数学杂志  2025, Vol. 45 Issue (4): 283-292   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
HU Li-li
ZHOU Yan-ping
BIE Qun-yi
LIOUVILLE THEOREM FOR 3D STATIONARY Q-TENSOR SYSTEM OF LIQUID CRYSTAL
HU Li-li1, ZHOU Yan-ping1,2, BIE Qun-yi1,2    
1. College of Mathematics and Physics, China Three Gorges University, Yichang 443002, China;
2. Three Gorges Mathematical research Center, China Three Gorges University, Yichang 443000, China
Abstract: In this paper, we study Liouville theorem for the 3D stationary Q-tensor system of liquid crystal in Lorentz and Morrey spaces. Under some additional hypotheses, stated in terms of Lorentz and Morrey spaces, using energy estimation, we obtain that the trivial solution $u=Q\equiv0$ is the unique solution. Our theorems correspond to improvements of some recent results and contain some known results as particular cases.
Keywords: Lorentz spaces     Morrey spaces     Q-tensor     liquid crystal     Liouville theorem    
三维稳态Q-tensor液晶流系统的Liouville定理
胡立立1, 周艳平1,2, 别群益1,2    
1. 三峡大学数理学院, 湖北 宜昌 443000;
2. 三峡大学三峡数学研究中心, 湖北 宜昌 443000
摘要:本文研究了三维稳态Q-tensor液晶系统在Lorentz和Morrey空间中的Liouville定理. 在Lorentz和Morrey空间的一些附加假设下, 利用能量估计, 获得了平凡解$u=Q\equiv0$是唯一解. 我们的定理是对最近一些结果的改进, 并包含一些已知的结果作为特例.
关键词Lorentz空间    Morrey空间    Q-tensor    液晶    Liouville定理    
1 Introduction

In this paper, we study the following 3D stationary Q-tensor system of liquid crystal:

$ \left\{\begin{array}{lr} \,-\mu\Delta u+(u\cdot\nabla)u+\nabla P=-\nabla\cdot(\nabla Q\odot\nabla Q)-\lambda\nabla\cdot(|Q|H)+\nabla\cdot(Q\Delta Q-\Delta QQ), \\[1ex] \,(u\cdot\nabla) Q+Q\Omega-\Omega Q-\lambda|Q|D=\Gamma H, \\[1ex] \,\nabla\cdot u=0, \end{array} \right.$ (1.1)

with

$ H = \Delta Q -aQ+b\left(Q^{2}-\frac{\mbox{tr}(Q^{2})}{3}I_{3\times3}\right)-cQ\mbox{tr}(Q^{2}). $

Here $ u \in \mathbb{R}^{3} $, $ P \in \mathbb{R} $ and

$ Q\in S^{3}_{0}\triangleq \{A=(a_{ij})_{3\times 3}|a_{ij}=a_{ji},\; \mbox{tr}(A)=0\} $

stand for the flow velocity, the scalar pressure and the nematic tensor order parameter, respectively. The parameters $ \mu > 0 $, $ \Gamma^{-1}>0 $ and $ \lambda\in \mathbb{R} $ represent the viscosity coefficient, the rotational viscosity and the nematic alignment, respectively. The coefficients $ a, b, c\in \mathbb{R} $ with $ c> 0 $ are constants. $ (\nabla Q\odot\nabla Q)_{i,j}=\partial_{x_{i}}Q:\partial_{x_{j}}Q $ is the symmetric additional stress tensor. $ D\triangleq\frac{1}{2}(\nabla u + \nabla u^{\mathsf{T}}) $ and $ \Omega\triangleq\frac{1}{2}(\nabla u - \nabla u^{\mathsf{T}}) $ are the symmetric and skew symmetric, respectively, where the notation $ \mathsf{T} $ represents the transposition of a matrix.

When $ Q=0 $, system (1.1) reduces to the 3D stationary Navier-Stokes system:

$ \left\{\begin{array}{lr} \,-\Delta u+(u\cdot\nabla)u+\nabla P=0, \\[1ex] \,\nabla\cdot u=0. \\[1ex] \end{array} \right.$ (1.2)

In the past decades, there have been many results in the study of Liouville theorem for system (1.2). Specifically, Galdi [1] proved that when $ u\in L^{\frac{9}{2}}(\mathbb{R}^{3}) $, then $ u=0 $. Chae-Wölf [2] gave a logarithmic improvement, namely when the solution $ u $ satisfies

$ \begin{equation} \nonumber \displaystyle{\int}_{\mathbb{R}^{3}}|u|^{\frac{9}{2}}\bigg\{\log\left(2+\frac{1}{|u|}\right)\bigg\}^{-1} dx<\infty, \end{equation} $

then $ u=0 $. Kozono-Terasawa-Wakasugi [3] investigated Liouville theorem in Lorentz spaces $ L^{\frac{9}{2},\infty}(\mathbb{R}^{3}) $. Li-Niu [4] further obtained sufficient conditions in Lorentz spaces, that is, $ u\in L^{p,q}(\mathbb{R}^3) $ for $ 3<p<\frac{9}{2},\; \; 3\leq q\leq\infty $ or $ p=q=3 $. Jarrin [5] proved in Morrey spaces that when $ u\in L^{2}_{loc}(\mathbb{R}^{3})\cap \dot M^{p,r}(\mathbb{R}^{3}) $ with $ 3\leq p<r<\frac{9}{2} $, then $ u=0 $. Later, Chamorro-Jarrin-Lemari-Rieusset [6] extended the result in [5] to $ u\in \dot M^{2,3}(\mathbb{R}^{3})\cap \dot M^{2,p}(\mathbb{R}^{3}) $ with $ 3< p <\infty $. For more works on Liouville theorem for the 3D stationary Navier-Stokes system, one could refer to [712] and references therein.

