数学杂志  2025, Vol. 45 Issue (3): 234-248   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
蒋容
王凡
具强阻尼和对数非线性源项的P-LAPLACIAN型波动方程解的存在性和爆破
蒋容, 王凡    
西南交通大学数学学院, 四川 成都 611756
摘要:本文研究一类具有强阻尼和对数非线性源项的$\text{p}$-$\text{Laplacian}$型波动方程的初边值问题. 使用$\text{Galerkin}$方法, 借助对数$\text{Sobolev}$不等式, 势阱理论和$\text{Sobolev}$嵌入定理, 证明了弱解的整体存在唯一性, 得到了爆破的最佳条件和能量以多项式衰减的估计, 推广了$p=2$情形的结果.
关键词Galerkin方法    势阱理论    整体解    爆破    能量衰减估计    
GLOBAL EXISTENCE AND BLOW-UP FOR WAVE EQUATION OF P-LAPLACIAN TYPE WITH STRONG DAMPING AND LOGARITHMIC NON-LINEAR SOURCES
JIANG Rong, WANG Fan    
School of Mathematics, Southwest Jiaotong University, Chengdu 611756, China
Abstract: In this paper, we study the initial boundary value problem of a class of $p-Laplacian$ wave equations with strong damping and logarithmic nonlinear source terms. By means of Galerkin method, Logarithmic Sobolev inequality, potential well theory and Sobolev embedding theorem, we prove the uniqueness of the global existence of the weak solution, obtain the optimal conditions for blow-up and the estimation of the energy decay by polynomial of weak solutions, which generalize the results for the case of $p=2$.
Keywords: Galerkin method     potential well theory     global solution     blow-up     energy decay estimates    
1 引言

本文研究如下具有强阻尼和对数非线性源项的p-Laplacian型波动方程的初边值问题

$ \begin{align} \left\{ \begin{aligned} &{u_{tt}} + {\Delta _p}u - \Delta {u_t} = |u{|^{p - 2}}u\ln |u|,(x,t) \in \Omega \times (0,T),\\ &u(x,0) = {u_0}(x),{u_t}(x,0) = {u_1}(x),x \in \Omega ,\\ &u(x,t) = 0,(x,t) \in \partial \Omega \times [0,T], \end{aligned} \right. \end{align} $ (1.1)

其中$ \Omega \subset {R^n} $$ \left( {n \ge 1} \right) $是一个具有光滑边界$ \partial \Omega $的有界区域, $ {\Delta _p}u = - div( {\left| {\nabla u} \right|^{p - 2}}\nabla u) $, $ {u_0}(x) \in {W^{1,p}}(\Omega ) $, $ {u_1} \in {L^2}(\Omega ) $, 指数$ p $满足

$ (H)\qquad2 < p < + \infty ,n \le p;\quad2 < p \le \frac{{np}}{{n - p}},n > p. $

非线性波动方程可用来描述物理学和其他应用科学中的许多现象, 如粘弹性力学和量子力学理论[1, 2], 目前关于其解的性质已有许多文献, 例如[35]. 考虑如下p-Laplacian型波动方程的初边值问题

$ \begin{align} \left\{ \begin{aligned} &{u_{tt}} + {\Delta _p}u = |u{|^{r - 2}}u,(x,t) \in \Omega \times (0,T),\\ &u(x,0) = {u_0}(x),{u_t}(x,0) = {u_1}(x),x \in \Omega ,\\ &u(x,t) = 0,(x,t) \in \partial \Omega \times [0,T], \end{aligned} \right. \end{align} $ (1.2)

由势阱法可定义方程(1.2)的势阱深度Tsutsumi [8]得到了在Ibrahim和Lyaghfouri[12]得到了解的Ye[13]等人通过势阱法及对数Sobolev不等式证明了方程整体解的存在性, 并用凸方法得到了解的$ L^2 $范数在有限时刻爆破.

对于问题

$ \begin{align} \left\{ \begin{aligned} &{u_{tt}} + {\Delta _p}u - \Delta {u_t} = f(u),(x,t) \in \Omega \times (0,T),\\ &u(x,0) = {u_0}(x),{u_t}(x,0) = {u_1}(x),x \in \Omega ,\\ &u(x,t) = 0,(x,t) \in \partial \Omega \times [0,T], \end{aligned} \right. \end{align} $ (1.3)

其中$ f \in {C^1} $, $ \left| {f(u)} \right| \le c{\left| u \right|^r} $, $ \left| u \right| \ge 1 $, $ 1 \leq r<\frac{5 p}{2(3-p)} $, 定义方程(1.3)的能量泛函为

$ E(t):=\frac{1}{2}\left\|u_{t}(t)\right\|_{2}^{2}+\frac{1}{p}\|\nabla u(t)\|_{p}^{p}-\displaystyle{\int}_{\Omega} F(u(t)) d x, $

其中Pei[14]研究了在Chen[15]等人使用Galerkin方法证明了解的存在性, 得到了解以多项式衰减的估计. 若源项为对数非线性项, 当Di[16]等人利用势阱法考虑了全局解的存在唯一性, 解的衰减估计以及解爆破的上下界. Ma[17]得到了解以指数衰减的估计和解在无穷时刻爆破.若源项为非线性项, 当Zu[18]$ 3 $维情况下对上述结果进行推广得出在不同的初始能量下弱解在有限时刻爆破的上界及下界.

受文[16]的启发, 本文进一步考虑$ p>2 $时解的存在性, 衰减估计和爆破情况, 并结合文献[18]中得到解的衰减估计的方法, 对数Sobolev不等式, 势阱理论和Sobolev嵌入定理, 使用Galerkin方法得到本文结论.

为了说明本文的主要结果,下面引入能量泛函

$ \begin{gather} E(t): = E(u,{u_t}) = \frac{1}{2}{\left\| {{u_t}} \right\|^2} + \frac{1}{p}\left\| {\nabla u} \right\|_p^p + \frac{1}{{{p^2}}}\left\| u \right\|_p^p - \frac{1}{p}\displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| u \right|dx, \end{gather} $ (1.4)
$ \begin{gather} E(0) = \frac{1}{2}{\left\| {{u_1}} \right\|^2} + \frac{1}{p}\left\| {\nabla {u_0}} \right\|_p^p + \frac{1}{{{p^2}}}\left\| {{u_0}} \right\|_p^p - \frac{1}{p}\displaystyle{\int\limits_\Omega} {{{\left| {{u_0}} \right|}^p}\ln } \left| {{u_0}} \right|dx, \end{gather} $ (1.5)
$ \begin{gather} J(u) = \frac{1}{p}\left\| {\nabla u} \right\|_p^p + \frac{1}{{{p^2}}}\left\| u \right\|_p^p - \frac{1}{p}\displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| u \right|dx, \end{gather} $ (1.6)
$ \begin{gather} I(u) = \left\| {\nabla u} \right\|_p^p - \displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| u \right|dx, \end{gather} $ (1.7)

下面的定理为本文的主要结论.

定理1.1    假设$ (H) $成立, $ u_{0} \in W_{0}^{1, p}(\Omega) $, $ u_{1} \in L^{2}(\Omega) $, $ 0 < E(0) < d $, $ I(u_0) >0 $, 那么问题(1.1)存在唯一整体解$ u(x,t) $满足$ u \in {L^\infty }(0,\infty ;W_0^{1,p}) $, $ {u_t} \in {L^2}(0,\infty ;W_0^{1,2}) $.

