数学杂志  2025, Vol. 45 Issue (2): 161-172   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
许秋滨
半经典Schrödinger方程的几个分裂数值格式
许秋滨    
南京审计大学数学学院, 江苏 南京 211815
摘要:本文研究了半经典的Schrödinger方程的两个分裂龙格-库塔格式和分裂谱格式.给出了格式的稳定性, 并研究了当β=0时的平面波解.通过线性化的分析方法可知两个龙格-库塔格式是条件稳定的, 谱格式是绝对稳定的.最后给出了格式的截断误差并与文[1]中的格式进行了数值比较, 结果表明本文的格式是有效的和可靠的.
关键词非线性Schrödinger方程    分裂龙格-库塔格式    分裂谱格式    差分格式    
SPLIT-STEP METHODS FOR THE NONLINEAR SCHRÖDINGER EQUATIONS AND THEIR APPLICATIONS IN SEMICLASSICAL CASE
XU Qiu-bin    
School of Mathematics, Nanjing Audit University, Nanjing 211815, China
Abstract: In this paper, two split step Runge-Kutta methods and a split step spectral method for the nonlinear Schrödinger equations and their application in the semiclassical regimes are studied.The conservative properties of the schemes are obtained and the plane wave solution with β=0 is analysised.The two Runge-Kutta schemes are conditionally stable by linearized analysis and the split step spectral method is unconditionally stable. The trunction error of the schemes are discuassed.Furthermore, the computing results are compared with the two time-splitting spectral methods which are constructed in [1].The numerical experiments demonstrate that our algorithms are effective and reliable.
Keywords: Nonlinear Schrödinger equation(NLS)     split step Runge-Kutta method     Split step spectral method     difference scheme    
1 引言

本文考虑如下的Schrödinger方程初值问题[1],

$ \begin{equation} \begin{aligned} {i}\varepsilon{u}_t^\varepsilon+\frac{\varepsilon^2}{2}u_{xx}^\varepsilon-V{u}^\varepsilon -f(|{u}^\varepsilon|^2){u}^\varepsilon-\varepsilon\beta\arg({u}^\varepsilon){u}^\varepsilon=0, t>0, x\in R. \end{aligned} \end{equation} $ (1.1)
$ \begin{equation} \begin{aligned} {u}^\varepsilon(x, t=0)={u}_0^\varepsilon(x), x\in R. \end{aligned} \end{equation} $ (1.2)

其中$ V=V(x)>0 $为已知的实函数, $ \varepsilon $为普朗克常数, $ f $为足够光滑的实函数, $ \beta\geq0 $为常数, $ {u}^\varepsilon={u}^\varepsilon(x, t) $为复波函数, 并有

$ \begin{align} \varepsilon\arg({u}^\varepsilon(x, t))={S}^\varepsilon(x, t). \end{align} $ (1.3)

方程(1.1) 包含很多的Schrödinger方程[1].例如, 当$ f\equiv0 $$ \beta=0 $时, (1.1) 变为线性Schrödinger方程; 当$ V\equiv0 $, $ f(\rho)\equiv\gamma_\varepsilon\rho $$ \beta=0 $时, 变为广义Schrödinger方程; 当$ f(\rho)=\alpha(\rho-1) $$ \beta=0 $时, 变为潜水波方程. 方程$ (1.1)\sim(1.2) $遵守以下守恒律,

$ \begin{align} \int_{-\infty}^{+\infty}|{u}^\varepsilon(x, t)|^2dx=const, \end{align} $ (1.4)

如果$ \beta=0 $还遵守下面的守恒律,

$ \begin{align} \int_{-\infty}^{+\infty}E^\varepsilon(x, t)dx=const, \end{align} $ (1.5)

其中

$ \begin{align} E^\varepsilon(x, t)=\frac{\varepsilon^2}{2}|{u}_x^\varepsilon(x, t)|^2+F(|{u}^\varepsilon(x, t)|^2)+V(x)|{u}^\varepsilon(x, t)|^2, \end{align} $ (1.6)

并且

$ F(s)=\int_0^sf(z)dz. $

在文[1]中作者对方程(1.1)–(1.2)的周期初边值问题研究了两个分裂的谱格式, 文[2]对一类半经典长短波方程构造了分裂龙格-库塔格式, 文[3]将分裂的龙格-库塔格式用于耦合Schrödinger方程, 都取得了很好的数值结果. 本文将分裂的三点、四点龙格-库塔格式和一个分裂谱格式应用于半经典Schrödinger方程, 数值结果表明本文的算法是有效的和可靠的. 周期边值问题如下:

$ {u}^\varepsilon(x_L+x, t)={u}^\varepsilon(x_R+x, t), \ {u}_x^\varepsilon(x_L+x, t)={u}_x^\varepsilon(x_R+x, t), $

方程(1.1)–(1.2)变为

$ \begin{align} {i}\varepsilon{u}_t^\varepsilon+\frac{\varepsilon^2}{2}{u}_{xx}^\varepsilon-V(x){u}^\varepsilon -f(|{u}^\varepsilon|^2){u}^\varepsilon-\varepsilon\beta\arg({u}^\varepsilon){u}^\varepsilon=0, \ x_L<x<x_R, \ t>0. \end{align} $ (1.7)
$ \begin{align} {u}^\varepsilon(x, t=0)={u}_0^\varepsilon(x), \ x_L<x<x_R, \ t>0. \end{align} $ (1.8)
$ \begin{align} {u}^\varepsilon(x_L+x, t)={u}^\varepsilon(x_R+x, t), \ {u}_x^\varepsilon(x_L+x, t)={u}_x^\varepsilon(x_R+x, t), \ t>0. \end{align} $ (1.9)

本文作如下的安排:第2节提出了三个新的格式, 第3节研究了格式的守恒律, 第4节研究了$ \beta=0 $时的平面波解, 第5节给出了稳定性条件, 第6节给出了模型问题, 第7节给出了数值实验.

2 差分格式

下面对方程(1.7)–(1.9)构造几个差分格式, 首先引入如下的符号:

$ x_j=x_L+jh, \ t^n=n\tau, \ 0\leq\ j \leq J=[\frac{x_R-x_L}{h}], \ n=0, 1, 2, ..., [\frac{T}{\tau}], $
$ u^\varepsilon(j, n)\equiv u^\varepsilon(x_j, t^n), \quad u_j^{\varepsilon, n}\sim u^\varepsilon(j, n), \quad V_j=V(x_j), $
$ (w_j^n)_x=\frac{w_{j+1}^n-w_j^n}{h}, \quad\quad(w_j^n)\bar{x}=\frac{w_j^n-w_{j-1}^n}{h}, $
$ (w_j^n)_t=\frac{w_j^{n+1}-w_j^n}{\tau}, \quad\quad r\equiv \frac {\tau}{h^2}, $
$ \|w^n\|_2^2=h\sum\limits_{j=1}^J|w_j^n|^2, \quad\quad\|w^n\|_\infty=\sup\limits_{1\leq j\leq J}|w_j^n|. $

其中C表示一个常数. 从$ t^n $$ t^{n+1} $, 方程(1.7) 可分为两步求解[1], 首先求解

$ \begin{align} {i}\varepsilon{u}_t^\varepsilon-V{u}^\varepsilon-f(|{u}^\varepsilon|^2){u}^\varepsilon-\varepsilon\beta\arg({u}^\varepsilon){u}^\varepsilon=0, \end{align} $ (2.1)

接下来求解

$ \begin{align} {i}\varepsilon{u}_t^\varepsilon+\frac{\varepsilon^2}{2}{u}_{xx}^\varepsilon=0. \end{align} $ (2.2)
2.1 三点分裂龙格-库塔格式(二阶精度)(R-K(2))

龙格-库塔方法是一种具有很高精度的算法, 我们用三点格式离散(2.2)中的导数项$ u_{xx}^\varepsilon $, 然后将离散后的方程用龙格-库塔方法求解, 格式如下

$ \begin{equation} u_j^{\varepsilon, *}=\left\{ \begin{array}{cc} \begin{aligned} e^{-\frac{i\tau}{\varepsilon}(V_j+f(|u_j^{\varepsilon, n}|^2))}u_j^{\varepsilon, n}, \beta=0 \\ \\ e^{-\frac{i}{\varepsilon\beta}(V_j+f(|u_j^{\varepsilon, n}|^2))(1-e^{-\tau\beta})+iS_j^{\varepsilon}(u_j^{\varepsilon, n}, \tau)}|u_j^{\varepsilon, n}|, \beta\neq0 \\ \end{aligned} \end{array} \right. \end{equation} $ (2.3)
$ \begin{align} u_j^{\varepsilon, n+1}=u_j^{\varepsilon, *}+(K1_j+2K2_j+2K3_j+K4_j)/6, \end{align} $ (2.4)
$ K1_j=G(u_j^{\varepsilon, *}), K2_j=G(u_j^{\varepsilon, *}+0.5K1_j), K3_j=G(u_j^{\varepsilon, *}+0.5K2_j), K4_j=G(u_j^{\varepsilon, *}+K3_j), $
$ \begin{align} G(\eta_j^n)=\frac{i\varepsilon\tau}{2h^2}(\eta_{j+1}^n-2\eta_j^n+\eta_{j-1}^n). \end{align} $ (2.5)