In recent years, the Q-tensor system of liquid crystal (1.1) has been received much attention, however there are few results on its Liouville theorem (see [13, 14]). Gong-Liu-Zhang [13] proved that when

$ u\in L^{\frac{9}{2}}(\mathbb{R}^{3})\cap \dot{H}_1(\mathbb{R}^3), \; Q\in H^{2}(\mathbb{R}^{3}) \; \rm{and} \;\mathit{b} ^{2}-24\mathit{ac}\leq 0,$ (1.3)

then $ u=Q\equiv 0 $. Later, Lai and Wu [14] generalized the condition (1.3) to

$ u\in L^{\frac{9}{2},\infty}(\mathbb{R}^{3})\cap \dot{H}_1(\mathbb{R}^3), \; Q\in H^{2}(\mathbb{R}^{3}) \; \rm{and}\; \mathit{b}^{2}-24\mathit{ac}\leq 0.$ (1.4)

Concerning Liouville theorem for other systems, one can refer to [1521] etc.

Motivated by the works [46], in this paper we will consider Liouville theorem for system (1.1) in Morrey and Lorentz spaces, respectively. First of all, we recall the definition of Lorentz spaces.

Let $ f: \mathbb{R}^3\rightarrow \mathbb{R} $ be a measurable function. The distribution function $ d_f(\alpha) $ is defined as

$ d_f(\alpha)=dx(\{x\in\mathbb{R}^3:|f(x)|>\alpha\}), $

where dx denotes the Lebesgue measure. For $ 1\leq p<+\infty $ and $ 1\leq q\leq+\infty $, the Lortenz spaces $ L^{p,q}(\mathbb{R}^3) $ are the spaces of measurable function $ f: \mathbb{R}^3\rightarrow \mathbb{R} $ such that

$ \|f\|_{L^{p,q}(\mathbb{R}^3)}<+\infty, $

where

$ \begin{eqnarray} \|f\|_{L^{p,q}(\mathbb{R}^3)}= \begin{cases} r^{\frac{1}{q}}\left(\int_{0}^{+\infty}\big(\alpha d_{f}^{\frac{1}{p}}(\alpha)\big)^q\frac{d\alpha}{\alpha}\right)^{\frac{1}{q}},\; \; \; \; \; &{\rm if}\; q<+\infty,\\ \sup\limits_{\alpha>0}\left\{\alpha d_{f}^{\frac{1}{p}}(\alpha)\right\},\; \; \; \; \; &{\rm if}\; q=+\infty.\\ \end{cases} \end{eqnarray} $

This space is a homogeneous space of degree $ -\frac{3}{r} $ and we have the following continuous embedding $ L^p(\mathbb{R}^3)=L^{p,p}(\mathbb{R}^3)\subset L^{p,q}(\mathbb{R}^3)\; {\rm for}\; 1\leq p<q\leq+\infty. $

In the framework of Lorentz spaces, our result is stated as follows.

Theorem 1.1  $ \rm Let $ $ (u,Q)\in L^2_{loc}(\mathbb{R}^3) $ be a smooth solution to system (1.1). If one of the following holds,

(1) $ u\in L^{p,q}(\mathbb{R}^3),\; Q\in H^2(\mathbb{R}^3),\; b^2-24ac\leq 0 ,\; $with$ \; 3< p\leq\frac{9}{2},\; 3\leq q<\infty,\; $or$ \; p=q=3, $

(2) $ u\in L^{p,q}(\mathbb{R}^3)\cap \dot{H}_1(\mathbb{R}^3),\; Q\in H^2(\mathbb{R}^3),\; b^2-24ac\leq 0 ,\; $with$ \; 3< p\leq\frac{9}{2},\; 3\leq q\leq\infty,\; $or$ \; p=q=3 $, then $ u=Q\equiv0. $

Remark 1  The difierence between (1) and (2) in Theorem 1.1 is that when $q=\infty$, the conditions for the velocity fleld need $ u\in\dot{H}_1(\mathbb{R}^3). $

Remark 2  $ \rm When $ $ (p,q)=(\frac{9}{2}, \frac{9}{2}), $ we get the condition (1.3) in [13]; while $ (p,q)=(\frac{9}{2}, \infty), $ that is the condition (1.4) in [13]. Therefore, Theorem 1.1 improves the results in [13] and [14].

We also establish the results in the framework of Morrey spaces. To this end, we first recall the definition of the homogeneous Morrey spaces $ \dot{M}^{p,q}(\mathbb{R}^{3}). $

For $ 1 < p < q < +\infty $, the homogeneous Morrey spaces $ \dot{M}^{p,q}(\mathbb{R}^{3}) $ are the set of all $ f\in L^{p}_{loc}(\mathbb{R}^{3}) $ such that

$ \begin{equation} \nonumber \|f\|_{\dot{M}^{p,q}(\mathbb{R}^{3})}=\sup\limits_{R>0,x_{0}\in\mathbb{R}^{3}}R^{\frac{3}{q}}\left(R^{-3}\displaystyle{\int}_{B(R(x_{0}))}|f(x)|^{p} dx\right)^{\frac{1}{p}}<+\infty, \end{equation} $

where $ B(R(x_{0})) $ is a ball of radius $ R $ centered at $ x_{0} $. This space satisfies the following embedding relation

$ \begin{equation} \nonumber L^{q}(\mathbb{R}^{3})\subset L^{q,r}(\mathbb{R}^{3})\subset L^{q,\infty}(\mathbb{R}^{3}) \subset \dot{M}^{p,q}(\mathbb{R}^{3}),\; 1< p < q \leq r\leq\infty. \end{equation} $

In the framework of Morrey spaces, our two results are stated as follows.

