近年来,无界分块算子矩阵引发了众多学者的浓厚兴趣与深入探讨[1-3], 文献[4]研究了无界算子矩阵的可分解性问题. 文献[5]深入探讨了当次对角元素受限时,2×2无界算子矩阵的谱. 文献[6]聚焦力学领域, 具体讨论了其中一类特殊的4×4无界Hamilton算子矩阵, 揭示了其在力学应用中的独特作用.
拟谱凭借其稳定性特质, 已然成为学者们讨论的热点课题, 尤其在分块算子矩阵拟谱的研究方面, 取得了较好的结果[8, 9]. 文献[10]深入剖析了2×2分块算子矩阵的本质拟谱.文献[13]得到了分块算子矩阵的各类本质拟谱与其内部元的关系. 文献[11-12]从扰动理论的独特视角出发, 提出了拟点谱、拟剩余谱和拟连续谱的概念, 并对拟点谱和拟连续谱进行了细致分类. 文献[14]深入探讨了在上三角扰动情形下, 对角分块算子矩阵的精细拟谱和固有拟谱.
近年来,学者们在谱理论的研究上已取得了显著进展, 然而, 对于四类拟点谱与两类拟剩余谱的研究甚少. 众所周知,拟点谱与拟剩余谱的细分研究在拟谱理论中占据重要的地位, 而拟谱是谱的拓展, 那么2×2分块对角无界算子矩阵点谱与剩余谱的精细刻画, 是否可以平行地推广到拟谱情形? 这是值得思考的问题. 文中, 通过具体的实例验证, 答案是否定的. 进一步, 在点谱与剩余谱描绘方法的启迪之下, 本文巧妙利用内部元的深刻信息, 对2×2无界算子矩阵在主对角扰动情形下的四类拟点谱与两类拟剩余谱的分布范围进行了详尽剖析, 并得到了精细的拟谱等式.
在本文的论述中,用$ \ X $来表示Hilbert空间. $ \ T^{\ast } $、$ \ \mathcal{D} \left ( T \right ) $、$ \ \mathcal{R} \left ( T \right ) $和$ \ \mathcal{N} \left ( T \right ) $分别表示$ \ X $中稠定线性算子$ \ T $的共轭算子、定义域、值域和零空间. $ \ \mathcal{B} \left ( X \right ) $表示$ \ X $上所有有界线性算子全体构成的集合, $ \ \mathcal{C} \left ( X \right ) $表示$ \ X $中所有稠定闭线性算子的集合. 尤为特别的是, 当$ \ T $为有界线性算子时, 总假设$ \ \mathcal{D} \left ( T\right )=X $.
定义2.1[11] 设$ \ T\in \mathcal{C} \left ( X\right ) $.对于任意的$ \ \varepsilon > 0 $, 算子$ \ T $的拟谱$ \ \mathcal{\sigma _{\varepsilon } } \left ( T\right ) $和拟预解集$ \ \mathcal{\rho _{\varepsilon } } \left ( T\right ) $定义如下:
$ \mathcal{\sigma _{\varepsilon } } \left ( T\right )=\bigcup_{\underset{\parallel E\parallel< \varepsilon }{}}^{}\sigma \left (T+E \right )=\left \{ \lambda \in C: \text{存在} E\in \mathcal{B} \left ( X \right ), \parallel E\parallel <\varepsilon, \text{使得}\lambda \in \sigma \left (T+E \right ) \right \}, $
$ \mathcal{\rho _{\varepsilon } } \left ( T\right )=\bigcap _{\underset{\parallel E\parallel< \varepsilon }{}}^{}\rho\left (T+E \right )=\left \{ \lambda \in C: \text{对于任意的} E\in \mathcal{B} \left ( X \right ), \parallel E\parallel < \varepsilon, \text{都有}\lambda \in \rho \left (T+E \right ) \right \}. $
不难发现,有如下等式成立
定义2.2[12] 记闭线性算子$ \ T $的拟点谱、拟剩余谱和拟连续谱为$ \mathcal{\sigma} _{\mathcal{\varepsilon}, p} \left ( T\right ) , \ \mathcal{\sigma} _{\mathcal{\varepsilon}, r} \left ( T\right ) $和$ \mathcal{\sigma} _{\mathcal{\varepsilon}, c} \left ( T\right ) $.