定理1.2    假设$ {u_0} $, $ {u_1} $, $ p $满足定理1.1, $ u(x,t) $是问题(1.1)的解, 则存在一个正常数$ C = C({u_0},{u_1}) $, 使得能量泛函$ E(t) $满足以下多项式衰减估计

$ \begin{align} \begin{aligned} E(t) \le C{(1 + t)^{ - p/ (p - 2)}},\quad\forall t \ge 0. \end{aligned} \end{align} $ (1.8)

定理1.3    假设$ (H) $成立, $ u_{0} \in W_{0}^{1, p}(\Omega) $, $ u_{1} \in L^{2}(\Omega) $, $ \int_{\Omega} u_{0} u_{1} dx>0 $, $ 0 < E(0) < d $, $ I(u_0) <0 $, 则问题(1.1)的弱解在有限时间$ {T^*} $内爆破, 即

$ \begin{align} \begin{aligned} \mathop {\lim }\limits_{t \to {T^{ * - }}} \left( {{{\left\| u \right\|}^2} + \displaystyle{\int\limits_0^t} {{{\left\| {\nabla u} \right\|}^2}} dt} \right) = + \infty . \end{aligned} \end{align} $ (1.9)

且时间$ {T^*} $的上限如下

$ \begin{align} \begin{aligned} T^{*} \leq \frac{2 b {\eta ^2}+2\left\|u_{0}\right\|_{2}^{2}}{(p-2) b\eta+(p-2) \int_{\Omega} u_{0} u_{1} d x-2\left\|\nabla u_{0}\right\|_{2}^{2}}, \end{aligned} \end{align} $ (1.10)

其中$ b = d - E(0) > 0 $, $ \eta > \max \left\{ {0,\frac{{2{{\left\| {{u_0}} \right\|}^2} - (p - 2) {\int_{\Omega} u_{0} u_{1} dx}}}{{b(p - 2)}}} \right\} $.

2 预备知识

首先, 我们介绍一些将在整篇论文中使用的定义和引理.

为了方便, 本文中所提到的$ C $是一个不依赖于未知函数的正常数, 在不同地方其具体值可能不同. 我们定义这些符号$ W_0^{1,p}(\Omega ) = W_0^{1,p}, {L^2}(\Omega ) = {L^2}, {\left\| u \right\|_{{L^p}(\Omega )}} = {\left\| u \right\|_p}, {\left\| u \right\|_{{L^2}(\Omega )}} = \left\| u \right\|, {(u,v) = \displaystyle{\int}_\Omega {uv} dx,u,v \in W_0^{1,p}.} $

为了证明方程解的整体存在性,还需定义泛函

$ \begin{gather} \mathcal {N} = \{ u \in W_0^{1,p}\backslash \{ 0\} |I(u) = 0,{\left\| {\nabla u} \right\|_p} \ne 0\} , \end{gather} $ (2.1)

根据(1.6), (1.7),

$ \begin{align} J(u) = \frac{1}{p}I(u) + \frac{1}{{{p^2}}}\left\| u \right\|_p^p, \end{align} $ (2.2)

定义集合

$ \begin{gather} W = \{ u \in W_0^{1,p}|J(u) < d,I(u) > 0\} \cup \{ 0\} , \end{gather} $ (2.3)
$ \begin{gather} V = \{ u \in W_0^{1,p}|J(u) < d,I(u) < 0\}, \end{gather} $ (2.4)

以及定义势阱深度

$ \begin{align} d = \inf \{ \mathop {\sup }\limits_{\lambda > 0} J(\lambda u)|u \in W_0^{1,p}\backslash \{ 0\},{\left\| {\nabla u} \right\|_p} \ne 0\} = \mathop {\inf }\limits_{u \in \mathcal{N}} J(u). \end{align} $ (2.5)

在本文中, 我们考虑问题(1.1)的弱解$ u(x,t) $, 其定义如下. 在不造成混淆的情况下, 我们有时会用$ u(t) $来表示$ u(x,t) $.

定义2.1 (弱解)    若$ u(0) = {u_0} \in W_0^{1,p} $, $ {u_t}(0) = {u_1} \in {L^2} $, 且$ u \in {L^\infty }(0,T ;W_0^{1,p} $), $ {u_t} \in {L^2}(0,T ;W_0^{1,2}) $, 满足$ \left( {{u_t}(t),v} \right) + \displaystyle{\int}_0^t {\left( {|\nabla u{|^{p - 2}}\nabla u,\nabla v} \right)} dt + \left( {\nabla u,\nabla v} \right) = \displaystyle{\int\limits_0^t} {\left( {|u{|^{p - 2}}u\ln |u|,v} \right)} dt + \left( {{u_1},v} \right) + \left( {\nabla {u_0},\nabla v} \right), \forall v \in W_0^{1,p}. $则称$ u(x,t) $是问题(1.1)在$ \Omega \times \left( {0,T} \right) $的弱解.

下面给出需要在定理证明过程中用到的引理.

引理2.4    [19]$ p $满足$ 1 \le p < n $, 对一切$ u \in H_0^1 $, 有

$ \begin{align} \begin{aligned} {\left\| u \right\|_q} \le C{\left\| {\nabla u} \right\|_p}, \end{aligned} \end{align} $ (2.6)

其中$ q $满足如下关系

$ \begin{equation} \begin{cases} 2 \le q < + \infty ,&\text{如果} 2 \le n \le p;\\ 2 \le q < \frac{{np}}{{n - p}},&\text{如果} 2 < p < n. \end{cases} \notag \end{equation} $

引理2.5    [20][$ {L^p} $-对数Sobolev不等式]若$ u \in H_0^1 $, 有

$ \begin{align} \begin{aligned} \displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| u \right|dx \le \left\| u \right\|_p^p\ln {\left\| u \right\|_p} + \frac{{(p - 2){a^2}}}{{4\pi }}\left\| u \right\|_p^p + \frac{{{a^2}}}{{2\pi }}\left\| {\nabla u} \right\|_p^p - \frac{n}{p}(1 + \ln a)\left\| u \right\|_p^p, \end{aligned} \end{align} $ (2.7)

其中$ a >0 $是一个常数.

引理2.6    [21]假设$ E(t) $是一非增长函数, 常数$ q \ge 0 $, $ \gamma > 0 $, 满足

$ \begin{align} \begin{aligned} \int\limits_S^\infty {{E^{q + 1}}(t)} dt \le {\gamma ^{ - 1}}{E^q}(0)E(S),\quad\forall S \ge 0. \end{aligned} \end{align} $ (2.8)

则有

$ \begin{gather} E(t) \le E(0){(\frac{{1 + q}}{{1 + q\gamma t}})^{1/q}},\quad\forall t \ge 0,q > 0, \end{gather} $ (2.9)
$ \begin{gather} E(t) \le E(0){e^{1 - \gamma t}},\quad\forall t \ge 0,q = 0. \end{gather} $ (2.10)

引理2.7    [22] 假设$ \rho $是一个正常数, 则有

$ \begin{gather} {\phi ^p}\log \phi \le \frac{{{e^{ - 1}}}}{\rho }{\phi ^{p + \rho }},\quad\forall \phi \ge 1, \end{gather} $ (2.11)
$ \begin{gather} \left| {{\phi ^p}\log \phi } \right| \le {(e\rho )^{ - 1}},\quad\forall 0 < \phi < 1. \end{gather} $ (2.12)

引理2.8    [23] 假设$ G(t) $是一个正的二次可微函数, 对$ \forall t > 0 $, 满足

$ \begin{equation} G(t){G^{''}}(t) - (1 + \alpha ){({G^\prime}(t))^2} \ge 0, \end{equation} $ (2.13)

其中$ \alpha > 0 $. 若$ G(t) > 0 $, $ {G^\prime}(t) > 0 $, 则$ \exists {T^ * } \le \frac{{G(0)}}{{\alpha {G^\prime}(0)}} $, 使得

$ \begin{equation} \mathop {\lim }\limits_{t \to {T^{ * - }}} G(t) = \infty . \end{equation} $ (2.14)

同时, 给出势阱深度$ d $和势阱的一些性质.

引理2.9    若$ \forall u \in W_0^{1,p} $, $ {\left\| u \right\|_p} \ne 0 $, 有

(1) $ \mathop {\lim }\limits_{\lambda \to {0^ + }} J(\lambda u) = 0 $, $ \mathop {\lim }\limits_{\lambda \to + \infty } J(\lambda u) = - \infty $

(2) $ \exists {\lambda ^ * } > 0 $, 使得$ \frac{d}{{d\lambda }}J(\lambda u){|_{\lambda = {\lambda ^ * }}} = 0 $;且$ J(\lambda u) $$ 0 < \lambda < {\lambda ^ * } $单调递增, 在$ {\lambda ^ * } < \lambda < + \infty $单调递减;

(3) 当$ 0 < \lambda < {\lambda ^ * } $时, $ I(\lambda u) > 0 $, 而$ {\lambda ^ * } < \lambda < + \infty $时, $ I(\lambda u) < 0 $, 且$ I({\lambda ^ * }u) = 0 $.