Theorem 1.2  $ \rm Let $ $ (u,Q)\in L^2_{loc}(\mathbb{R}^3) $ be a smooth solution to system (1.1). Assume $ u\in\dot{M}^{2,3}(\mathbb{R}^3)\cap\dot{M}^{2,q}(\mathbb{R}^3) $, $ Q\in H^2(\mathbb{R}^3),\; b^2-24ac\leq 0, $ with $ 3< q <\infty, $ then $ u=Q\equiv0. $

Theorem 1.3  $ \rm Let $ $ (u,Q)\in L^2_{loc}(\mathbb{R}^3) $ be a smooth solution to system (1.1). Suppose $ u\in\dot{M}^{p,q}(\mathbb{R}^3) $, $ Q\in H^2(\mathbb{R}^3),\; b^2-24ac\leq 0, $ with $ 3\leq p< q \leq \frac{9}{2}, $ then $ u=Q\equiv0. $

Remark 3  $ \rm When $ $ q=\frac{9}{2} $, compared to the conditions (1.3) and (1.4), due to the embedding relationship $ L^{\frac{9}{2}}(\mathbb{R}^3)\subset L^{\frac{9}{2},\infty}(\mathbb{R}^3)\subset\dot{M}^{p,\frac{9}{2}}(\mathbb{R}^3), $ we know that Theorem 1.3 extends the results in [13, 14].

The rest of this paper is organized as follows. In Section 2 we will prove Theorem 1.1 in the Lorentz spaces, while Section 3 is devoted to the proofs of Theorem 1.2 and Theorem 1.3 in the Morrey spaces.

2 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. Firstly, we provide two known results as follows.

Lemma 2.1  (see [22]) Let $ \beta(Q)=1-6\frac{(\mbox{tr}Q^{3})^{2}}{|Q|^{6}}. $ Assume $ Q\in S^{3}_{0} $, then $ 0\leq\beta(Q)\leq 1 $.

Lemma 2.2  (see [6]) Let $ U\in L^{\infty}(\mathbb{R}^3)\cap\dot{M}^{2,3}(\mathbb{R}^3). $ Then $ \|U\|_{\dot{M}^{3,\frac{9}{2}}(\mathbb{R}^3)}\leq C\|U\|^{\frac{1}{3}}_{L^{\infty}(\mathbb{R}^3)}\|U\|^{\frac{2}{3}}_{{\dot{M}^{2,3}(\mathbb{R}^3)}} $.

We consider a smooth function $ \phi\in C^{\infty}_{c}(\mathbb{R}^{3}) $ as

$ \begin{equation} \nonumber \phi(x)= \left\{ \begin{aligned} & 1,\; \; \; \rm{if}\; |\mathit{x}|<1 \\ &0,\; \; \; \rm{if}\; |\mathit{x}|>2 \end{aligned} \right. \end{equation} $

and define $ \phi_{R}(x)=\phi(\frac{x}{R}), \; x\in \mathbb{R}^3, $ so we have $ {\rm supp}\; (\nabla\phi_{R})\subset\{x\in\mathbb{R}^3; R<|x|<2R\}=B(2R/R) $.

Proof  Multiplying the first equation and the second equation in (1.1) by $ u\phi_{R} $ and $ -H\phi_{R} $, respectively, integrating them over $ \mathbb{R}^3 $, and integration by parts, we have

$ \begin{align} &\mu\int_{\mathbb{R}^3}|\nabla u|^2\phi_R(x){\rm d}x+\Gamma\int_{\mathbb{R}^3}|H|^2\phi_R(x){\rm d}x\\ =&\left(\int_{\mathbb{R}^3}(u\cdot\nabla Q):\Delta Q\phi_R(x){\rm d}x-\int_{\mathbb{R}^3}(\Omega Q-Q\Omega):\Delta Q\phi_R(x){\rm d}x\right)\\ &-\int_{\mathbb{R}^3}(u\cdot \nabla Q):\left[aQ+b\left(Q^2-\frac{{\rm tr}(Q^2)}{3} I_{3\times3}\right)+cQ|Q|^2\right]\phi_R(x){\rm d}x\\ &+\int_{\mathbb{R}^3}(\Omega Q-Q\Omega):\left[aQ+b\left(Q^2-\frac{{\rm tr}(Q^2)}{3} I_{3\times3}\right)+cQ|Q|^2\right]\phi_R(x){\rm d}x\\ &-\left(\lambda\int_{\mathbb{R}^3}|Q|D:H\phi_R(x){\rm d}x+\int_{\mathbb{R}^3}\nabla\cdot(\nabla Q\odot\nabla Q)\cdot u\phi_R(x){\rm d}x\right)\\ &+\left(\lambda\int_{\mathbb{R}^3}|Q|H:\nabla(u\phi_R(x)){\rm d}x-\int_{\mathbb{R}^3}(Q\Delta Q-\Delta QQ):\nabla(u\phi_R(x)){\rm d}x\right)\\ &+\int_{\mathbb{R}^3}\frac{1}{2}|u|^2u\cdot\nabla\phi_R(x){\rm d}x+\left(\int_{\mathbb{R}^3}Pu\cdot\nabla\phi_R(x)+\frac{\mu}{2}|u|^2\Delta\phi_R(x){\rm d}x\right)\\ \triangleq & \sum\limits_{i=1}^{7}I_i. \end{align} $ (2.1)

Firstly, we deduce that $ I_{4} = 0 $ due to $ Q $ is symme tr ic and $ \Omega $ is skew symmetric. In what follows, we estimate the remaining terms on the right-hand side of (2.1) one by one.