令$ \ T\in \mathcal{C} \left ( X\right ), E\in \mathcal{B}\left ( X\right ) $.对于任意的$ \ \varepsilon > 0 $, 定义
$ \mathcal{\sigma} _{\mathcal{\varepsilon}, p} \left ( T\right )=\bigcup_{\underset{\parallel E\parallel< \varepsilon }{}}^{}\sigma_{p } \left (T+E \right )=\left \{ \lambda \in C: \text{存在} E\in \mathcal{B} \left ( X \right ), \parallel E\parallel < \varepsilon, \text{使得}\lambda \in \sigma_{p} \left (T+E \right ) \right \}; $
$ \mathcal{\sigma} _{\mathcal{\varepsilon}, r} \left ( T\right )=\bigcup_{\underset{\parallel E\parallel<\varepsilon }{}}^{}\sigma_{r } \left (T+E \right )=\left \{ \lambda \in C: \text{存在} E\in \mathcal{B} \left ( X \right ), \parallel E\parallel <\varepsilon, \text{使得}\lambda \in \sigma_{r} \left (T+E \right ) \right \}; $
$ \mathcal{\sigma} _{\mathcal{\varepsilon}, c} \left ( T\right )=\bigcup_{\underset{\parallel E\parallel< \varepsilon }{}}^{}\sigma_{c } \left (T+E \right )=\left \{ \lambda \in C: \text{存在} E\in \mathcal{B} \left ( X \right ), \parallel E\parallel <\varepsilon, \text{使得}\lambda \in \sigma_{c} \left (T+E \right ) \right \}. $
显而易见,以下等式是成立的
在深入探讨值域的稠定性与闭性之后, 可以对$ \ X $中稠定闭线性算子$ \ T $的拟点谱与拟剩余谱进行更为精细的划分.
定义2.3[13] 闭线性算子$ \ T $的拟点谱细分为四类, 分别用$ \ \mathcal{\sigma} _{\varepsilon, p, {1}} \left ( T\right ), \mathcal{\sigma} _{\varepsilon, p, {2}} \left ( T\right ), \mathcal{\sigma} _{\varepsilon, p, {3}} \left ( T\right ) $和$ \ \mathcal{\sigma} _{\varepsilon, p, {4}} \left ( T\right ) $来表示1-拟点谱、2-拟点谱、3-拟点谱和4-拟点谱. 拟剩余谱细分为两类, 分别用$ \ \mathcal{\sigma} _{\varepsilon, r, {1}} \left ( T\right ) $和$ \ \mathcal{\sigma} _{\varepsilon, r, {2}} \left ( T\right ) $来表示1-拟剩余谱和2-拟剩余谱. 假设$ \ T\in \mathcal{C} \left ( X\right ) $, $ \ \varepsilon > 0 $, 它们分别定义为
定义2.4[13] 记闭线性算子$ \ T $的拟近似点谱和拟压缩谱为$ \mathcal{\sigma} _{\varepsilon, ap} \left ( T\right ) $和$ \ \mathcal{\sigma} _{\varepsilon, com} \left ( T\right ) $, 具体为$ \sigma_{\varepsilon, ap}(T)=\{\lambda\in\mathbb{C}:\text {存在}E\in\mathcal{B}(X), \|E\|<\varepsilon, T + E-\lambda I\ \text{不是单射或} \ R(T + E-\lambda I) \text{不闭} \}; $ $ \sigma_{\varepsilon, com}(T)=\{\lambda\in\mathbb{C}:\text {存在}E\in\mathcal{B}(X), \|E\|<\varepsilon, \overline{R(T + E-\lambda I) }\ne X\}. $
定理3.1 令$ \ M=\begin{bmatrix} A &0 \\ 0&B\end{bmatrix} $: $ \mathcal{D} (A)\times \mathcal{D} (B)\to X\times X $是$ 2\times2 $分块对角算子矩阵, 则