     (1)由$ J(\lambda u) $的定义, 对$ \forall u \in W_0^{1,p} $, 有

$ J(\lambda u) = \frac{{{\lambda ^p}}}{p}\left\| {\nabla u} \right\|_p^p - \frac{{{\lambda ^p}}}{p}\displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| u \right|dx - \frac{{{\lambda ^p}}}{p}\left\| u \right\|_p^p\ln \lambda + \frac{{{\lambda ^p}}}{{{p^2}}}\left\| u \right\|_p^p. $

$ (1) $成立.

(2) 对$ J(\lambda u) $求导, 可得

$ \frac{d}{{d\lambda }}J(\lambda u) = {\lambda ^{p - 1}}(\left\| {\nabla u} \right\|_p^p - \displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| u \right|dx - \displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| \lambda \right|dx). $

$ \frac{d}{{d\lambda }}J(\lambda u) = g(\lambda ) $, 有

$ \begin{equation} \begin{split} \frac{d}{{d\lambda }}g(\lambda ) = (p - 1){\lambda ^{p - 2}}(\left\| {\nabla u} \right\|_p^p - \displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| u \right|dx - \displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| \lambda \right|dx) - {\lambda ^{p - 2}}\left\| u \right\|_p^p. \end{split}\nonumber \end{equation} $

$ \frac{d}{{d\lambda }}J(\lambda u){|_{\lambda = {\lambda ^ * }}} = 0 $, 则

$ {\lambda ^ * } = \exp (\frac{{\left\| {\nabla u} \right\|_p^p - \int\limits_\Omega {{{\left| u \right|}^p}\ln } \left| u \right|dx}}{{\left\| u \right\|_p^p}}). $

且有$ \frac{d}{{d\lambda }}g(\lambda ){|_{\lambda = {\lambda ^ * }}} = - {\lambda ^{p - 2}}\left\| u \right\|_p^p < 0. $满足$ J(\lambda u) $$ 0 < \lambda < {\lambda ^ * } $单调递增, 在$ {\lambda ^ * } < \lambda < + \infty $单调递减.

(3) 由$ I(\lambda u) $的定义, 对$ \forall u \in W_0^{1,p} $, 有

$ I(\lambda u) = {\lambda ^p}(\left\| {\nabla u} \right\|_p^p - \displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| u \right|dx - \displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln } \left| \lambda \right|dx). $

因此, $ I({\lambda ^ * }u) = {\lambda ^ * }\frac{d}{{d{\lambda ^ * }}}J({\lambda ^ * }u) = 0 $.

引理2.10    假设$ u \in W_0^{1,p} $, $ {\left\| {\nabla u} \right\|_p} \ne 0 $, 则有$ d \ge M $, 其中$ M=\frac{1}{p^{2}}(2 \pi)^{\frac{n}{2}} e^{\frac{2(n+p)-p^{2}}{2}} $.

     由引理2.9和(1.6), 可得

$ \sup\limits_{\lambda \geq 0} J(\lambda u) = J({\lambda ^ * }u) = \frac{1}{{{p^2}}}\left\| {{\lambda ^ * }u} \right\|_p^p, $

由引理2.5, 令$ a = \sqrt {2\pi } $, 可知

$ \begin{equation} \begin{split} I(\lambda u) = {\lambda ^p}\left\| {\nabla u} \right\|_p^p - \displaystyle{\int\limits_\Omega} {{{\left| {\lambda u} \right|}^p}\ln } \left| {\lambda u} \right|dx \le \left\| {\lambda u} \right\|_p^p(\frac{n}{p}\ln \sqrt {2\pi } e - \ln {\left\| {\lambda u} \right\|_p} - \frac{{p - 2}}{2}). \end{split}\nonumber \end{equation} $

又由$ I({\lambda ^ * }u) = 0 $可知$ (\frac{n}{p}\ln \sqrt {2\pi } e - \ln {\left\| {{\lambda ^ * }u} \right\|_p} - \frac{{p - 2}}{2}) \le 0, $从而得到$ \left\|{\lambda ^ * }u\right\|_{p}^{p} \geq(2 \pi)^{\frac{n}{2}}e^{\frac{2(n+p)-p^{2}}{2}}. $

因此,根据$ d $的定义,可得$ d \ge M > 0 $.

3 解的全局存在唯一性

在这一节中, 我们将证明弱解的全局存在性和唯一性.

证明定理1.1  证明解的整体存在性分为三个步骤. 首先, 第一步, 构造近似解. 假设$ \left\{ {{w_j}} \right\}_{j = 1}^\infty $$ W_0^{1,p} $中的一组基, 且$ {w_j} $是满足狄利克雷边界条件的Laplace算子的特征函数, 即

$ \begin{align} \left\{ \begin{aligned} &- \Delta {w_j} = \lambda_j {w_j},x \in \Omega ,\\ &{w_j} = 0,x \in \partial \Omega. \end{aligned} \right. \end{align} $ (3.1)

同时$ \left\{ {{w_j}} \right\}_{j = 1}^\infty $$ {L^2} $中是标准正交的, $ {E_v} $是由$ \left\{ {{w_1},{w_2}, \cdots ,{w_j}} \right\} $张成的线性子空间. 接下来, 构造问题(1.1)的近似解$ {u_m}(x,t) = \sum\limits_{i = 1}^m {{g_{jm}}(t)} {w_j},{g_{jm}}(t) \in {C^2}[0,T],\forall T > 0, $其中未知函数$ {g_{jm}}(t) $满足以下关系

$ \begin{equation} \begin{split} &\left( {{u_{mt}}(t),{w_j}} \right) + \displaystyle{\int\limits_0^t} {\left( {|\nabla {u_m}(t){|^{p - 2}}\nabla {u_m}(t),\nabla {w_j}} \right)} dt + \left( {\nabla {u_m},\nabla {w_j}} \right)\\ =& \displaystyle{\int\limits_0^t} {\left( {|{u_m}{|^{p - 2}}{u_m}\ln |{u_m}|,{w_j}} \right)} dt + \left( {{u_{1m}},{w_j}} \right) + \left( {\nabla {u_{0m}},\nabla {w_j}} \right). \end{split} \end{equation} $ (3.2)

其初值条件为: $ {u_m}(0) = {u_{0m}} $, $ {u_{mt}}(0) = {u_{1m}}. $由于$ W_0^{1,p} $$ {L^2} $中稠密, 则初值条件满足

$ \begin{equation} \begin{split} {u_{0m}} = \sum\limits_{i = 1}^m {{g_{jm}}(0)} {w_j} = \sum\limits_{i = 1}^m {{\alpha _{jm}}(t)} {w_j} \to {u_0}(x) \text{在}W_0^{1,p} \text{中},m \to \infty, \end{split} \end{equation} $ (3.3)
$ \begin{equation} \begin{split} {u_{1m}} = \sum\limits_{i = 1}^m {{g_{jmt}}(0)} {w_j} = \sum\limits_{i = 1}^m {{\beta _{jm}}(t)} {w_j} \to {u_1}(x) \text{在 }{L^2}\text{中},m \to \infty. \end{split} \end{equation} $ (3.4)

因此, 根据常微分方程中的Picard迭代法, 问题$ (3.2) $-$ (3.4) $$ \left[ {0,t_m} \right] $, $ 0 < t_m < T $中存在一个局部解$ {u_m}(t) $.