For $ I_{1} $, applying Hölder inequality in Lorentz spaces, we see that

$ \begin{align} I_{1}&=\int_{\mathbb{R}^3}(u\cdot\nabla Q):\Delta Q \phi_{R} dx-\int_{\mathbb{R}^3}\nabla\cdot(\nabla Q\odot\nabla Q)\cdot u\phi_{R} {\rm d}x\\ &=\int_{\mathbb{R}^3}(u\cdot\nabla Q):\Delta Q \phi_{R} dx-\int_{\mathbb{R}^3}(u\cdot\nabla Q):\Delta Q \phi_{R} dx-\frac{1}{2}\int_{\mathbb{R}^3}u\cdot\nabla|\nabla Q|^{2}\phi_{R} {\rm d}x\\ &=\frac{1}{2}\int_{\mathbb{R}^3}u|\nabla Q|^{2}\nabla\phi_{R} {\rm d}x\\ &\leq \frac{C}{R}\||\nabla Q|^2\|_{L^2(B(2R\setminus R))}\|u\|_{L^{p,q}(B(2R\setminus R))}\|1\|_{L^{\frac{2p}{p-2},\frac{2q}{q-2}}(B(2R\setminus R))}\\ &\leq CR^{\frac{1}{2}-\frac{3}{p}}\||\nabla Q|^2\|_{L^2(B(2R\setminus R))}\|u\|_{L^{p,q}(B(2R\setminus R))}\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align} $ (2.2)

By Sobolev imbedding theorem, we have

$ \begin{aligned} I_2 & \left.=-\int_{\mathbb{R}^3}(u \cdot \nabla Q):\left[a Q-b\left(Q^2-\frac{\operatorname{tr}\left(Q^2\right)}{3} I_{3 \times 3}\right)+c Q|Q|^2\right)\right] \phi_R \mathrm{d} x \\ & =\int_{\mathbb{R}^3}\left(\frac{a}{2}|Q|^2-\frac{b}{3} \operatorname{tr}\left(Q^3\right)+\frac{c}{4}|Q|^4\right) u \cdot \nabla \phi_R \mathrm{d} x \\ & \leq \frac{C}{R}\left(1+\|Q\|_{L^{\infty}(B(2 R \backslash R))}+\|Q\|_{L^{\infty}(B(2 R \backslash R))}^2\right)\left\||Q|^2\right\|_{L^2(B(2 R \backslash R))}\|u\|_{L^{p, q}(B(2 R \backslash R))}\|1\|_{L^{\frac{2 p}{p-2}, \frac{2 q}{q-2}(B(2 R \backslash R))}} \\ & \leq C R^{\frac{1}{2}-\frac{3}{p}}\left\||Q|^2\right\|_{L^2(B(2 R \backslash R))}\|u\|_{L^{p, q}(B(2 R \backslash R))} \rightarrow 0 \quad(\text { as } \quad R \rightarrow \infty) . \end{aligned}$ (2.3)

For $ I_{3} $, we obtain

$ \begin{align} I_{3}&=-\int_{\mathbb{R}^3}(\Omega Q-Q\Omega):\Delta Q\phi_{R}-\int_{\mathbb{R}^3}(Q\Delta Q-\Delta QQ):\nabla(u\phi_{R}) {\rm d}x\\ &=-\int_{\mathbb{R}^3}(Q\Delta Q-\Delta QQ):u\otimes\nabla\phi_{R} {\rm d}x\\ &\leq \frac{C}{R}\|\nabla^2 Q\|_{L^2(B(2R\setminus R))}\|Q\|_{L^{\infty}(B(2R\setminus R))}\|u\|_{L^{p,q}(B(2R\setminus R))}\|1\|_{L^{\frac{2p}{p-2},\frac{2q}{q-2}}(B(2R\setminus R))}\\ &\leq CR^{\frac{1}{2}-\frac{3}{p}}\|\nabla^2 Q\|_{L^2(B(2R\setminus R))}\|u\|_{L^{p,q}(B(2R\setminus R))}\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align} $ (2.4)

With regard to $ I_{5} $, we observe

$ \begin{align} I_5&=-\lambda\int_{\mathbb{R}^3}|Q|D:H\phi_R(x){\rm d}x+\lambda\int_{\mathbb{R}^3}|Q|H:\nabla(u\phi_R(x)){\rm d}x \\ &=\lambda\int_{\mathbb{R}^3}|Q|H:(u\otimes\nabla\phi_R(x)){\rm d}x \\ &\leq \frac{C}{R}\|H\|_{L^2(B(2R\setminus R))}\|Q\|_{L^{\infty}(B(2R\setminus R))}\|u\|_{L^{p,q}(B(2R\setminus R))}\|1\|_{L^{\frac{2p}{p-2},\frac{2q}{q-2}}(B(2R\setminus R))}\\ \label{2.5} &\leq CR^{\frac{1}{2}-\frac{3}{p}}\|H\|_{L^2(B(2R\setminus R))}\|u\|_{L^{p,q}(B(2R\setminus R))}\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align} $ (2.5)