$ \left (i\right )\; \; \sigma_{\varepsilon, p, 1}(M)\cap \left ( \rho _{\varepsilon } \left ( A \right )\cup \rho _{\varepsilon } \left (B \right ) \right )=\left ( \sigma _{\varepsilon, p, 1 } \left ( A \right )\cap \rho _{\varepsilon } \left (B \right ) \right ) \cup\left ( \rho _{\varepsilon } \left ( A \right )\cap \sigma _{\varepsilon , p, 1 } \left (B \right ) \right ); $
$ \left (ii\right )\; \; \sigma_{\varepsilon, p, 2}(M)\cap \left ( \rho _{\varepsilon } \left ( A \right )\cup \rho _{\varepsilon } \left (B \right ) \right )=\left ( \sigma _{\varepsilon, p, 2 } \left ( A \right )\cap \rho _{\varepsilon } \left (B \right ) \right ) \cup\left ( \rho _{\varepsilon } \left ( A \right )\cap \sigma _{\varepsilon , p, 2 } \left (B \right ) \right ); $
$ \left (iii\right )\; \; \sigma_{\varepsilon, p, 3}(M)\cap \left ( \rho _{\varepsilon } \left ( A \right )\cup \rho _{\varepsilon } \left (B \right ) \right )=\left (\sigma _{\varepsilon, p, 3 } \left ( A \right )\cap \rho _{\varepsilon } \left (B \right ) \right ) \cup\left ( \rho _{\varepsilon } \left ( A \right )\cap \sigma _{\varepsilon , p, 3 } \left (B \right ) \right ). $
证 (ⅰ) 首先证明必要性,假设$ \lambda \in \sigma_{\varepsilon, p, 1}(M)\cap \left ( \rho _{\varepsilon } \left ( A \right )\cup \rho _{\varepsilon } \left (B \right ) \right ) $, 分两种情形讨论.
情形1:当$ \lambda \in \sigma_{\varepsilon, p, 1}(T)\cap \rho _{\varepsilon } \left ( A \right ) $时,由$ \lambda \in \sigma_{\varepsilon, p, 1}(T) $可知,存在扰动算子
根据$ \mathcal{N} \left ( M+E-\lambda I \right )\ne \left \{ 0 \right \} $, 可以得到
又由$ \mathcal{R}(M+E-\lambda I)=\left\{\left(A+E_{1}-\lambda I\right) x \mid x \in \mathcal{D}(A)\right\} \times\left\{\left(B+E_{2}-\lambda I\right) y \mid y \in \mathcal{D}(B)\right\} $知
根据$ \lambda \in \rho_{\varepsilon }(A) $可知, 对任意的$ \ E_{1} \in \mathcal{B}\left ( X \right ) $, $ \parallel E_{1} \parallel < \varepsilon $都有
那么
于是存在算子$ \ E_{2} \in \mathcal{B} \left ( X \right ) $, $ \parallel E_{2}\parallel < \varepsilon $, 使得$ \lambda \in \sigma _{p, 1} \left ( B+E_{2} \right ) $,即$ \lambda \in \sigma _{\varepsilon , p, 1} \left ( B \right ) $. 由$ \lambda \in \rho_{\varepsilon }(A) $,得到$ \lambda \in \rho _{\varepsilon } \left ( A \right )\cap\sigma_{\varepsilon, p, 1}(B) $.
情形2:当$ \lambda \in \sigma_{\varepsilon, p, 1}(T)\cap \rho _{\varepsilon } \left ( B\right ) $时,同理可证$ \lambda \in \rho _{\varepsilon } \left ( B \right )\cap\sigma_{\varepsilon, p, 1}(A) $.