$ S^\varepsilon(u^\varepsilon, t) $如下

$ \begin{align} S^\varepsilon(u^\varepsilon, t)=e^{-\beta(t-t_n)}Im(\int_a^x\frac{u_v^\varepsilon(v, t_n)}{u^\varepsilon(v, t_n)}dv), \end{align} $ (2.6)

离散后为

$ \begin{align} S_j^\varepsilon(u^\varepsilon, t)=e^{-\beta t}\sum\limits_{l=1}^j\frac{h}{2}Im(\frac{D_x^su|_x=x_l-1}{u_l-1}+\frac{D_x^su|_x=x_l}{u_l}), \end{align} $ (2.7)
$ \begin{align} j=1, 2..., J, \ s_0(u, \tau)=0. \end{align} $ (2.8)

$ D_x^s $为导数项$ \partial_x $的谱格式:

$ \begin{align} D_x^su|_{x=x_j}=\frac{1}{J}\sum\limits_{l=-J/2}^{J/2-1}i\mu_l\hat u_le^{i\mu_l(x_j-a)}, \end{align} $ (2.9)

其中

$ \begin{align} \hat u_l=\sum\limits_{j=0}^{J-1}u_je^{-i\mu_l(x_j-a)}, l=-\frac{J}{2}, ..., \frac{J}{2}-1, \end{align} $ (2.10)

格式(2.3)–(2.5)的截断误差为$ O(\tau^2+h^2) $.

2.2 五点分裂龙格-库塔格式(四阶精度)(R-K(4))

类似(2.3)–(2.5)我们考虑如下的五点龙格-库塔格式,

$ \begin{equation} u_j^{\varepsilon, *}=\left\{ \begin{array}{cc} \begin{aligned} e^{-\frac{i\tau}{\varepsilon}(V_j+f(|u_j^{\varepsilon, n}|^2))}u_j^{\varepsilon, n}, \beta=0 \\ \\ e^{-\frac{i}{\varepsilon\beta}(V_j+f(|u_j^{\varepsilon, n}|^2))(1-e^{-\tau\beta})+iS_j^{\varepsilon}(u_j^{\varepsilon, n}, \tau)}|u_j^{\varepsilon, n}|, \beta\neq0 \\ \end{aligned} \end{array} \right. \end{equation} $ (2.11)
$ \begin{align} u_j^{\varepsilon, n+1}=u_j^{\varepsilon, *}+(K1_j+2K2_j+2K3_j+K4_j)/6, \end{align} $ (2.12)
$ K1_j=G(u_j^{\varepsilon, *}), K2_j=G(u_j^{\varepsilon, *}+0.5K1_j), K3_j=G(u_j^{\varepsilon, *}+0.5K2_j), K4_j=G(u_j^{\varepsilon, *}+K3_j), $
$ \begin{align} G(\eta_j^n)=\frac{i\varepsilon\tau}{2h^2}(-\eta_{j+2}^n/12+4\eta_{j+1}^n/3-5\eta_{j}^n/2+4\eta_{j-1}^n/3-\eta_{j-2}^n/12), \end{align} $ (2.13)

格式(2.11)–(2.13) 的精度为$ O(\tau^2+h^4) $.

2.3 分裂谱格式(SP0)

方程(2.2)是一个线性方程可以用傅里叶方法精确求解, 我们构造下面的格式,

$ \begin{equation} u_j^{\varepsilon, *}=\left\{ \begin{array}{cc} \begin{aligned} e^{-\frac{i\tau}{\varepsilon}(V_j+f(|u_j^{\varepsilon, n}|^2))}u_j^{\varepsilon, n}, \beta=0 \\ \\ e^{-\frac{i}{\varepsilon\beta}(V_j+f(|u_j^{\varepsilon, n}|^2))(1-e^{-\tau\beta})+iS_j^{\varepsilon}(u_j^{\varepsilon, n}, \tau)}|u_j^{\varepsilon, n}|, \beta\neq0 \\ \end{aligned} \end{array} \right. \end{equation} $ (2.14)
$ \begin{align} u_j^{\varepsilon, n+1}=\frac{1}{J}\sum\limits_{l=-J/2}^{J/2-1}e^{-i\varepsilon\mu_l^2\tau/2}\hat u_l^{\varepsilon, *}e^{i\mu_l(x_j-x_L)}, \ \ j=0, 1, 2, ..., J-1, \end{align} $ (2.15)
$ \begin{align} \mu_l=\frac{2\pi l}{x_R-x_L}, \hat u_l^{\varepsilon, *}=\sum\limits_{j=0}^{J-1}u_j^{\varepsilon, *}e^{-i\mu_l(x_j-x_L)}, l=-\frac{J}{2}, ..., \frac{J}{2}-1, \end{align} $ (2.16)

格式(2.14)–(2.16)的精度为$ O(\tau^2+h^m) $, $ m $为方程(1.7)–(1.9)的光滑度.

