数学杂志  2025, Vol. 45 Issue (3): 213-217   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WANG Jie
A NEW PROOF OF THE WEAK (1, $ \frac{n}{n-\alpha} $) INEQUALITY FOR THE FRACTIONAL MAXIMAL OPERATORS
WANG Jie    
School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China
Abstract: In this paper, we provide an alternative proof of the weak type (1, $\frac{n}{n-\alpha}$) inequality for the fractional maximal operators. By using the discretization technique, we can get the main result, which shows that the weak type (1, $\frac{n}{n-\alpha}$) bound of $M_\alpha$ is at worst $2^{n-\alpha}$. The weak type (1, $\frac{n}{n-\alpha}$) bound of $M_\alpha$ can be estimated more directly and easily in this method, which is different from the usual ways.
Keywords: Hardy-Littlewood maximal operator     fractional maximal operators     Dirac deltas     discrete method    
分数次极大算子弱(1, $\frac{n}{n-\alpha}$)不等式的一种新证明
王杰    
河南理工大学数学与信息科学学院, 河南 焦作, 454000
摘要:本文给出了分数次极大算子弱型(1, $\frac{n}{n-\alpha}$)不等式的另一种证明. 利用离散化方法, 我们可以得到$M_\alpha$的弱型(1, $\frac{n}{n-\alpha}$) 界最大是$2^{n-\alpha}$.这种方法与通常的做法不同, 可以更加简单直接地估计出$M_\alpha$的弱型(1, $\frac{n}{n-\alpha}$)界.
关键词Hardy-Littlewood极大算子    分数次极大算子    Dirac delta函数    离散化方法    
1 Introduction and the Main Result

For any $ x\in\mathbb R^n $, $ f\in L_{loc}^1(\mathbb R^n) $, the Hardy-Littlewood maximal operator over the Euclidean ball of radius $ r $ and centered at $ x $ is defined by

$ \begin{align*} Mf(x)=\sup\limits_{\epsilon>0}\frac{1}{|B(x,\epsilon)|}\displaystyle{\int}_{B(x,\epsilon)}|f(y)|dy, \end{align*} $

where $ |B(x,\epsilon)| $ is the Lebesgue measure of the ball. It is well known that the Hardy-Littlewood maximal operator is of weak type (1, 1). That is, for any $ \lambda>0 $, there exists a positive constant $ C_n $ only depends on $ n $ such that

$ \begin{align} |\{x\in\mathbb R^n: Mf(x)>\lambda\}|\leq\frac{C_n}{\lambda}\|f\|_{L_1}. \end{align} $ (1.1)

For any function $ f $ on $ \mathbb{R}^n $ and $ \epsilon>0 $, we denote $ f_\epsilon(x)=\frac{1}{\epsilon^n}f(\frac{x}{\epsilon}) $, $ k(\cdot)=\frac{1}{v_n}\chi_{B(0,1)}(\cdot) $. Then, Hardy-Littlewood maximal operator can be written as

$ \begin{align*} Mf(x) =\sup\limits_{\epsilon>0}\frac{1}{v_n\epsilon^n}\displaystyle{\int}_{\mathbb R^n}|f(x-y)|\chi_{B(0,1)}(\frac{y}{\epsilon})dy =\sup\limits_{\epsilon>0}(|f|*k_\epsilon)(x), \end{align*} $

where $ v_n $ is the volume of the unit ball. The usual way to prove (1.1) is based on Vitali type covering lemma, for details see [1]. Until 1981, Guzmán introduced the discretization technique in [2, Theorem 4.1.1].

Lemma 1.1    ([2])Let $ \{k_j\}_{j=1}^\infty\subseteq L^1(\Omega) $ be an ordinary sequence of functions, $ \{K_j\}_{j=1} $ the sequence of convolution operators associated to it, and $ K^* $ the corresponding maximal operator. Then $ K^* $ is of weak type (1, 1) if and only if $ K^* $ is of weak type (1, 1) over finite sums of Dirac deltas.

Hence, by Lemma 1.1, we only need to prove (1.1) holds for combinations of finite delta functions, then the weak type (1, 1) inequality of $ M $ holds for every $ f\in L^1(\mathbb R^n) $. Based on this fact, Carlesson [3] proved that the Hardy-Littlewood maximal operator is of weak type (1, 1) in another way. Other applications of discretization technique can be found in [4], [5], [6], [7] and [8].