第二步, 为了证明解的整体存在性,需要对构造的近似解$ {u_m}(x,t) $进行先验估计. 先对(3.2)关于$ t $求导, 然后在其两边同时乘以$ g_{jmt} $, 得到

$ \begin{align} \left( {{u_{mtt}},{u_{mt}}} \right) + \left( {|\nabla {u_m}{|^{p - 2}}\nabla {u_m},\nabla {u_{mt}}} \right) + \left( {\nabla {u_m},\nabla {u_{mt}}} \right) = \left( {|{u_m}{|^{p - 2}}{u_m}\ln |{u_m}|,{u_{mt}}} \right). \end{align} $ (3.5)

对(3.5)关于$ j $$ 1 $$ m $求和, 并在$ [0,t] $上进行积分, 得到

$ \begin{align} \begin{aligned} E({u_m},{u_{mt}}) + \displaystyle{\int\limits_0^t} {{{\left\| {\nabla {u_{mt}}} \right\|}^2}d\tau } = E({u_{0m}},{u_{1m}}) < M \le d. \end{aligned} \end{align} $ (3.6)

接下来, 证明

$ \begin{align} \begin{aligned} ({u_m},{u_{mt}}) \in W,\quad\forall t \ge 0. \end{aligned} \end{align} $ (3.7)

假设(3.7)不成立, 即存在最小时间$ {t^*} $, 使得$ ({u_m},{u_{mt}}) \in \partial W $, 即有

$ \begin{align} \begin{aligned} E({u_m}({t^ * }),{u_{mt}}({t^ * })) = d, \end{aligned} \end{align} $ (3.8)

或者

$ \begin{align} \begin{aligned} I({u_m}({t^ * })) = 0. \end{aligned} \end{align} $ (3.9)

由(3.6)可以知道, (3.8)显然不成立. 若(3.9)成立, 根据$ d $的定义, 可以得到$ E({u_m}({t^ * }),{u_{mt}}({t^ * })) > J({u_m}({t^ * })) \ge d $, 这也是不成立的. 因此, 由(3.6)和(3.7)可以得到

$ \begin{align} \begin{aligned} \frac{1}{2}{\left\| {{u_{mt}}} \right\|^2} + \frac{1}{{{p^2}}}\left\| {{u_m}} \right\|_p^p + \displaystyle{\int\limits_0^t} {{{\left\| {\nabla {u_{mt}}} \right\|}^2}d\tau } < E({u_{0m}},{u_{1m}}) < M \le d. \end{aligned} \end{align} $ (3.10)

则有

$ \begin{gather} {\left\| {{u_{mt}}} \right\|^2} < 2M, \end{gather} $ (3.11)
$ \begin{gather} \left\| {{u_m}} \right\|_p^p < M{p^2}, \end{gather} $ (3.12)
$ \begin{gather} \displaystyle{\int\limits_0^t} {{{\left\| {\nabla {u_{mt}}} \right\|}^2}d\tau } < M. \end{gather} $ (3.13)

根据(1.6), (1.7), 引理2.5, 令$ a = \sqrt \pi $, 整理可得

$ \begin{align} \left\| {\nabla {u_m}} \right\|_p^p &= 2I({u_m}) + 2\displaystyle{\int\limits_\Omega} {{{\left| {{u_m}} \right|}^p}\ln } \left| {{u_m}} \right|dx - \left\| {\nabla {u_m}} \right\|_p^p \\ &= 2pJ({u_m}) - \left\| {\nabla {u_m}} \right\|_p^p - \frac{2}{p}\left\| {{u_m}} \right\|_p^p + 2\displaystyle{\int\limits_\Omega} {{{\left| {{u_m}} \right|}^p}\ln } \left| {{u_m}} \right|dx \\ &\le 2pJ({u_m}) - \frac{2}{p}\left\| {{u_m}} \right\|_p^p + \frac{{p - 2}}{2}\left\| {{u_m}} \right\|_p^p - \frac{n}{p}(\ln \pi {e^2})\left\| {{u_m}} \right\|_p^p + 2\ln {\left\| {{u_m}} \right\|_p}\left\| {{u_m}} \right\|_p^p \\ &\le 2pM + \frac{{(p - 2){p^2}}}{2}M + 2pM\ln (M{p^2}) \\ &\le {C_M}. \end{align} $ (3.14)

根据$ \left( {{\Delta _p}u,v} \right) = \left( {|\nabla u(t){|^{p - 2}}\nabla u(t),\nabla v} \right) $, 由(3.14)和Hölder不等式, 可得

$ \begin{gather} {\left\| {{\Delta _p}u} \right\|_{{W^{ - 1,p^\prime}}}} \le \left\| {\nabla u} \right\|_p^{p - 1} \le C_M^{p - 1}. \end{gather} $ (3.15)

第三步, 对近似解$ {{u_m}} $取极限. 由估计$ (3.11)-(3.15) $可知, 存在一个函数列$ \left\{ {{u_m}} \right\} $的子序列(仍记为$ \left\{ {{u_m}} \right\} $)和函数$ u $, 使得

$ \begin{gather} u_{m} \stackrel{*}{\rightharpoonup}u \text {在}L^{\infty}\left(0,\infty ; W_0^{1,p}\right)\text{中}, \end{gather} $ (3.16)
$ \begin{gather} u_{mt} \stackrel{}{\rightharpoonup} u \text{在}L^{2}\left(0, \infty ; W_0^{1,2}\right)\text{中}, \end{gather} $ (3.17)
$ \begin{gather} \Delta _ { p } u _ { m } \stackrel{*}{\rightharpoonup} \chi \text{在}L^{\infty}\left(0,\infty ; {W^{ - 1,p^\prime}}\right)\text{中}. \end{gather} $ (3.18)

其中$ \chi = {\Delta _p}u $(证明见[13]). 利用Aubin–Lions–Simon[24]引理和上式可知

$ \begin{gather} {u_m} \to u \text{在}C([0,\infty);{L^2})\text{中}, \end{gather} $ (3.19)
$ \begin{gather} |{u_m}{|^{p - 2}}{u_m}\ln |{u_m}|\xrightarrow{a.e.}|u{|^{p - 2}}u\ln |u|,Q = [0,\infty) \times \Omega . \end{gather} $ (3.20)

因此, 令$ {\Omega _1} = \left\{ {x \in \Omega |\left| {{u_m}(x,t)} \right| \le 1} \right\},{\Omega _2} = \left\{ {x \in \Omega |\left| {{u_m}(x,t)} \right| \ge 1} \right\} $, 通过引理2.4, 引理2.7和(3.14), 得到

$ \begin{align} \displaystyle{\int}_\Omega {{{\left| {{\phi ^{(m)}}} \right|}^{{p^\prime }}}} dx &= \displaystyle{\int}_{x \in \Omega_1 } {{{\left| {{\phi ^{(m)}}} \right|}^{{p^\prime }}}} dx + \displaystyle{\int}_{x \in \Omega_2} {{{\left| {{\phi ^{(m)}}} \right|}^{{p^\prime }}}} dx \\ &\le {(e(p - 1))^{ - {p^\prime }}}|\Omega | + {(e\mu )^{ - {p^\prime }}}\displaystyle{\int}_{x \in \Omega_2} {{{\left| {{u_m}} \right|}^{(p - 1 + \mu ){p^\prime }}}} dx \\ &\le {(e(p - 1))^{ - {p^\prime }}}|\Omega | + {(e\mu )^{ - {p^\prime }}}C^{(p - 1 + \mu ){p^\prime }}\left\| {\nabla {u_m}} \right\|_2^{(p - 1 + \mu ){p^\prime }} \\ &\le {(e(p - 1))^{ - {p^\prime }}}|\Omega | + {(e\mu )^{ - {p^\prime }}}C^{(p - 1 + \mu ){p^\prime }}\left( {\frac{{2pM}}{{p - 2}}} \right)\frac{{(p - 1 + \mu ){p^\prime }}}{2}. \end{align} $ (3.21)

其中$ {\phi ^{(m)}} = |{u_m}{|^{p - 2}}{u_m}\ln |{u_m}| $$ {p^\prime } = \frac{p}{{p - 1}} $. 由(3.20), (3.21)有

$ \begin{gather} |{u_m}{|^{p - 2}}{u_m}\ln |{u_m}| \stackrel{*}{\rightharpoonup} |u{|^{p - 2}}u\ln |u|\text{在}{L^\infty }(0,\infty;{L^{p^\prime }})\text{中} . \end{gather} $ (3.22)

$ m \to \infty $, 根据(3.2)得到

$ \begin{equation} \begin{split} &\left( {{u_t}(t),w} \right) + \displaystyle{\int\limits_0^t} {\left( {|\nabla u(t){|^{p - 2}}\nabla u(t),\nabla w} \right)} dt + \left( {\nabla u,\nabla w} \right)\\ =& \displaystyle{\int\limits_0^t} {\left( {|u{|^{p - 2}}u\ln |u|,w} \right)} dt + \left( {{u_1},w} \right) + \left( {\nabla {u_0}, \nabla w} \right),\forall w \in W_0^{1,p}. \end{split}\nonumber \end{equation} $

且由(3.3)和(3.4)知道$ u $满足初值条件. 因此$ u $是问题(1.1)的全局弱解.