By Hölder inequality in Lorentz spaces, we see

$ \begin{align} I_{6}&=\frac{1}{2}\int_{\mathbb{R}^3}|u|^{2}u\cdot\nabla\phi_{R} {\rm d}x\\ &\leq \frac{C}{R}\|u\|^3_{L^{p,q}(B(2R\setminus R))}\|1\|_{L^{\frac{p}{p-3},\frac{q}{q-3}}(B(2R\setminus R))}\\ &\leq CR^{2-\frac{9}{p}}\|u\|^3_{L^{p,q}(B(2R\setminus R))}\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align} $ (2.6)

To deal with $ I_{7} $, we first need to estimate the pressure. For that, taking the divergence to the first equation of (1.1) yields

$ \begin{align} \Delta P=-\mbox{divdiv}\left(u\otimes u+\nabla Q\odot\nabla Q+\lambda|Q|H+Q\Delta Q-\Delta QQ\right). \end{align} $ (2.7)

Let $ P=P_{1}+P_{2} $ such that $ \Delta P_{1}=-\mbox{divdiv}(f_{1}) $ and $ \Delta P_{2}=-\mbox{divdiv}(f_{2}) $, where

$ \begin{align} f_{1}=u\otimes u,\; \; \; \; \; \; \quad f_{2}=\nabla Q\odot\nabla Q+\lambda|Q|H+Q\Delta Q-\Delta QQ. \end{align} $ (2.8)

In view of the conditions $ u\in L^{p,q}(\mathbb{R}^3) $ and $ Q\in H^{2}(\mathbb{R}^3) $, it is not difficult to obtain that

$ f_{1}\in L^{\frac{p}{2},\frac{q}{2}}(\mathbb{R}^3),\; \; \; f_{2}\in L^{2}(\mathbb{R}^3). $

By Calderón-Zygmund theorem, we have $ P_1\in L^{\frac{p}{2},\frac{q}{2}}(\mathbb{R}^3),\; P_{2}\in L^{2}(\mathbb{R}^3) $, and then

$ \begin{align} I_{7}&=\int_{\mathbb{R}^3}\left(Pu\cdot\nabla\phi_{R}+\frac{\mu}{2}|u|^{2}\Delta\phi_{R}\right) {\rm d}x\\ &=\int_{\mathbb{R}^3}P_{1}u\cdot\nabla\phi_{R} {\rm d}x+\int_{\mathbb{R}^3}P_{2}u\cdot\nabla\phi_{R} {\rm d}x+\frac{\mu}{2}\int_{\mathbb{R}^3}|u|^{2}\Delta\phi_{R} {\rm d}x\\ &\leq \frac{C}{R}\|P_1\|_{L^{\frac{p}{2},\frac{q}{2}}(B(2R\setminus R))}\|u\|_{L^{p,q}(B(2R\setminus R))}\|1\|_{L^{\frac{p}{p-3},\frac{q}{q-3}}(B(2R\setminus R))}\\ &\; \; \; \; \; \; \; +\frac{C}{R}\|P_2\|_{L^2(B(2R\setminus R))}\|u\|_{L^{p,q}(B(2R\setminus R))}\|1\|_{L^{\frac{2p}{p-2},\frac{2q}{q-2}}(B(2R\setminus R))}\\ &\; \; \; \; \; \; \; +\frac{C}{R^2}\|u\|^2_{L^{p,q}(B(2R\setminus R))}\|1\|_{L^{\frac{p}{p-2},\frac{q}{q-2}}(B(2R\setminus R))}\\ &\leq CR^{2-\frac{9}{p}}\|P_1\|_{L^{\frac{p}{2},\frac{q}{2}}(B(2R\setminus R))}\|u\|_{L^{p,q}(B(2R\setminus R))}\\ &\; \; \; \; \; \; \; +CR^{\frac{1}{2}-\frac{3}{p}}\|P_2\|_{L^2(B(2R\setminus R))}\|u\|_{L^{p,q}(B(2R\setminus R))}\\ &\; \; \; \; \; \; \; +CR^{1-\frac{6}{p}}\|u\|^2_{L^{p,q}(B(2R\setminus R))}\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align} $ (2.9)

Based on the above estimates $ I_1-I_7 $, returning to (2.1), we find that

$ \begin{align} \lim\limits_{R\rightarrow +\infty}\left(\mu\int_{B(R)}|\nabla u|^{2} {\rm d}x+\Gamma\int_{B(R)}|H|^{2} {\rm d}x\right) = 0. \end{align} $ (2.10)

Thanks to the Sobolev embedding, we have

$ \begin{align} \|u\|_{L^{6}(\mathbb{R}^3)}\leq C\|\nabla u\|_{L^{2}(\mathbb{R}^3)}, \end{align} $ (2.11)

which implies $ u = H \equiv 0. $

In what follows, we give the estimate about $ |\nabla Q| $. By the definition of $ H $, we have

$ \begin{align} -\Delta Q = -aQ+b\left(Q^{2}-\frac{tr(Q^{2})}{3}I_{3\times3}\right)-cQ\mbox{tr}(Q^{2}). \end{align} $ (2.12)

Multiplying (2.12) by $ Q\phi_{R} $ and integrating over $ \mathbb{R}^3 $, one has from Lemma 2.1 that

$ \begin{align} \int_{\mathbb{R}^3}|\nabla Q|^{2}\phi_{R} {\rm d}x &=\int_{\mathbb{R}^3}|Q|^{2}\Delta \phi_{R} {\rm d}x-\int_{\mathbb{R}^3}\Big(a\mbox{tr}(Q^{2})-b\mbox{tr}(Q^{3})+c[\mbox{tr}(Q^{2})]^2\phi_{R}\Big) {\rm d}x\\ &\leq\frac{C}{R^{2}}\int_{B(2R\setminus R)}|Q|^{2} {\rm d}x+\int_{\mathbb{R}^3}\left(\frac{b^{2}-24ac}{24c}\right)|Q|^{2}{\rm d}x\\ &\leq\frac{C}{R^{2}}\int_{B(2R\setminus R)}|Q|^{2} {\rm d}x\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align} $ (2.13)

In view of $ Q\in H^{2}({\mathbb{R}^3}) $, we obtain $ Q = 0 $. The proof of Theorem 1.1 is finished.