For $ f\in L_{loc}^1(\mathbb R^n) $ and $ 0<\alpha<n $, the fractional maximal operator is defined as

$ \begin{align*} M_\alpha f(x)=\sup\limits_{\epsilon>0}\frac{1}{|B(x,\epsilon)|^{1-\frac{\alpha}{n}}}\displaystyle{\int}_{B(x,\epsilon)}|f(y)|dy. \end{align*} $

And for any $ \lambda>0 $,

$ \begin{align} |\{x\in\mathbb R^n: M_\alpha f(x)>\lambda\}|\leq\big(\frac{C_n\|f\|_1}{\lambda}\big)^\frac{n}{n-\alpha}, \end{align} $ (1.2)

where $ C_n $ is a constant only depending on $ n $. It means that $ M_\alpha $ is bounded from $ L^1 $ to $ L^{\frac{n}{n-\alpha},\infty} $. The usual way to prove (1.2) is by using Riesz potential $ I_\alpha $ to dominate $ M_\alpha $ in some sense, that is

$ \begin{align*} M_\alpha f(x) \leq \gamma(\alpha)\cdot I_\alpha(|f|) (x), \end{align*} $

where $ \gamma(\alpha)=\pi^{\frac{n}{2}}2^\alpha \Gamma(\frac{\alpha}{2})/ \Gamma({\frac{n-2}{2}}) $ and $ I_\alpha(f)(x)=\frac{1}{\gamma(\alpha)}\int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha}}dy $. For an in-depth understand of fractional integral operators, one can refer to [9] and [10].

Motivated by the work of Guzmán[2], Carlesson[3], we want to use the discrete method to prove the weak type (1, $ \frac{n}{n-\alpha} $) inequality for $ M_\alpha $. The fractional maximal operator also can be written as the convolution form,

$ \begin{align*} M_\alpha f(x)&=\sup\limits_{\epsilon>0}\frac{1}{|B(0,\epsilon)|^{1-\frac{\alpha}{n}}}\displaystyle{\int}_{B(0,\epsilon)}|f(x-y)|dy\\ &=\sup\limits_{\epsilon>0}\frac{1}{v_n^\frac{n-\alpha}{n}\epsilon^{n-\alpha}}\displaystyle{\int}_{\mathbb R^n}|f(x-y)|\chi_{B(0,\epsilon)}(y)dy\\ &=\sup\limits_{\epsilon>0}\frac{\epsilon^\alpha}{v_n^\frac{n-\alpha}{n}\epsilon^n}\displaystyle{\int}_{\mathbb R^n}|f(x-y)|\chi_{B(0,1)}(\frac{y}{\epsilon})dy\\ &=\sup\limits_{\epsilon>0}(|f|*k_\epsilon)(x), \end{align*} $

where $ k_\varepsilon(\cdot)=\frac{\epsilon^\alpha}{v_n^\frac{n-\alpha}{n}}\chi_{B(0,1)}(\cdot) $.

To prove our main result, one key lemma is needed.

Lemma 1.2    Let $ \{k_j\}_{j=1}^\infty\subseteq L^1(\Omega) $ be an ordinary sequence of functions, $ \{K_j\}_{j=1} $ the sequence of convolution operators associated to it, and $ K^* $ the corresponding maximal operator. Then $ K^* $ is of weak type (1, $ \frac{n}{n-\alpha} $) if and only if $ K^* $ is of weak type (1, $ \frac{n}{n-\alpha} $) over finite sums of Dirac deltas.

Proof.    By modifying the proof process of Lemma 1.1 step by step, we can prove Lemma 1.2, we omit the proof here.

Let $ \mu=\sum\limits_{i=1}^{N}\delta_{t_i} $ and $ \|\mu\|_1=N $, where $ \delta_{t_i} $ is the Dirac delta function at $ t_i $. For any $ \lambda>0 $, (1.2) is equivalent to

$ \begin{align*} |\{x\in\mathbb R^n: M_\alpha \mu(x)>\lambda\}|\leq\big(\frac{C_nN}{\lambda}\big)^\frac{n}{n-\alpha}. \end{align*} $

The main result of the paper is the following.

Theorem 1.3    For any $ \lambda>0 $, $ |\{x\in\mathbb R^n: M_\alpha \mu(x)>\lambda\}|\leq \big(\frac{2^{n-\alpha}N}{\lambda}\big)^\frac{n}{n-\alpha}. $

Remark 1    Theorem 1.3 shows that the weak type (1, $ \frac{n}{n-\alpha} $) bound of $ M_\alpha $ is at worst $ 2^{n-\alpha} $. By using the discrete method, the weak type (1, $ \frac{n}{n-\alpha} $) bound of $ M_\alpha $ can be estimated more directly and easily, which is different from other ways, see for example [9].