接下来, 证明解的唯一性. 假设$ u,v $是问题(1.1)的两个解, 令$ W(t) = {u_t}(t) -{v_t}(t) $, 且$ u(0) = v(0),{u_t}(0) = {v_t}(0) $, $ z = u - v $, 则由问题(1.1)可得

$ \begin{gather} {W_t} + {\Delta _p}u - {\Delta _p}v - \Delta W = f(u) - f(v). \end{gather} $ (3.23)

其中$ f(u) = {\left| u \right|^{p - 2}}u\ln \left| u \right|,u \in R $. 接下来, 将方程(3.23)与$ W $做内积, 并关于$ t $积分, 整理化简得到

$ \begin{align*} &{\left\| {W(t)} \right\|^2} + 2\displaystyle{\int\limits_0^t} {{{\left\| {\nabla W(s)} \right\|}^2}ds} + 2\displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {({{\left| {\nabla u} \right|}^{p - 2}}\nabla u - {{\left| {\nabla v} \right|}^{p - 2}}\nabla v)\nabla W} dxd\tau } \notag\\ =& \displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {({{\left| u \right|}^{p - 2}}u\ln \left| u \right| - {{\left| v \right|}^{p - 2}}v\ln \left| v \right|)W} dxd\tau }\notag \\ =& \displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {((p - 1)({{\left| {u + \theta v} \right|}^{p - 2}}\ln \left| {u + \theta v} \right|) + {{\left| {u + \theta v} \right|}^{p - 2}})zW} dxd\tau } \notag\\ \end{align*} $
$ \begin{align} =& \displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {(p - 1)({{\left| {u + \theta v} \right|}^{p - 2}}\ln \left| {u + \theta v} \right|)zW} dxd\tau } + \displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {({{\left| {u + \theta v} \right|}^{p - 2}})zW} dxd\tau } \\ =& {I_1} + {I_2}. \end{align} $ (3.24)

其中$ 0 < \theta < 1 $. 由Poincaré不等式, 令$ {U_\varepsilon } = \varepsilon u + (1 - \varepsilon )v $, $ 0 \le \varepsilon \le 1 $, 可以得到

$ \begin{gather} \left| {\nabla {U_\varepsilon }(\tau )} \right| \le \left| {\nabla u(\tau )} \right| + \left| {\nabla v(\tau )} \right|, \end{gather} $ (3.25)
$ \begin{gather} \left| {\nabla z(\tau )} \right| \le \int\limits_0^\tau {\left| {\nabla W(s)} \right|} ds. \end{gather} $ (3.26)

因此利用Hölder不等式和Sobolev不等式可将(3.24)右边第一项化简为

$ \begin{align} {I_1}& = \displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {(p - 1)({{\left| {u + \theta v} \right|}^{p - 2}}\ln \left| {u + \theta v} \right|)zW} dxd\tau } \\ &\le (p - 1)\displaystyle{\int\limits_0^t} {(\displaystyle{\int\limits_\Omega} {{{\left| {{{\left| {u + \theta v} \right|}^{p - 2}}\ln \left| {u + \theta v} \right|} \right|}^n})dx{)^{\frac{1}{n}}}{{\left\| z \right\|}_{\frac{{2n}}{{n - 2}}}}\left\| W \right\|} d\tau }. \end{align} $ (3.27)

且由引理2.7, 可以得到

$ \begin{equation} \begin{split} \displaystyle{\int\limits_\Omega} {{{\left| {{{\left| {u + v\theta v} \right|}^{p - 2}}\ln \left| {u + \theta v} \right|} \right|}^n})dx} \le (e{(p - 2)^{ - n}})\left| \Omega \right| + {C(e\mu )^{ - n}}{(\frac{{2pM}}{{p - 2}})^{\frac{{(\mu + p - 2)n}}{2}}}. \end{split} \end{equation} $ (3.28)

其中$ \mu > 0 $. 将(3.28)代入(3.27)可得

$ \begin{equation} \begin{split} {I_1} \le C\displaystyle{\int\limits_0^t} {{{\left\| {\nabla W(s)} v\right\|}^2}ds} . \end{split} \end{equation} $ (3.29)

同理, (3.24)右边第二项可化简为

$ \begin{align} {I_2}& = \displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {({{\left| {u + \theta v} \right|}^{p - 2}})zW} dxd\tau } \le \displaystyle{\int\limits_0^t} {\left\| {u + \theta v} \right\|_{n(p - 2)}^{p - 2}{{\left\| z \right\|}_{\frac{{2n}}{{n - 2}}}}\left\| W \right\|d\tau } \\& \le C\displaystyle{\int\limits_0^t} {{{\left\| {\nabla u + \theta \nabla v} \right\|}^{p - 2}}\left\| {\nabla z} \right\|\left\| W \right\|d\tau } \le C\displaystyle{\int\limits_0^t} {{{\left\| {\nabla W(s)} \right\|}^2}ds} . \end{align} $ (3.30)

(3.24)左边第三项利用Hölder不等式可化简为

$ \begin{align} \displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {\left| {({{\left| {\nabla u} \right|}^{p - 2}}\nabla u - {{\left| {\nabla v} \right|}^{p - 2}}\nabla v)\nabla W} \right|} dxd\tau } &\le \displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {\left| {\int\limits_0^1 {\frac{d}{{d\varepsilon }}({{\left| {\nabla {U_\varepsilon }} \right|}^{p - 2}}\nabla {U_\varepsilon })} d\varepsilon} \right|\left| {\nabla W} \right|} dxd\tau } \\ &\le (p - 1)\displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {\int\limits_0^1 {{{\left| {\nabla {U_\varepsilon }} \right|}^{p - 2}}{\nabla z(\tau )}} \left| {\nabla W} \right|} d\varepsilon dxd\tau } = {I_3}. \end{align} $ (3.31)

因此, 可得

$ \begin{align} &{I_3} \le C\displaystyle{\int\limits_0^t} {\displaystyle{\int\limits_\Omega} {\int\limits_0^\tau {({{\left| {\nabla u(\tau )} \right|}^{p - 2}} + {{\left| {\nabla v(\tau )} \right|}^{p - 2}})\left| {\nabla W(\tau )} \right|} \left| {\nabla W(s)} \right|} dxdsd\tau } \\ &\le C\displaystyle{\int\limits_0^t} {\int\limits_0^\tau {({{\left\| {\nabla u(\tau )} \right\|}_p^{p - 2}} + {{\left\| {\nabla v(\tau )} \right\|}_p^{p - 2}})\left\| {\nabla W(s)} \right\|} \left\| {\nabla W(\tau )} \right\|dxdsd\tau } \\ &\le C\displaystyle{\int\limits_0^t} {\int\limits_0^\tau {\left\| {\nabla W(s)} \right\|} \left\| {\nabla W(\tau )} \right\|dsd\tau } \le C{(\displaystyle{\int\limits_0^t} {\left\| {\nabla W(s)} \right\|ds} )^2} \\&\le Ct\displaystyle{\int\limits_0^t} {{{\left\| {\nabla W(s)} \right\|}^2}ds} . \end{align} $ (3.32)

由(3.29), (3.30)和(3.32)可得

$ \begin{equation} \begin{split} {\left\| {W(t)} \right\|^2} + 2\displaystyle{\int\limits_0^t} {{{\left\| {\nabla W(s)} \right\|}^2}ds} \le {C_t}\displaystyle{\int\limits_0^t} {({{\left\| {\nabla W(s)} \right\|}^2})ds} . \end{split} \end{equation} $ (3.33)

因此, 由(2.5)可知, $ \exists {T_1} > 0 $, 使得

$ \begin{equation} \begin{split} W(t) = 0,\quad 0 \le t \le {T_1}. \end{split} \end{equation} $ (3.34)

$ u = v $, 则问题(1.1)存在唯一的整体弱解.