3 Proofs of Theorem 1.2 and Theorem 1.3

In this section, we are going to prove Theorem 1.2 and Theorem 1.3. Theorem 1.2 is demonstrated through the essential application of Lemma 2.2. To this end, we first claim that $ u\in L^{\infty}(\mathbb{R}^3) $. In fact, according to the conditions of Theorem 1.2, we know that $ u\in \dot{M}^{2,q}(\mathbb{R}^3), \; Q\in H^2(\mathbb{R}^3) $, with $ 3<q<\infty $. By [23], and using the same method as in [6], we could obtain $ u\in L^{\infty}(\mathbb{R}^3) $.

Proof of Theorem 1.2  We reestimate the terms $ I_1-I_7 $ on the right-hand side of (2.1) in the framework of the Morrey spaces. For $ I_{1} $, making use of (2.2), and the Hölder inequality, we observe

$ \begin{align*} \nonumber I_{1}&=\frac{1}{2}\int_{\mathbb{R}^3}u|\nabla Q|^{2}\nabla\phi_{R} {\rm d}x\\\nonumber &\leq\frac{C}{R}\left(\int_{B(2R\setminus R)}|u|^{2} {\rm d}x\right)^{\frac{1}{2}}\left(\int_{B(2R\setminus R)}|\nabla Q|^{4} {\rm d}x\right)^{\frac{1}{2}}\\ &\leq CR^{-\frac{1}{2}}\|u\|_{{\dot{M}^{2,3}}(B(2R\setminus R))}\||\nabla Q|^{2}\|_{L^{2}(B(2R\setminus R))}\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align*} $ (3.1)

With respect to $ I_{2} $, it follows from (2.3) and the Sobolev imbedding that

$ \begin{align*} \nonumber I_{2} &=\int_{\mathbb{R}^3}\left(\frac{a}{2}|Q|^{2}-\frac{b}{3}{\mathtt{tr}(Q^{3})}+\frac{c}{4}|Q|^{4}\right)u\cdot\nabla\phi_{R} {\rm d}x\\\nonumber &\leq \frac{C}{R}\left(1+\|Q\|_{L^{\infty}(B(2R\setminus R))}+\|Q\|^{2}_{L^{\infty}(B(2R\setminus R))}\right)\|Q\|^{2}_{L^{4}(B(2R\setminus R))}\|u\|_{L^{2}(B(2R\setminus R))}\\ &\leq CR^{-\frac{1}{2}}\|u\|_{{\dot{M}^{2,3}}(B(2R\setminus R))}\|Q\|^2_{L^{4}(B(2R\setminus R))}\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align*} $ (3.2)

One deduces from (2.4) and Lemma 2.2 that

$ \begin{align*} \nonumber I_{3} &=-\int_{\mathbb{R}^3}(Q\Delta Q-\Delta QQ):u\otimes\nabla\phi_{R} {\rm d}x\\\nonumber &\leq\frac{C}{R}\|\nabla^{2}Q\|_{L^{2}(B(2R\setminus R))}\|u\|_{L^{3}(B(2R\setminus R))}\|Q\|_{L^{6}(B(2R\setminus R))}\\ &\leq CR^{-\frac{2}{3}}\|u\|_{{\dot{M}^{3,\frac{9}{2}}}(B(2R\setminus R))}\|\nabla^{2}Q\|_{L^{2}(B(2R\setminus R))}\|Q\|_{L^{6}(B(2R\setminus R))}\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align*} $ (3.3)

We get from (2.5) that when $ R\rightarrow \infty $,

$ \begin{align*} \nonumber I_5&=\lambda\int_{\mathbb{R}^3}|Q|H:(u\otimes\nabla\phi_R(x)){\rm d}x \\\nonumber &\leq\frac{C}{R}\|H\|_{L^2(B(2R\setminus R))}\|u\|_{L^3(B(2R\setminus R))}\|Q\|_{L^6(B(2R\setminus R))}\\ &\leq CR^{-\frac{2}{3}}\|u\|_{{\dot{M}^{3,\frac{9}{2}}}(B(2R\setminus R))}\|H\|_{L^2(B(2R\setminus R))}\|Q\|_{L^6(B(2R\setminus R))}\rightarrow 0. \end{align*} $ (3.4)

For $ I_{6} $, similar to $ I_1 $, we see by (2.6) that

$ \begin{align*} \nonumber I_{6}&=\frac{1}{2}\int_{\mathbb{R}^3}|u|^{2}u\cdot\nabla\phi_{R} {\rm d}x\\\nonumber &\leq\frac{C}{R}\int_{B(2R\setminus R)}|u|^{3} {\rm d}x \leq\frac{C}{R}\left(R^{9(\frac{1}{3}-\frac{2}{9})}\|u\|^3_{{\dot{M}^{3,\frac{9}{2}}}(B(2R\setminus R))}\right)\\ &\leq C\|u\|^3_{{\dot{M}^{3,\frac{9}{2}}}(B(2R\setminus R))}\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align*} $ (3.5)