Remark 2    We get the Hardy-Littlewood maximal operator $ M $ is of weak type (1, 1) and the weak (1, 1) bound is at worst $ 2^n $ if $ \alpha \rightarrow 0 $.

2 Proof of Theorem 1.3

Proof. Denote $ E_\lambda=\{x\in\mathbb R^n:M_\alpha\mu(x)>\lambda\} $. The proof is by induction on $ N $.

When $ N=1 $, $ \mu=\delta_{t_1} $,

$ \begin{align*} M_\alpha\mu(x)&=\sup\limits_{\epsilon>0}\frac{1}{|B(x,\epsilon)|^{1-\frac{\alpha}{n}}}\displaystyle{\int}_{B(x,\epsilon)}\delta_{t_1}(y)dy =\frac{1}{(v_n^{1/n}|x-t_1|)^{n-\alpha}}, \end{align*} $

then $ E_\lambda=B\big(t_1,\frac{1}{v_n^{\frac{1}{n}}\lambda^\frac{1}{n-\alpha}}\big) $. Hence, $ |E_\lambda|=\big(\frac{1}{\lambda}\big)^{\frac{n}{n-\alpha}}\leq2^n\big(\frac{1}{\lambda}\big)^{\frac{n}{n-\alpha}} $.

When $ N>1 $, $ \forall\lambda>0 $, we can choose a ball $ B(x,\epsilon_x) $ for any $ x\in E_\lambda $ such that

$ \begin{align} |B(x,\epsilon_x)|^{1-\frac{\alpha}{n}}<\frac{1}{\lambda}\displaystyle{\int}_{B(x,\epsilon_x)}|\mu(y)|dy. \end{align} $ (2.3)

Let $ \epsilon=\sup\limits_{x\in E_\lambda}\epsilon_x $, then $ 0<\epsilon<\infty $. Morever, fix $ 0<\gamma<1 $, we can choose $ x_0\in E_\lambda $ such that $ \epsilon_{x_0}>\gamma\epsilon $.

Set

$ \begin{align*} \mu'(x)=\sum\limits_{t_i\in B(x_0,\epsilon_{x_0})}\delta_{t_i},\quad \mu''(x)=\sum\limits_{t_i\in B(x,\epsilon_x),t_i\notin B(x_0,\epsilon_{x_0})}\delta_{t_i}. \end{align*} $

Then $ \mu=\mu'+\mu'' $.

If $ x\in E_\lambda\backslash B(x_0,\frac{2}{\gamma}\epsilon_{x_0}) $, we have

$ |x-x_0|\geq \frac{2}{\gamma}\epsilon_{x_0}>2 \epsilon \geq \epsilon+\epsilon_{x_0}. $

Thus, $ B(x_0,\epsilon_{x_0})\cap B(x,\epsilon_x)=\varnothing $. By (2.3), we get

$ \begin{align*} \lambda&<\frac{1}{|B(x,\epsilon_x)|^{1-\frac{\alpha}{n}}}\displaystyle{\int}_{B(x,\epsilon_x)}|\mu(y)|dy\\ &=\frac{1}{|B(x,\epsilon_x)|^{1-\frac{\alpha}{n}}}\sum\limits_{t_i\in B(x,\epsilon_x)}1\\ &=\frac{1}{|B(x,\epsilon_x)|^{1-\frac{\alpha}{n}}}\sum\limits_{t_i\in B(x,\epsilon_x),t_i\in B(x_0,\epsilon_{x_0})}1+\frac{1}{|B(x,\epsilon_x)|^{1-\frac{\alpha}{n}}}\sum\limits_{t_i\in B(x,\epsilon_x),t_i\notin B(x_0,\epsilon_{x_0})}1\\ &=\frac{1}{|B(x,\epsilon_x)|^{1-\frac{\alpha}{n}}}\sum\limits_{t_i\in B(x,\epsilon_x),t_i\notin B(x_0,\epsilon_{x_0})}1\\ &=\frac{1}{|B(x,\epsilon_x)|^{1-\frac{\alpha}{n}}}\displaystyle{\int}_{B(x,\epsilon_x)}|\mu''(y)|dy\\ &=M\mu''(x). \end{align*} $

That is, $ M\mu''(x)>\lambda $.

