ k=50 $. 图 1中的参数取值如下$ \Lambda_{m}=7, \, \Lambda_{f}=8, \, \gamma_{m}=0.3, \, \gamma_{f}=0.3, \, \mu_{m}=0.4, \, \mu_{f}=0.39, \, \beta_1=0.0025, \, \beta_2=0.0020, \, \beta_3=0.0049, \, \kappa_{m}=0.03, \, \kappa_{f}=0.03. $此时基本再生数$ \mathcal{R}_{0}=0.1057 $, 模型$ (2.1) $的无病平衡点$ E_{0}=(17, 0, 0, 20 , 0, 0) $全局渐近稳定, 定理4.2成立.

图 1 无病平衡点的时间序列图及三维相图.

图 2中取初值如下$ (S_{m}, I_{m}, R_{m}, S_{f}, I_{f}, R_{f})=(54+10*(-1)^k*\sin(k), 22+11*(-1)^k*\sin(k), 50+10*(-1)^k*\sin(k), 57+24*(-1)^k*\sin(k), 15+7*(-1)^k*\sin(k), 52+26*(-1)^k*\sin(k)) $, 其中$ k=50 $. 图 2中的参数取值如下$ \Lambda_{m}=5, \, \Lambda_{f}=5, \, \gamma_{m}=0.15, \, \gamma_{f}=0.1, \, \mu_{m}=0.036, \, \mu_{f}=0.04, \, \beta_1=0.0065, \, \beta_2=0.0055, \, \beta_3=0.006, \, \kappa_{m}=0.5, \, \kappa_{f}=0.48. $此时基本再生数$ \mathcal{R}_{0}=3.8544 $, 模型$ (2.1) $的地方病平衡点$ E^{*}=(54.5624, 22.8643, 61.4618, 57.6481 , 15.2084, $ $ 52.1429) $全局渐近稳定, 模型$ (2.1) $疾病一致持续, 定理4.3和定理4.4成立.

图 2 地方病平衡点的时间序列图及三维相图.

图 3 (a)中的参数取值如下$ \Lambda_{m}=5, \, \Lambda_{f}=5, \, \gamma_{m}=0.15, \, \gamma_{f}=0.1, \, \mu_{m}=0.036, \, \mu_{f}=0.04, \, \beta_1=0.0065, \, \beta_2=0.0055, \, \beta_3=0.006, \, \kappa_{m}=0.5, \, \kappa_{f}=0.48. $此时基本再生数$ \mathcal{R}_{0}=3.8544 $, 模型$ (2.1) $的地方病平衡点$ E^{*} $存在并且唯一.

图 3 (a) 地方病平衡点唯一; (b) $ \mathcal{R}_{0} $与参数的关系.
5.2 敏感性分析

基本再生数$ \mathcal{R}_{0} $作为淋病传播的阈值起着重要作用. 模型参数的不确定性和敏感性会影响$ \mathcal{R}_{0} $. 因此, 我们采用拉丁超立方抽样方法和偏秩相关系数(PRCC) 方法分析了各参数与基本再现数的相关性[27], 各参数取值范围如表 1所示.

表 1 参数的基线值和范围.

图 3 (b)可以看出, $ \mu_{m}, \mu_{f}, \kappa_{m}, \kappa_{f} $与基本再生数$ \mathcal{R}_{0} $呈负相关. $ \Lambda_{m}, \Lambda_{f}, \beta_{1}, \beta_{2}, \beta_{3} $与基本再生数$ \mathcal{R}_{0} $呈正相关. 这些结果表明, 降低性传播率是降低基本再生数的有效措施.

6 结论

本文考虑了一类具有性别结构的淋病SIRS传染病模型, 计算了模型的基本再生数$ \mathcal{R}_{0} $. 当$ \mathcal{R}_{0}<1 $时, 证明了无病平衡点的局部和全局渐近稳定性. 当$ \mathcal{R}_{0}>1 $, 模型一致持续且讨论了地方病平衡点个数. 当$ \gamma_{m}=\gamma_{f}=0 $时, 证明了地方病平衡点$ E^{*} $的全局渐近稳定性. 最后进行数值模拟, 发现同性恋男性对疾病传播动力学的影响不可忽视, 并且性传播率会加剧疾病的传播, 增强大众安全意识和安全套使用是减少感染人数的有效的措施. 社会应向更多的人普及淋病相关知识, 避免不安全的性行为, 从而减少感染人数.