4 能量衰减估计

在本节中, 通过给定一些适当的条件, 建立了问题(1.1)的能量的多项式衰减估计.

证明定理1.2     根据方程(1.1), 可以得到

$ \begin{equation} \begin{split} \frac{d}{{dt}}E(t) + {\left\| {\nabla {u_t}} \right\|^2} = 0,\quad\forall t \ge 0. \end{split} \end{equation} $ (4.1)

$ E(t) $$ [0,\infty ) $上是一个非递增函数. 假设$ q = (p - 2)/p > 0 $, 将方程(1.1)两端与$ {E^q}(t)u(t) $做内积, 得到

$ \begin{align} \displaystyle{\int}_S^T {{E^q}} (t)\displaystyle{\int}_\Omega u \left( {{u_{tt}} - {\Delta _p}u - \Delta {u_t} - {{\left| u \right|}^{p - 2}}u\ln \left| u \right|} \right)dxdt = 0, \quad \forall T>S \geq 0. \end{align} $ (4.2)

将等式(4.2)中的每一项分别展开, 有

$ \begin{align*} &\displaystyle{\int}_S^T {{E^q}} (t)\left( {u,{u_{tt}}} \right)dt= \left. {{E^q}(t)\left( {u,{u_t}} \right)} \right|_S^T \notag \\ &- \displaystyle{\int}_S^T {\left( {q{E^{q - 1}}(t){E^\prime }(t)\left( {u,{u_t}} \right) + {E^q}(t){{\left\| {{u_t}(t)} \right\|}^2}} \right)} dt,\notag \\ &- \displaystyle{\int}_S^T {{E^q}} (t)\left( {u,{\Delta _p}u} \right)dt = \displaystyle{\int}_S^T {{E^q}} (t)\left\| {\nabla u(t)} \right\|_p^pdt ,\notag\\ \end{align*} $
$ \begin{align} &- \displaystyle{\int}_S^T {{E^q}} (t)\left( {u,\Delta {u_t}} \right)dt = \displaystyle{\int}_S^T {{E^q}} (t)\left( {\nabla u,\nabla {u_t}} \right)dt, \\ &- \displaystyle{\int}_S^T {{E^q}} (t)\left( {u,{{\left| u \right|}^{p - 2}}u\ln \left| u \right|} \right)dt = \displaystyle{\int}_S^T {{E^q}} (t)\displaystyle{\int\limits_\Omega} {{{\left| u \right|}^p}\ln \left| u \right|} dt . \end{align} $ (4.3)

由(4.2)可得

$ \begin{align} p\displaystyle{\int}_S^T {{E^{q + 1}}(t)} dt =& \left. { - {E^q}(t)\left( {u,{u_t}} \right)} \right|_S^T + q\displaystyle{\int}_S^T {{E^{q - 1}}(t){E^\prime }(t)\left( {u,{u_t}} \right)} dt\\ &+ (1 + \frac{p}{2})\displaystyle{\int}_S^T {{E^q}(t){{\left\| {{u_t}(t)} \right\|}^2}} dt - \displaystyle{\int}_S^T {{E^q}} (t)\left( {\nabla u,\nabla {u_t}} \right)dt \\ &+ \frac{1}{p}\displaystyle{\int}_S^T {{E^q}} (t)\left\| {u(t)} \right\|_p^pdt = {G_1} + {G_2} + {G_3} + {G_4} + {G_5} . \end{align} $ (4.4)

根据引理2.4, (1.4)和(4.1),

$ \begin{equation} \begin{split} \left\| {\nabla {u_t}(t)} \right\| \le {( - {E^\prime }(t))^{1/2}},{\left\| {\nabla u(t)} \right\|_p} \le p{E^{1/p}}(t),\quad\forall t \ge 0. \end{split} \end{equation} $ (4.5)
$ \begin{equation} \begin{split} \left| {{E^q}(t)\left( {u,{u_t}} \right)} \right| \le {E^q}(t)\left\| {u(t)} \right\|\left\| {{u_t}(t)} \right\| \le C{E^q}(t){\left\| {\nabla u(t)} \right\|_p}\left\| {{u_t}(t)} \right\| \le C{E^{q + 1 + 1/p}}(t). \end{split} \end{equation} $ (4.6)

因为$ E(t) $是一个非增长函数, 则$ {G_1} $可化简为

$ \begin{equation} \begin{split} \left| {{G_1}} \right| \le C{E^{q + 1 + 1/p}}(S),\quad\forall T \ge S \ge 0. \end{split} \end{equation} $ (4.7)

同理, 可把$ {G_2} $, $ {G_3} $, $ {G_4} $, $ {G_5} $化简,

$ \begin{equation} \begin{split} &\left| {{G_2}} \right| \\ \le& C\displaystyle{\int}_S^T {{E^{q - 1}}} (t)\left| {{E^\prime }(t)} \right|\left\| {u(t)} \right\|\left\| {{u_t}(t)} \right\|dt \le C\displaystyle{\int}_S^T {{E^{q + 1/p}}} (t)\left| {{E^\prime }(t)} \right|dt \le C{E^{q + 1 + 1/p}}(S). \end{split} \end{equation} $ (4.8)
$ \begin{equation} \begin{split} \left| {{G_3}} \right| \le C\displaystyle{\int}_S^T {{E^q}(t){{\left\| {\nabla {u_t}(t)} \right\|}^2}} dt = C\displaystyle{\int}_S^T {{E^q}(t)( - {E^\prime }(t))} dt \le C{E^{q + 1}}(S). \end{split} \end{equation} $ (4.9)
$ \begin{align} \left| {{G_4}} \right| &\le C\displaystyle{\int}_S^T {{E^q}} (t)\left\| {\nabla u(t)} \right\|\left\| {\nabla {u_t}(t)} \right\|dt \le C\displaystyle{\int}_S^T {{E^{q + 1/p}}} (t){( - {E^\prime }(t))^{1/2}}dt \\ &\le \displaystyle{\int}_S^T {{E^{q + 1}}} (t)dt + C\displaystyle{\int}_S^T {{E^{q + 2/p - 1}}(t)( - {E^\prime }(t))} dt \le \displaystyle{\int}_S^T {{E^{q + 1}}} (t)dt + C{E^{q + 2/p}}(S). \end{align} $ (4.10)
$ \begin{equation} \begin{split} \left| {{G_5}} \right| \le C\displaystyle{\int}_S^T {{E^q}} (t)\left\| {\nabla u(t)} \right\|_p^pdt \le C{E^{q + 1}}(S). \end{split} \end{equation} $ (4.11)

于是由$ (4.4) $$ {G_2} $, $ {G_3} $, $ {G_4} $, $ {G_5} $的估计, 可得

$ \begin{equation} \begin{split} \displaystyle{\int}_S^T {{E^{q + 1}}} (t)dt &\le C({E^{q + 1 + 1/p}}(S) + {E^{q + 1}}(S) + {E^{q + 2/p}}(S))\\ &\le CE(S)({E^{q + 1/p}}(S) + {E^q}(S) + {E^{q + 2/p - 1}}(S))\\ &\le CE(S){E^q}(0)({E^{1/p}}(0) + 1 + {E^{2/p - 1}}(0)). \end{split} \end{equation} $ (4.12)

$ T \to \infty $,对$ \forall T \ge S \ge 0 $, 可以得到

$ \begin{equation} \begin{split} \displaystyle{\int}_S^\infty {{E^{q + 1}}} (t)dt \le {\gamma ^{ v- 1}}E(S){E^q}(0),\quad\forall S \ge 0. \end{split} \end{equation} $ (4.13)

因此, 根据引理2.6, 可得

$ \begin{equation} \begin{split} E(t) \le E(0){\left( {\frac{{1 + q}}{{1 + q\gamma vt}}} \right)^{1/q}} \le CE(0){(1 + t)^{ - p/(p - 2)}}. \end{split} \end{equation} $ (4.14)

于是问题(1.1)的能量是以多项式衰减的.