Therefore, by the induction hypothesis, we have

$ \begin{align} \big|E_\lambda\backslash B(x_0,\frac{2}{\gamma}\epsilon_{x_0})\big|\leq2^n\big(\frac{\|\mu''\|_1}{\lambda}\big)^{\frac{n}{n-\alpha}}. \end{align} $ (2.4)

By using the following fact

$ \begin{align*} \big|B(x_0,\frac{2}{\gamma}\epsilon_{x_0})\big|=\big(\frac{2}{\gamma}\big)^n|B(x_0,\epsilon_{x_0})| \end{align*} $

and

$ \begin{align*} |B(x_0,\epsilon_{x_0})|^{1-\frac{\alpha}{n}} \leq\frac{1}{\lambda}\displaystyle{\int}_{B(x_0,\epsilon_{x_0})}|\mu(y)|dy =\frac{1}{\lambda}\sum\limits_{t_i\in B(x_0,\epsilon_{x_0}}\delta_{t_i}(y)dy =\frac{1}{\lambda}\displaystyle{\int}_{\mathbb R^n}|\mu'(y)|dy =\frac{\|\mu'\|_1}{\lambda}, \end{align*} $

we get the estimate

$ \begin{align} \big|B(x_0,\frac{2}{\gamma}\epsilon_{x_0})\big|\leq(\frac{2}{\gamma})^n\big(\frac{\|\mu'\|_1}{\lambda}\big)^{\frac{n}{n-\alpha}}. \end{align} $ (2.5)

Consequently, from (2.4) and (2.5), we get

$ \begin{align*} |E_\lambda|&\leq|E_\lambda\backslash B(x_0,\frac{2}{\gamma}\epsilon_{x_0})\big|+|B(x_0,\frac{2}{\gamma}\epsilon_{x_0})\big|\\ &\leq2^n\big(\frac{\|\mu''\|_1}{\lambda}\big)^{\frac{n}{n-\alpha}}+(\frac{2}{\gamma})^n\big(\frac{\|\mu'\|_1}{\lambda}\big)^{\frac{n}{n-\alpha}}\\ &\leq(\frac{2}{\gamma})^n\big(\frac{\|\mu''\|_1}{\lambda}\big)^{\frac{n}{n-\alpha}}+(\frac{2}{\gamma})^n\big(\frac{\|\mu'\|_1}{\lambda}\big)^{\frac{n}{n-\alpha}}\\ &\leq(\frac{2}{\gamma})^n\big(\frac{\|\mu\|_1}{\lambda}\big)^{\frac{n}{n-\alpha}}. \end{align*} $

Finally, let $ \gamma\rightarrow1 $. Then we conclude

$ \begin{align*} |E_\lambda|\leq2^n\big(\frac{N}{\lambda}\big)^{\frac{n}{n-\alpha}}. \end{align*} $

We complete the proof of Theorem 1.3.

References
[1]
Stein E. M. Singular integrals and differerntialility properties of functions[M]. Princeton: Princeton University Press, 1970.
[2]
Guzmán M. D. Real variable methods in Fourier analysis[M]. North-Holland: North-Holland Publishing Company, 1981.
[3]
Carlsson H. A new proof of the Hardy-Littlewood Maximal Theorem[J]. Bull. Landon Math. Soc., 1984, 16(6): 595-596. DOI:10.1112/blms/16.6.595
[4]
Menárguez M. T, Soria F. Weak type (1, 1) inequalities of maximal operators[J]. Rendiconti del Circolo Mathematics di Palermo(2), 1992, 41: 342-352. DOI:10.1007/BF02848939
[5]
Spector D, Stockdale C.B. On the dimensional weak-type (1, 1) bound for Riesz transforms[J]. Commun. Contemp. Math., 2021, 23(7): Paper No. 2050072, 19 pp.
[6]
Ghosh A, Shrivastava S, Shuin K. Weighted boundedness of multilinear maximal function using Dirac deltas[J]. Rend. Circ. Mat. Palermo., 2020, 69(1): 273-285. DOI:10.1007/s12215-019-00401-8
[7]
Kosz D. On the discretization technique for the Hardy-Littlewood maximal operators.[J]. Real Anal. Exchange, 2016, 41(2): 287-292. DOI:10.14321/realanalexch.41.2.0287
[8]
Sawano Y. Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas[J]. Hokkaido Math. J., 2005, 34(2): 435-458.
[9]
Lu Shanzhen, Ding Yong, Yan Dunyan. Singular intergrals and related topics.[M]. Singapore: World Scientific Publishing Co. Pte. Ltd, 2007.
[10]
Ding Yong, Lu Shanzhen. Weighted norm inequalities for fractional integral operators with rough kernel[J]. Canad. J. Math., 1998, 50(1): 29-39. DOI:10.4153/CJM-1998-003-1