In view of (2.7)-(2.9), we can get

$ \begin{align*} \nonumber I_{7}&=\int_{\mathbb{R}^3}\left(Pu\cdot\nabla\phi_{R}+\frac{\mu}{2}|u|^{2}\Delta\phi_{R}\right) {\rm d}x\\\nonumber &=\int_{\mathbb{R}^3}P_{1}u\cdot\nabla\phi_{R} {\rm d}x+\int_{\mathbb{R}^3}P_{2}u\cdot\nabla\phi_{R} {\rm d}x+\frac{\mu}{2}\int_{\mathbb{R}^3}|u|^{2}\Delta\phi_{R} {\rm d}x\\\nonumber &\leq\frac{C}{R}\int_{B(2R\setminus R)}|u|^{3} {\rm d}x+\frac{C}{R}\|u\|_{L^{2}(B(2R\setminus R))}\|P_{2}\|_{L^{2}(B(2R\setminus R))} +\frac{C}{R^2}\int_{B(2R\setminus R)}|u|^{2} {\rm d}x\\\nonumber &\leq C\|u\|^3_{{\dot{M}^{3,\frac{9}{2}}}(B(2R\setminus R))}+CR^{-\frac{1}{2}}\|u\|_{{\dot{M}^{2,3}}(B(2R\setminus R))}\|P_{2}\|_{L^{2}(B(2R\setminus R))}\\ &\; \; \; \; \; +CR^{-\frac{1}{3}}\|u\|^2_{{\dot{M}^{3,\frac{9}{2}}}(B(2R\setminus R))}\rightarrow 0\; \; \; (as\; \; \; R\rightarrow \infty). \end{align*} $ (3.6)

Setting $ R\rightarrow +\infty $, by (2.10) and (2.11), yields $ u = H \equiv 0. $ Similarly, from (2.12) and (2.13), we also obtain $ Q\equiv0. $ Therefore, we have completed the proof of Theorem 1.2.

Proof of Theorem 1.3  To prove Theorem 1.3, we use different Hölder indicators to reestimate the terms $ I_1-I_7 $ in (2.1). For $ I_1 $, by Hölder inequality and the definition of Morrey spaces, we deduce from (3.1) that

$ \begin{align} I_{1}&=\frac{1}{2}\int_{\mathbb{R}^3}u|\nabla Q|^{2}\nabla\phi_{R} {\rm d}x\\ &\leq\frac{C}{R}\left(\int_{B(2R\setminus R)}|u|^{p} {\rm d}x\right)^{\frac{1}{p}}\left(\int_{B(2R\setminus R)}|\nabla Q|^{4} {\rm d}x\right)^{\frac{1}{2}}\left(\int_{B(2R\setminus R)}1 \; {\rm d}x\right)^{\frac{1}{2}-\frac{1}{p}}\\ &\leq CR^{-1}R^{(\frac{3}{2}-\frac{3}{p})}R^{3(\frac{1}{p}-\frac{1}{q})}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\||\nabla Q|^{2}\|_{L^{2}(B(2R\setminus R))}\\ &\leq CR^{\frac{1}{2}-\frac{3}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\||\nabla Q|^{2}\|_{L^{2}(B(2R\setminus R))}. \end{align} $

Similarly, we could obtain the following new estimations of (3.2)-(3.6) as

$ \begin{align*} &I_2\leq CR^{\frac{1}{2}-\frac{3}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\|Q\|^{2}_{L^{4}(B(2R\setminus R))},\\ &I_3\leq CR^{\frac{1}{2}-\frac{3}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\|\nabla^{2}Q\|_{L^{2}(B(2R\setminus R))},\\ &I_5\leq CR^{\frac{1}{2}-\frac{3}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\|H|_{L^{2}(B(2R\setminus R))},\\ &I_6\leq CR^{2-\frac{9}{q}}\|u\|^3_{{\dot{M}^{p,q}}(B(2R\setminus R))},\\ &I_7\leq CR^{2-\frac{9}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\|P_1\|_{{\dot{M}^{\frac{p}{2},\frac{q}{2}}}(B(2R\setminus R))}\\ &\; \; \; \; \; \; +CR^{\frac{1}{2}-\frac{3}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\|P_{2}\|_{L^{2}(B(2R\setminus R))}+CR^{1-\frac{6}{q}}\|u\|^2_{{\dot{M}^{p,q}}(B(2R\setminus R))}. \end{align*} $

Collecting all the above estimations implies

$ \begin{align*} \nonumber &\mu\int_{\mathbb{R}^3}|\nabla u|^2\phi_R(x){\rm d}x+\Gamma\int_{\mathbb{R}^3}|H|^2\phi_R(x){\rm d}x\\\nonumber \leq& CR^{\frac{1}{2}-\frac{3}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\||\nabla Q|^{2}\|_{L^{2}(B(2R\setminus R))}+CR^{\frac{1}{2}-\frac{3}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\|Q\|^{2}_{L^{4}(B(2R\setminus R))}\\\nonumber &\; \; \; \; \; \; +CR^{\frac{1}{2}-\frac{3}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\|\nabla^{2}Q\|_{L^{2}(B(2R\setminus R))}+CR^{\frac{1}{2}-\frac{3}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\|H|_{L^{2}(B(2R\setminus R))}\\\nonumber &\; \; \; \; \; \; \; +CR^{2-\frac{9}{q}}\|u\|^3_{{\dot{M}^{p,q}}(B(2R\setminus R))}+CR^{2-\frac{9}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\|P_1\|_{{\dot{M}^{\frac{p}{2},\frac{q}{2}}}(B(2R\setminus R))}\\ &\; \; \; \; \; \; +CR^{\frac{1}{2}-\frac{3}{q}}\|u\|_{{\dot{M}^{p,q}}(B(2R\setminus R))}\|P_{2}\|_{L^{2}(B(2R\setminus R))}+CR^{1-\frac{6}{q}}\|u\|^2_{{\dot{M}^{p,q}}(B(2R\setminus R))}. \end{align*} $ (3.7)