参考文献
[1] Bishi M A, Kaur P, Vyas M, et al. Ameliorating gonorrhea: recent therapeutic adaptations and scope to improve its prevailing condition[J]. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders), 2024, 24(5): 6–20.
[2] Unemo M, Seifert H S, Hook III E W, et al. Gonorrhoea[J]. Nature Reviews Disease Primers, 2019, 5(1): 79.
[3] Rowley J, Vander H S, Korenromp E, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016[J]. Bulletin of the World Health Organization, 2019, 97(8): 548.
[4] Pai N P, Dillon J A R. A lateral flow assay for neisseria gonorrhoeae: a step forward for an inexpensive biomarker-based diagnosis of N gonorrhoeae at the point of care[J]. The Lancet, 2024, 403(10427): 594–595.
[5] Carne C A, Johnson A M, Pearce F, et al. Prevalence of antibodies to human immunodeficiency virus, gonorrhoea rates, and changed sexual behaviour in homosexual men in London[J]. The Lancet, 1987, 329(8534): 656–658.
[6] Garnett G P, Mertz K J, Finelli L, et al. The transmission dynamics of gonorrhoea: modelling the reported behaviour of infected patients from Newark, New Jersey[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1999, 354(1384): 787–797.
[7] Kretzschmar M, van Duynhoven Y T H P, Severijnen A J. Modeling prevention strategies for gonorrhea and chlamydia using stochastic network simulations[J]. American Journal of Epidemiology, 1996, 144(3): 306–317.
[8] Adamu I I, Usman S. Mathematical model for the dynamics of neisseria gonorrhea disease with natural immunity and treatment effects[J]. Journal of Mathematics Research, 2018, 10(2): 2018.
[9] Lajmanovich A, Yorke J A. A deterministic model for gonorrhea in a nonhomogeneous population[J]. Mathematical Biosciences, 1976, 28(3-4): 221–236.
[10] Hethcote H W, Yorke J A. Gonorrhea transmission dynamics and control[M]. Springer, 1984.
[11] Castillo-Chavez C, Huang W, Li J. Competitive exclusion in gonorrhea models and other sexually transmitted diseases[J]. SIAM Journal on Applied Mathematics, 1996, 56(2): 494–508.
[12] Castillo-Chavez C, Huang W, Li J. The effects of females' susceptibility on the coexistence of multiple pathogen strains of sexually transmitted diseases[J]. Journal of Mathematical Biology, 1997, 35: 503–522.
[13] Castillo-Chavez C, Huang W, Li J. Competitive exclusion and coexistence of multiple strains in an SIS STD model[J]. SIAM Journal on Applied Mathematics, 1999, 59(5): 1790–1811.
[14] Bonyah E, Khan M A, Okosun K O, et al. Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea with optimal control[J]. Mathematical Biosciences, 2019, 309: 1–11.
[15] Morin B R, Medina-Rios L, Camacho E T, et al. Static behavioral effects on gonorrhea transmission dynamics in a MSM population[J]. Journal of Theoretical Biology, 2010, 267(1): 35–40.
[16] Asamoah J K K, Sun G Q. Fractional Caputo and sensitivity heat map for a gonorrhea transmission model in a sex structured population[J]. Chaos, Solitons Fractals, 2023, 175: 114026.
[17] Terefe Y A, Kassa S M, Asfaw M D, et al. The use of an imperfect vaccination and awareness campaign in the control of antibiotic resistant gonorrhoea infection: A mathematical modelling perspective[J]. Applied Mathematical Modelling, 2024, 135: 149–172.
[18] Hale J K, Verduyn Lunel S M. Introduction to functional differential equations[M]. New York: Springer, 1993.
[19] Lakshmikantham V, Leela S, Martynyuk A A. Stability analysis of nonlinear systems[M]. New York: M. Dekker, 1989.
[20] Hsieh P F, Sibuya Y. Basic theory of ordinary differential equations[M]. Springer Science Business Media, 2012.
[21] Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1): 29–48.
[22] Castillo-Chavez C, Blower S, van den Driessche P, et al. Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory[M]. Springer Science & Business Media, 2002.
[23] Butler G, Freedman H I, Waltman P. Uniformly persistent systems[J]. Proceedings of the American Mathematical Society, 1986: 425–430.
[24] Zhao X Q. Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications[J]. Canadian Applied Mathematics Quarterly, 1995, 3(4): 473–495.
[25] Lasalle J P. The stability of dynamical systems, in : regional conference series in applied math ematics[M]. SIAM Philadelphia, 1976.
[26] 滕志东, 张龙. 常微分方程稳定性基本理论及应用[M]. 科学出版社, 2022.
[27] Marino S, Hogue I B, Ray C J, et al. A methodology for performing global uncertainty and sensitivity analysis in systems biology[J]. Journal of Theoretical Biology, 2008, 254(1): 178–196.