5 解爆破的最佳条件

在本节中, 我们考虑了$ ({u_0},{u_1}) \in V $的弱解在有限时间内爆破的结果, 并给出了问题(1.1)爆破时间的上限.

引理5.11    假设$ ({u_0},{u_1}) \in V $$ E(0) < d $, 则对$ \forall t \in [0,T) $$ (u,{u_t}) \in V $, 且满足

$ \begin{equation} \begin{split} \left\| u \right\|_p^p \ge {p^2}d,\quad \forall t \in [0,T). \end{split} \end{equation} $ (5.1)

     假设在$ t = {t_0} $时, $ (u,{u_t}) \notin V $. 即存在一列$ \{ {t_n}\} $, 当$ {t_n} \to t_0^ - $, 有$ I(u({t_n})) < 0 $, $ E({t_n}) < d $. 利用$ {\left\| \cdot \right\|_{W_0^{1,p}}} $的弱下半连续性, 可得

$ \begin{equation} \begin{split} I(u({t_0})) < \mathop {\lim }\limits_{n \to \infty } \inf I(u({t_n})) < 0,\quad E({t_0}) < \mathop {\lim }\limits_{n \to \infty } \inf E({t_n}) < d. \end{split} \end{equation} $ (5.2)

由于$ (u({t_0}),{u_t}({t_0})) \notin V $, 则有$ I(u({t_0})) = 0 $或者$ E(u({t_0})) > d $. 但$ E(u({t_0})) > d $与(5.2)矛盾; 且若$ I(u({t_0})) = 0 $, 根据$ d $的定义, 得到$ E(u({t_0})) > d $, 与(5.2)矛盾. 即$ (u,{u_t}) \in V $. 因此, 根据引理2.9和$ (u,{u_t}) \in V $,

$ \begin{equation} \begin{split} d \le J({\lambda ^ * }u) < J(u) < \frac{1}{{{p^2}}}\left\| u \right\|_p^p. \end{split} \end{equation} $ (5.3)

证明定理1.3    这个定理将利用$ Levine $的凹性论证理论来证明. 假设$ u $是问题(1.1)的全局弱解, 则$ {T^ * } = \infty $. 对任一$ T > 0 $, $ b > 0 $, $ \eta > 0 $, 定义$ G(t) $

$ \begin{equation} \begin{split} G(t) = {\left\| u \right\|^2} + \displaystyle{\int}_0^t {{{\left\| {\nabla u} \right\|}^2}} d\tau + (T - t){\left\| {\nabla {u_0}} \right\|^2} + b{\left( {t + \eta } \right)^2}. \end{split} \end{equation} $ (5.4)

首先, $ G(t) $关于$ t $求一阶导, 有

$ \begin{equation} \begin{split} {G^\prime }(t) = 2\displaystyle{\int}_\Omega u {u_t}dx + 2\displaystyle{\int}_0^t {\displaystyle{\int}_\Omega \nabla } u \cdot \nabla {u_t}dxd\tau + 2b\left( {t + \eta } \right) . \end{split} \end{equation} $ (5.5)

$ G(t) $关于$ t $求二阶导, 有

$ \begin{align*} {G^{\prime \prime }}(t) =& 2{\left\| {{u_t}} \right\|^2} + 2\displaystyle{\int}_\Omega {{u_{tt}}} udx - 2\displaystyle{\int}_\Omega u \Delta {u_t}dx + 2b \notag \\ \end{align*} $
$ \begin{align} =& 2{\left\| {{u_t}} \right\|^2} + 2\displaystyle{\int}_\Omega u \left[ { - {\Delta _p}u + |u{|^{p - 2}}u\ln |u|} \right]dx + 2b \\ =& 2{\left\| {{u_t}} \right\|^2} - 2\left\| {\nabla u} \right\|_p^p + 2\displaystyle{\int}_\Omega | u{|^p}\ln |u|dx + 2b \\ =& 2{\left\| {{u_t}} \right\|^2} - 2I(u) + 2b. \end{align} $ (5.6)

化简$ {G^{\prime \prime }}(t) $可得

$ \begin{equation} \begin{split} {G^{\prime \prime }}(t) =& 2{\left\| {{u_t}} \right\|^2} - (2pE(t) - p{\left\| {{u_t}} \right\|^2} - \frac{2}{p}\left\| u \right\|_p^p) + 2b\\ \ge& (p + 2){\left\| {{u_t}} \right\|^2} - 2pE(0) + \frac{2}{p}\left\| u \right\|_p^p + 2p\displaystyle{\int\limits_0^t} {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau + 2b\\ \ge& (p + 2){\left\| {{u_t}} \right\|^2} + 2p(d - E(0)) + 2p\displaystyle{\int\limits_0^t} {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau + 2b. \end{split} \end{equation} $ (5.7)

$ b $的定义, $ p>2 $, 可得

$ \begin{equation} \begin{split} {G^{\prime \prime }}(t) \ge (p + 2)\left[ {\left\| {{u_t}} \right\|_2^2 + \displaystyle{\int}_0^t {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau + b} \right]. \end{split} \end{equation} $ (5.8)

根据(5.5), 有

$ \begin{align} {\left( {{G^\prime }(t)} \right)^2} =& 4{\left[ {\left( {u,{u_t}} \right) + \displaystyle{\int}_0^t {\displaystyle{\int}_\Omega \nabla } u \cdot \nabla {u_t}dxd\tau + b\left( {t + \eta } \right)} \right]^2} \\ =& 4{\left( {u,{u_t}} \right)^2} + 8\left( {u,{u_t}} \right)\displaystyle{\int}_0^t {\displaystyle{\int}_\Omega \nabla } u \cdot \nabla {u_t}dxd\tau + 8b\left( {u,{u_t}} \right)(t + \eta ) \\ &+ 4{\left( {\displaystyle{\int}_0^t {\displaystyle{\int}_\Omega \nabla } u \cdot \nabla {u_t}dxd\tau } \right)^2} + 8b(t + \eta )\displaystyle{\int}_0^t {\displaystyle{\int}_\Omega \nabla } u \cdot \nabla {u_t}dxd\tau + 4{b^2}{(t + \eta )^2}. \end{align} $ (5.9)