因此
下面证明充分性: 假设$ \lambda \in \left ( \sigma _{\varepsilon, p, 1 } \left ( A \right )\cap \rho _{\varepsilon } \left (B \right ) \right ) \cup\left ( \rho _{\varepsilon } \left ( A \right )\cap \sigma _{\varepsilon , p, 1 } \left (B \right ) \right ) $,
当$ \lambda \in \left ( \sigma _{\varepsilon, p, 1 } \left ( A \right )\cap \rho _{\varepsilon } \left (B \right ) \right ) $时, 由$ \lambda \in \sigma _{\varepsilon, p, 1 } \left ( A \right ) $知, 存在$ \ E_{3} \in\mathcal{B}(X), \|E_{3} \|<\varepsilon $, 使得$ \lambda \in \sigma _{P, 1} \left ( A+E_{3} \right ) $即
由$ \lambda \in \rho _{\varepsilon } \left ( B\right ) $可知,对任意的算子$ \ E_{4} \in\mathcal{B}(X), \|E_{4} \|<\varepsilon $, 有
令$ \ E=\begin{bmatrix}E_{3} & 0\\ 0 &E_{4} \end{bmatrix}\in \mathcal{B} \left ( X \times X \right ), \parallel E\parallel=\max\{{\parallel E_{3}\parallel, \parallel E_{4}\parallel}\}<\varepsilon, $有
可得$ \ \lambda\in\sigma_{p, 1} \left ( M+E \right ), $根据定义4可得$ \ \lambda\in\mathcal{\sigma} _{\varepsilon, p, {1}} \left ( M \right ). $又由$ \ \lambda\in\mathcal{\rho _{\varepsilon } } \left ( B\right ), $故
当$ \ \lambda\in\mathcal{\rho _{\varepsilon } } \left ( A\right )\cap \sigma_{\varepsilon, p, 1}(B) $时, 同理可得$ \ \lambda\in\sigma_{\varepsilon, p, 1}(T)\cap \left ( \rho _{\varepsilon } \left ( A \right )\cup \rho _{\varepsilon } \left (B \right ) \right ). $
综上所述,
(ⅱ)和(ⅲ)的证明与(ⅰ)完全类似, 此处从略.
注3.1 在本文定理证明过程当中, 为了书写方便, 定理之间扰动算子$ \ E_{1}, E_{2}, E_{3} $和$ \ E_{4} $的取法不一致.
定理3.2 令$ \ M=\begin{bmatrix} A &0 \\ 0&B\end{bmatrix} $: $ \mathcal{D} (A)\times \mathcal{D} (B)\to X\times X $是$ 2\times2 $分块对角算子矩阵, 则
其中
证 首先证明充分性, 即$ \ {{\Delta }_{41}}\cup {{\Delta }_{42}}\cup {{\Delta }_{43}}\cup {{\Delta }_{44}}\subseteq {{\sigma }_{\varepsilon, P, 4}}(M). $
(ⅰ) 假设$ \ \lambda \in{{\Delta }_{41}}, $即$ \ \lambda \in\sigma_{\varepsilon, p, 4}(A)\cup \sigma_{\varepsilon, p, 4}(B) $, 根据定义3可知, 存在算子$ {{E}_{1}}\in \mathcal{B}(X) $, $ {{E}_{\text{2}}}\in \mathcal{B}(X) $. 且$ \| {{E}_{1}}\| <\varepsilon, \| {{E}_{2}}\| <\varepsilon $, 有
即$ A+{{E}_{1}}-\lambda I $不是单射, $ \overline{\mathsf{\mathcal{R}}(A\text{+}{{E}_{1}}-\lambda I)}\ne X $, 且$ \mathsf{\mathcal{R}}(A+{{E}_{1}}-\lambda I) $不闭, $ B+{{E}_{2}}-\lambda I $不是单射, $ \overline{\mathsf{\mathcal{R}}(B+{{E}_{2}}-\lambda I)}\ne X, $且$ \mathsf{\mathcal{R}}(B+{{E}_{2}}-\lambda I) $不是闭集.
令$ E\text{=}\left[ \begin{matrix} {{E}_{1}} & 0 \\ 0 & {{E}_{2}} \\ \end{matrix} \right]\in \mathcal{B}(X\times X) $, $ \| E\| =\max \{\| {{E}_{1}}\|, \| {{E}_{2}}\| \}<\varepsilon $, 得到$ M+E-\lambda I $不是单射, $ \overline{\mathsf{\mathcal{R}}(M+E-\lambda I)}\ne X, $且$ \mathsf{\mathcal{R}}(M+E-\lambda I) $不是闭集, 故$ \lambda \in {{\sigma }_{p, 4}}(M+E), $则$ \lambda \in {{\sigma }_{\varepsilon, p, 4}}(M) $.