By the condition $ 3\leq p< q \leq \frac{9}{2} $, we have

$ \frac{1}{2}-\frac{3}{q}\leq 0, \; 2-\frac{9}{q}\leq 0, \; 1-\frac{6}{q}\leq 0. $

Thus, returning to (3.7), we get

$ \lim\limits_{R\rightarrow +\infty}\left(\mu\displaystyle{\int}_{B(R)}|\nabla u|^{2} {\rm d}x+\Gamma\displaystyle{\int}_{B(R)}|H|^{2} {\rm d}x\right) = 0. $

By virtue of the Sobolev embedding $ \|u\|_{L^{6}(\mathbb{R}^3)}\leq C\|\nabla u\|_{L^{2}(\mathbb{R}^3)}, $ we have $ u = H \equiv 0. $ And using the same method dealing with (2.12) and (2.13) one concludes $ Q\equiv0 $, which ends the proof of Theorem 1.3.

References
[1]
Galdi G. An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems[M]. New York: Springer, 2011.
[2]
Chae D, Wölf J. On Liouville-type theorems for the steady Navier-Stokes equations in $\mathbb{R}^3$[J]. Journal of Differential Equations, 2016, 261(10): 5541-5560.
[3]
Kozono H, Terasawa Y, Wakasugi Y. A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions[J]. Journal of Functional Analysis, 2017, 272(2): 804-818.
[4]
Li Z, Niu P. Notes on Liouville type theorems for the stationary compressible Navier–Stokes equations[J]. Applied Mathematics Letters, 2021, 114: 106908.
[5]
Jarrin O. A remark on the Liouville problem for stationary Navier-Stokes equations in Lorentz and Morrey spaces[J]. Journal of Mathematical Analysis and Applications, 2020, 486(1): 123871.
[6]
Chamorro D, Jarrin O, Lemarié-Rieusset P G. Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces[J]. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2021, 38(3): 689-710.
[7]
Chae D, Weng S. Liouville-type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations[J]. Discrete & Continuous Dynamical Systems, 2016, 36(10): 5267-5285.
[8]
Chae D. Liouville-type theorems for the forced Euler equations and the Navier-Stokes equations[J]. Communications in Mathematical Physics, 2014, 326(1): 37-48.
[9]
Giaquinta M. Multiple integrals in the calculus of variations and nonlinear elliptic systems[M]. Princeton: Princeton University Press, 1983.
[10]
Seregin G. Remarks on Liouville-type theorems for steady-state Navier-Stokes equations[J]. St. Petersburg Mathematical Journal, 2019, 30(2): 321-328.
[11]
Chae D, Yoneda T. On the Liouville theorem for the stationary Navier-Stokes equations in a critical space[J]. Journal of Mathematical Analysis and Applications, 2013, 405(2): 706-710.
[12]
Seregin G, Wang W. Sufficient conditions on Liouville-type theorems for the 3D steady Navier-Stokes equations[J]. St. Petersburg Mathematical Journal, 2020, 31(2): 387-393.
[13]
Gong H, Liu X, Zhang X. Liouville theorem for the steady-state solutions of Q-tensor system of liquid crystal[J]. Applied Mathematics Letters, 2018, 76: 175-180.
[14]
Lai N, Wu J. A note on Liouville theorem for steady Q-tensor system of liquid crystal (in Chinese)[J]. Journal of Zhejiang University (Science Edition), 2022, 49(04): 418-421.
[15]
Zhou Y, Bie Q, Wang Q, Yao Z. On Liouville-type theorems for three-dimensional stationary MHD and Hall-MHD equations (in Chinese)[J]. Scientia Sinica Mathematica, 2023, 53(03): 431-440.
[16]
Schulz S. Liouville-type theorem for the stationary equations of magnetohydrodynamics[J]. Acta Mathematica Scientia, 2019, 39(2): 491-497. DOI:10.3969/j.issn.0252-9602.2019.02.013
[17]
Yuan B, Xiao Y. Liouville-type theorems for the 3D stationary Navier-Stokes, MHD and Hall-MHD equations[J]. Journal of Mathematical Analysis and Applications, 2020, 491(2): 124343.
[18]
Chen X, Li S, Wang W. Remarks on Liouville-type theorems for the steady MHD and Hall-MHD equations[J]. Journal of Nonlinear Science, 2022, 32(1): 1-20.
[19]
Yuan B, Wang F. The Liouville theorems for 3D stationary tropical climate model in local Morrey spaces[J]. Applied Mathematics Letters, 2023, 138: 108533.
[20]
Zhang J, Wang S, Wu F. On Liouville-type theorems for the stationary nematic liquid crystal equations[J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74(6): 216.
[21]
Zhang J, Wang S, Ji X. Notes on Liouville-type theorems for the 3D compressible nematic liquid crystal equations[J]. Mathematical Methods in the Applied Sciences, 2024, 47(8): 7046-7055.
[22]
Majumdar A. Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory[J]. European Journal of Applied Mathematics, 2010, 21(2): 181-203.
[23]
Lemarié-Rieusset P G. The Navier-Stokes problem in the 21st century[M]. Boca Raton: CRC press, 2016.