由Cauchy-Schwarz不等式和Young不等式, 得到$ {\left( {{G^\prime }(t)} \right)^2} $的估计为

$ \begin{align} &{\left( {{G^\prime }(t)} \right)^2}\\ \le& 4({\left\| u \right\|^2}{\left\| {{u_t}} \right\|^2} + 2\left\| u \right\|\left\| {{u_t}} \right\|{\left( {\displaystyle{\int}_0^t {{{\left\| {\nabla u} \right\|}^2}} \;{\rm{d}}\tau } \right)^{\frac{1}{2}}}{\left( {\displaystyle{\int}_0^t {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau } \right)^{\frac{1}{2}}} + 2b(t + \eta )\left\| u \right\|\left\| {{u_t}} \right\| \\ &+ \displaystyle{\int}_0^t {{{\left\| {\nabla u} \right\|}^2}} \;{\rm{d}}\tau \displaystyle{\int}_0^t {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau + 2b(t + \eta ){\left( {\displaystyle{\int}_0^t {{{\left\| {\nabla u} \right\|}^2}} \;{\rm{d}}\tau } \right)^{\frac{1}{2}}}{\left( {\displaystyle{\int}_0^t {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau } \right)^{\frac{1}{2}}} + {b^2}{(t + \eta )^2}) \\ \le& 4({\left\| u \right\|^2}\left( {{{\left\| {{u_t}} \right\|}^2} + \displaystyle{\int}_0^t {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau } \right) + \displaystyle{\int}_0^t {{{\left\| {\nabla u} \right\|}^2}} \;{\rm{d}}\tau \left( {{{\left\| {{u_t}} \right\|}^2} + \displaystyle{\int}_0^t {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau } \right) \\ &+ b\left( {{{\left\| u \right\|}^2} + \displaystyle{\int}_0^t {{{\left\| {\nabla u} \right\|}^2}} \;{\rm{d}}\tau } \right) + b{(t + \eta )^2}\left( {{{\left\| {{u_t}} \right\|}^2} + \displaystyle{\int}_0^t {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau } \right) + {b^2}{(t + \eta )^2}) \\ =& 4\left( {{{\left\| u \right\|}^2} + \displaystyle{\int}_0^t {{{\left\| {\nabla u} \right\|}^2}} \;{\rm{d}}\tau + b{{(t + \eta )}^2}} \right)\left( {{{\left\| {{u_t}} \right\|}^2} + \displaystyle{\int}_0^t {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau + b} \right). \end{align} $ (5.10)

根据(5.4), (5.8)和(5.10), 计算化简得到

$ \begin{eqnarray} \begin{aligned} G(t){G^{\prime \prime }}(t) - \frac{{p + 2}}{4}{\left( {{G^\prime }(t)} \right)^2}\ge& (p + 2)(T - t){\left\| {\nabla {u_0}} \right\|^2}\left[ {{{\left\| {{u_t}} \right\|}^2} + \displaystyle{\int}_0^t {{{\left\| {\nabla {u_\tau }} \right\|}^2}} \;{\rm{d}}\tau + b} \right] \ge 0,\\ & t \in [0,T]. \end{aligned} \end{eqnarray} $ (5.11)

$ \eta $的定义, 则有

$ \begin{gather} G(0) = \left\| {{u_0}} \right\|_2^2 + T{\left\| {\nabla {u_0}} \right\|^2} + b{\eta ^2} > 0, \end{gather} $ (5.12)
$ \begin{gather} {G^\prime }(0) = 2\left( {{u_0},{u_1}} \right) + 2b\eta > 0 . \end{gather} $ (5.13)

因此, 根据引理2.8, $ \exists {T^ * } > 0 $, 满足

$ \begin{equation} \begin{split} {T^*} \le \frac{{4G(0)}}{{(p - 2){G^\prime }(0)}} = \frac{{2b{\eta ^2} + 2{{\left\| {{u_0}} \right\|}^2} + 2T{{\left\| {\nabla {u_0}} \right\|}^2}}}{{(p - 2)(b\eta + ({u_0},{u_1}))}}. \end{split} \end{equation} $ (5.14)

即有

$ \begin{equation} \begin{split} T^{*} \leq T(\eta) = \frac{2 b {\eta ^2}+2\left\|u_{0}\right\|_{2}^{2}}{(p-2) b\eta+(p-2) \int_{\Omega} u_{0} u_{1} d x-2\left\|\nabla u_{0}\right\|_{2}^{2}}. \end{split} \end{equation} $ (5.15)

$ \mathop {\lim }\limits_{t \to {T^{ * - }}} G(t) = \infty $, 与假设矛盾. 故定理1.3得证.

参考文献
[1] Biaynicki-Birula I, Mycielski J. Wave equations with logarithmic nonlinearities[J]. Bull. Acad. Pol. Sci. Cl, 1975, 3(23): 461–466.
[2] Liao Menglan, Li Qingwei. A class of fourth-order parabolic equations with logarithmic nonlinearity[J]. Taiwanese Journal of Mathematics, 2020, 24(4): 975–1003.
[3] Ferreira J, Irkil N, Raposo C A. Blow up results for a viscoelastic Kirchhoff-type equation with logarithmic nonlinearity and strong damping[J]. Mathematica Moravica, 2021, 25(2): 125–141. DOI:10.5937/MatMor2102125F
[4] 徐润章, 张明有, 姜晓丽, 王雪梅, 沈继红. 基于交叉变分的非线性Klein—Gordon方程解的整体存在和爆破[J]. 数学学报, 2014(3): 427–444.
[5] Hu Qingying, Zhang Hongwei, Liu Gongwei. Asymptotic behavior for a class of logarithmic wave equations with linear damping[J]. Applied Mathematics and Optimization, 2019, 79(1): 131–144. DOI:10.1007/s00245-017-9423-3
[6] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations[J]. Israel Journal of Mathematics, 1975, 22(3): 273–303.
[7] Ball J M. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[J]. The Quarterly Journal of Mathematics, 1977, 28(4): 473–486. DOI:10.1093/qmath/28.4.473
[8] Tsutsumi M. On solutions of semilinear differential equations in Hilbert space[J]. Math. Japon., 1972, 17: 173–193.
[9] Lian Wei, Ahmed M S, Xu Runzhang. Global existence and blow up of solution for semilinear hyperbolic equation with logarithmic nonlinearity[J]. Nonlinear Analysis, 2019, 184: 239–257.
[10] Ye Yaojun. Existence and nonexistence of global solutions of the initial-boundary value problem for some degenerate hyperbolic equation[J]. Acta Mathematica Scientia, 2005, 25(4): 703–709.
[11] Alabau F, Komornik V. Boundary observability, controllability, and stabilization of linear elastodynamic systems[J]. SIAM Journal on Control and Optimization, 1999, 37(2): 521–542.
[12] Ibrahim S, Lyaghfouri A. Blow-up solutions of quasilinear hyperbolic equations with critical Sobolev exponent[J]. Mathematical Modelling of Natural Phenomena, 2012, 7(2): 66–76.
[13] Ye Yaojun, Zhu Qianqian. Existence and nonexistence of global solutions for logarithmic hyperbolic equation[J]. Electronic Research Archive, 2022, 30(3): 1035–1051.
[14] Pei P, Rammaha M A, Toundykov D. Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources[J]. Journal of Mathematical Physics, 2015, 56(8).
[15] Chen Caisheng, Yao Huaping, Ling Shao. Global existence, uniqueness, and asymptotic behavior of solution for $p$-Laplacian type wave equation[J]. Journal of Inequalities and Applications, 2010, 2010: 1–15.
[16] Di Huafei, Shang Yadong, Song Zefang. Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity[J]. Nonlinear Analysis: Real World Applications, 2020, 51: 102968.
[17] Ma Lingwei, Fang Zhongbo. Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source[J]. Mathematical Methods in the Applied Sciences, 2018, 41(7): 2639–2653.
[18] Zu Ge, Sun Lili, Wu Jiacheng. Global existence and blow-up for wave equation of p-Laplacian type[J]. Analysis and Mathematical Physics, 2023, 13(3): 53.
[19] Ladyzenskaja O A, Solonnikov V A, Ural'ceva N N. Linear and quasi-linear equations of parabolic type[M]. American: American Mathematical Society, 1968.
[20] Del Pino M, Dolbeault J, Gentil I. Nonlinear diffusions, hypercontractivity and the optimal Lp-Euclidean logarithmic Sobolev inequality[J]. Journal of Mathematical Analysis and Applications, 2004, 293(2): 375–388.
[21] Komornik V. Exact controllability and stabilization[M]. RAM: Research in Applied Mathematics, 1994.
[22] Nhan L C, Truong L X. Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity[J]. Computers and Mathematics with Applications, 2017, 73(9): 2076–2091.
[23] Levine H A. Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_{t}=-Au+{F}(u)$[J]. Archive for Rational Mechanics and Analysis, 1973, 51(5): 371–386.
[24] Lions J L. Quelques méthodes de résolution des problèmes aux limites non linéaires[M]. Paris: Dunod, 1969.