(ⅱ) 下面证明$ \ {{\Delta }_{42}}\subseteq {{\sigma }_{\varepsilon, P, 4}}(M). $假设$ \lambda \in ({{\sigma }_{\varepsilon, p, 1}}(A)\cap {{\sigma }_{\varepsilon, r, 2}}(B)) $, 根据定义3可知, 存在算子$ {{E}_{3}}\in \mathcal{B}(X) $, $ {{E}_{\text{4}}}\in \mathcal{B}(X) $. 且$ \| {{E}_{3}}\| <\varepsilon, \| {{E}_{4}}\| <\varepsilon $, 令$ \widehat{E}\text{=}\left[ \begin{matrix} {{E}_{3}} & 0 \\ 0 & {{E}_{4}} \\ \end{matrix} \right]\in \mathcal{B}(X\times X) $, $ \| \widehat{E}\| =\max \{\| {{E}_{3}}\|, \| {{E}_{4}}\| \}<\varepsilon $, 得到$ M+\widehat{E}-\lambda I $不是单射, $ \overline{\mathsf{\mathcal{R}}(M+\widehat{E}-\lambda I)}\ne X $, 且$ \mathsf{\mathcal{R}}(M+\widehat{E}-\lambda I) $不是闭集, 故$ \lambda \in {{\sigma }_{p, 4}}(M+\widehat{E}) $, 即$ \lambda \in {{\sigma }_{\varepsilon, p, 4}}(M) $.
当$ \lambda \in ({{\sigma }_{\varepsilon, p, 1}}(B)\cap {{\sigma }_{\varepsilon, r, 2}}(A)) $时, 同理可证$ \lambda \in {{\sigma }_{\varepsilon, p, 4}}(M) $.
(ⅲ) 同理可证$ \ {{\Delta }_{43}}\subseteq {{\sigma }_{\varepsilon, p, 4}}(M), {{\Delta }_{44}}\subseteq {{\sigma }_{\varepsilon, p, 4}}(M). $
下面证明必要性, 即$ \ {{\sigma }_{\varepsilon, p, 4}}(M)\subseteq{{\Delta }_{41}}\cup {{\Delta }_{42}}\cup {{\Delta }_{43}}\cup {{\Delta }_{44}} . $
假设$ \ \lambda \in{{\sigma }_{\varepsilon, p, 4}}(M) $, 根据$ \ {{\sigma }_{\varepsilon, p, 4}}(M)\subseteq{{\sigma }_{ p}}(M) $可知$ \ \lambda \in{{\sigma }_{p, 4}}(M) , $则存在$ \ \widetilde{E}\text{=}\left[ \begin{matrix} {{E}_{5}} & 0 \\ 0 & {{E}_{6}} \\ \end{matrix} \right]\in \mathcal{B}(X \times X) $, 且$ \| \widehat{E}\| <\varepsilon $, $ \ \lambda \in{{\sigma }_{p}}(M+\widetilde{E}) $, 即$ \ \lambda \in{{\sigma }_{p}}(A+{E}_{5})\cup{{\sigma }_{p}}(B+{E}_{6}) $, 进一步,得到以下四种情形:
情形1: 当$ \lambda \in {{\sigma }_{p, 4}}(A+{{E}_{5}}) $或$ \lambda \in {{\sigma }_{p, 4}}(B+{{E}_{6}}) $时, 即存在$ {{E}_{5}}\in \mathcal{B}(X) $, $ {{E}_{6}}\in \mathcal{B}(X) $, 且$ \| {{E}_{5}}\| <\varepsilon, \| {{E}_{6}}\| <\varepsilon $, 有
因此$ \lambda \in {{\Delta }_{41. }} $
情形2: 当$ \lambda \in {{\sigma }_{p, 1}}(A+{{E}_{5}}) $, 即$ \lambda \in {{\sigma }_{\varepsilon, p, 1}}(A) $时, 由于$ \overline{\mathsf{\mathcal{R}}(M+\widetilde{E}-\lambda I)}\ne X $且$ \mathsf{\mathcal{R}}(M+\widetilde{E}-\lambda I) $不是闭集, 故$ \overline{\mathsf{\mathcal{R}}(B+{{E}_{6}}-\lambda I)}\ne X $且$ \mathsf{\mathcal{R}}(B+{{E}_{6}}-\lambda I) $不是闭集. 当$ B+{{E}_{6}}-\lambda I $是单射时, 有$ \lambda \in {{\sigma }_{r, 2}}(B+{{E}_{6}}) $, 进而$ \lambda \in {{\sigma }_{\varepsilon, r, 2}}(B) $, 当$ B+{{E}_{6}}-\lambda I $不是单射时, $ \lambda \in {{\sigma }_{p, 4}}(B+{{E}_{6}}) $, 进而$ \lambda \in {{\sigma }_{\varepsilon, p, 4}}(B) $.
因此,
同理可证当$ \lambda \in {{\sigma }_{p, 1}}(B+{{E}_{6}}) $, 即$ \lambda \in {{\sigma }_{\varepsilon, p, 1}}(B) $时可以得到
因此当$ \lambda \in ({{\sigma }_{\varepsilon, p, 1}}(A)\cap {{\sigma }_{\varepsilon, r, 2}}(B))\cup ({{\sigma }_{\varepsilon, p, 1}}(B)\cap {{\sigma }_{\varepsilon, r, 2}}(A)) $时, 可以得到$ \lambda \in {{\Delta }_{42}} $, 当$ \lambda \in ({{\sigma }_{\varepsilon, p, 1}}(A)\cap {{\sigma }_{\varepsilon, p, 4}}(B))\cup ({{\sigma }_{\varepsilon, p, 1}}(B)\cap {{\sigma }_{\varepsilon, p, 4}}(A)), $此时$ \lambda \in {{\Delta }_{41. }} $
情形3:同理可证当$ \lambda \in {{\sigma }_{p, 2}}(A+{{E}_{5}})\cup {{\sigma }_{p, 2}}(B+{{E}_{6}}) $时$ \lambda \in {{\Delta }_{43}} $.
情形4:同理可证当$ \lambda \in {{\sigma }_{p, 3}}(A+{{E}_{5}})\cup {{\sigma }_{p, 3}}(B+{{E}_{6}}) $, 此时$ \lambda \in {{\Delta }_{44}} $.
综上所述
对角算子矩阵剩余谱的细分,有如下结论[7].
命题4.1 令$ \ M=\begin{bmatrix} A &0 \\ 0&B\end{bmatrix} $: $ \mathcal{D} (A)\times \mathcal{D} (B)\to X\times X $是$ 2\times2 $分块对角算子矩阵,
关于两类拟剩余谱的探讨, 若将命题4.1直接迁移到拟谱的情形, 其包含关系$ \ ({\sigma_{\varepsilon, r, 1}}(A)\setminus {\sigma_{\varepsilon, ap}}(B))\cup({\sigma_{\varepsilon, r, 1}}(A)\setminus {\sigma_{\varepsilon, ap}(B)})\subseteq{\sigma_{\varepsilon, r, 1}}(M) $成立, 然而,反包含关系在此并不成立, 我们可以通过以下实例来加以验证.
例4.1 设$ \ X=l^{2}(0, \infty), $对于任意的$ \ x\in l^{2}, x=(x_{1}, x_{2}, x_{3}\ldots) $, 令$ Ax=(0, x_{1}, x_{2}, x_{3}\ldots), $且
取有界扰动算子$ {{E}_{1}} $
经过计算$ \| {{E}_{1}}\| <\varepsilon $, $ (A+{{E}_{1}}-\frac{1}{2}I)x=(\frac{\varepsilon }{2}{{x}_{1}}, {{x}_{1}}-\frac{1}{2}{{x}_{2}}, {{x}_{2}}-\frac{1}{2}{{x}_{3}}\cdots ), $令$ (A+{{E}_{1}}-\frac{1}{2}I)x=0 $, 显然$ x=0 $, 则$ A+{{E}_{1}}-\frac{1}{2}I $是单射.
令$ ({{A}^{*}}+{{{E}_{1}}^*}-\frac{1}{2}I)x=0 $, $ {{x}_{1}}=c(c\ne 0) $, 可得$ x=(c, -\frac{\varepsilon -1}{2}c, -\frac{\varepsilon -1}{4}c, -\frac{\varepsilon -1}{8}c\cdots )\in {{l}^{2}} $, 即$ \mathsf{\mathcal{N}}({{{E}_{1}}^*}-\frac{1}{2}I)\ne 0 $, 由$ \mathsf{\mathcal{N}}({{A}^{*}}+{{E}_{1}}*-\frac{1}{2}I)={{\overline{\mathsf{\mathcal{R}}(A+{{E}_{1}}-\frac{1}{2}I)}}^{\bot }} $可知
下面证明$ \mathsf{\mathcal{R}}(A+{{E}_{1}}-\frac{1}{2}I) $是闭集. 事实上, 对于任意序列$ \{{{y}_{n}}\}\subset R(A+{{E}_{1}}-\frac{1}{2}I) $, 令
且$ {{y}_{n}}\to {{y}_{0}}(n\to \infty ) $, $ {{x}_{n}}=\{{{x}_{n1, }}{{x}_{n2}}, {{x}_{n3}}\cdots \}, {{x}_{0}}=\{{{x}_{01, }}{{x}_{02}}, {{x}_{03}}\cdots \}. $令$ (A+{{E}_{1}}-\frac{1}{2}I){{x}_{n}}={{y}_{n}} $, 取$ {{x}_{n}}=\{\frac{2}{\varepsilon -1}{{y}_{n1, }}2{{y}_{n2}}, 2{{y}_{n3}}\cdots \} $, 经验证$ {{x}_{n}}\in {{l}^{2}} $.
根据$ {{y}_{n}}\to {{y}_{0}}(n\to \infty ) $, 可以得到$ {{x}_{n}}\to {{x}_{0}}(n\to \infty ) $, 从而
且$ (A+{{E}_{1}}-\frac{1}{2}I){{x}_{0}}={{y}_{0}} $, 即$ \mathsf{\mathcal{R}}(A+{{E}_{1}}-\frac{1}{2}I) $是闭集.
经过以上的分析可知, 存在$ {{E}_{1}}\in \mathcal{B}(X) $, $ \| {{E}_{1}}\| <\varepsilon, $ $ \frac{1}{2}\in {{\sigma }_{r, 1}}(A+{{E}_{1}}) $, 即$ \frac{1}{2}\in {{\sigma }_{\varepsilon, r, 1}}(A) $.
下面证明$ \lambda \in {{\sigma }_{\varepsilon, ap}}(A) $, 事实上, 取有界扰动算子$ {{E}_{2}} $
经过计算$ \| {{E}_{2}}\| <\frac{\sqrt{5}}{2} $, $ (A+{{E}_{2}}-\frac{1}{2}I)x=(0, -\frac{1}{2}{{x}_{2}}, -{{x}_{2}}-\frac{1}{2}{{x}_{3}}, -{{x}_{3}}-\frac{1}{2}{{x}_{4}}\cdots ), $显然$ A+{{E}_{2}}-\frac{1}{2}I $不是单射, 故当$ \varepsilon >\frac{\sqrt{5}}{2} $时, 根据定义5可知, $ \frac{1}{2}\in {{\sigma }_{\varepsilon, ap}}(A) $.
因此, 当$ \varepsilon >\frac{\sqrt{5}}{2} $时, $ \frac{1}{2}\in ({{\sigma }_{\varepsilon, r, 1}}(A)\cap {{\sigma }_{\varepsilon, ap}}(A)). $
令
易知$ \| E\| =\max \{\| {{E}_{1}}\|, \| {{E}_{3}}\| \}<\varepsilon, $得到$ T+E-\frac{1}{2}I $是单射, $ \overline{R(T+E-\frac{1}{2}I)}\ne X $, 且$ R(T+E-\frac{1}{2}I) $是闭集, 故$ \frac{1}{2}\in {{\sigma }_{\varepsilon, r, 1}}(T) $.
经过细致的剖析,我们得到如下结论.
定理4.1 令$ \ M=\begin{bmatrix} A &0 \\ 0&B\end{bmatrix} $: $ \mathcal{D} (A)\times \mathcal{D} (B)\to X\times X $是$ 2\times2 $分块对角算子矩阵, 则
证 与定理3.1的证明类似, 此处从略.
本文聚焦2×2无界对角算子矩阵, 在对角的形式扰动下, 对其拟谱进行了精细的刻画. 通过运用对角元素所蕴含的信息,成功得到一系列拟谱等式, 我们将其与谱的相关结论进行了比较, 同时辅以具体的实例进行了详尽的阐释.
在深入探讨无界对角算子矩阵的拟谱特性时, 我们不难发现, 这一领域的精细刻画充满了复杂性, 尤其当扰动算子的形式复杂时, 更需要进一步研究. 充分挖掘算子的特性, 开展分类研究, 比如进一步探讨正规算子, 亚正规算子和无穷维Hamilton算子, 这些都可以进行深入研究.