2.4 分裂谱格式(BSP1和BSP2)

作为比较我们给出文[1]中的两个格式.

(1) BSP1

$ \begin{align} u_j^{\varepsilon, *}=\frac{1}{J}\sum\limits_{l=-J/2}^{J/2-1}e^{-i\varepsilon\mu_l^2\tau/2}\hat u_l^{\varepsilon, n}e^{i\mu_l(x_j-x_L)}, j=0, 1, 2, ..., J-1, \end{align} $ (2.17)
$ \begin{equation} u_j^{\varepsilon, n+1}=\left\{ \begin{array}{cc} \begin{aligned} e^{-\frac{i\tau}{\varepsilon}(V_j+f(|u_j^{\varepsilon, *}|^2))}u_j^{\varepsilon, *}, \beta=0 \\ \\ e^{-\frac{i}{\varepsilon\beta}(V_j+f(|u_j^{\varepsilon, *}|^2))(1-e^{-\tau\beta})+iS_j^{\varepsilon}(u_j^{\varepsilon, *}, \tau)}|u_j^{\varepsilon, *}|, \beta\neq0 \\ \end{aligned} \end{array} \right. \end{equation} $ (2.18)
$ \begin{align} \mu_l=\frac{2\pi l}{x_R-x_L}, \hat u_l^{\varepsilon, n}=\sum\limits_{j=0}^{J-1}u_j^{\varepsilon, n}e^{-i\mu_l(x_j-x_L)}, l=-\frac{J}{2}, ..., \frac{J}{2}-1. \end{align} $ (2.19)

(2) BSP2

$ \begin{equation} u_j^{\varepsilon, *}=\left\{ \begin{array}{cc} \begin{aligned} e^{-\frac{i\tau}{2\varepsilon}(V_j+f(|u_j^{\varepsilon, n}|^2))}u_j^{\varepsilon, n}, \beta=0 \\ \\ e^{-\frac{i}{2\varepsilon\beta}(V_j+f(|u_j^{\varepsilon, n}|^2))(1-e^{-\tau\beta})+iS_j^{\varepsilon}(u_j^{\varepsilon, n}, \tau/2)}|u_j^{\varepsilon, n}|, \beta\neq0 \\ \end{aligned} \end{array} \right. \end{equation} $ (2.20)
$ \begin{align} u_j^{\varepsilon, **}=\frac{1}{J}\sum\limits_{l=-J/2}^{J/2-1}e^{-i\varepsilon\mu_l^2\tau/2}\hat u_l^{\varepsilon, *}e^{i\mu_l(x_j-x_L)}, \ \ j=0, 1, 2, ..., J-1, \end{align} $ (2.21)
$ \begin{equation} u_j^{\varepsilon, n+1}=\left\{ \begin{array}{cc} \begin{aligned} e^{-\frac{i\tau}{2\varepsilon}(V_j+f(|u_j^{\varepsilon, **}|^2))}u_j^{\varepsilon, **}, \beta=0 \\ \\ e^{-\frac{i}{2\varepsilon\beta}(V_j+f(|u_j^{\varepsilon, **}|^2))(1-e^{-\tau\beta})+iS_j^{\varepsilon}(u_j^{\varepsilon, **}, \tau/2)}|u_j^{\varepsilon, **}|, \beta\neq0 \\ \end{aligned} \end{array} \right. \end{equation} $ (2.22)

格式(2.17)–(2.19)和(2.20)–(2.22)的精度为$ O(\tau^2+h^m) $, $ m $为方程(1.7)–(1.9)的光滑度.

3 格式的守恒律

考虑如下的两个守恒律:

$ \begin{align} H_1^n=\|u^{\varepsilon, n}\|^2, \end{align} $ (3.1)
$ \begin{align} H_2^n=\frac{\varepsilon^2}{2}h\sum\limits_{j=0}^{j=J-1}|\frac{u_{j+1}^{\varepsilon, n}-u_j^{\varepsilon, n}}{h}|^2 +F(\|u^{\varepsilon, n}\|^2)+h\sum\limits_{j=0}^{J-1}V_j|u_j^{\varepsilon, n}|^2. \end{align} $ (3.2)

定理3.1   格式SP0, BSP1和BSP2满足守恒律$ \|u^{\varepsilon, n}\|^2=const. $

  由(2.3)得$ |u_j^{\varepsilon, *}|=|u_j^{\varepsilon, n}|, $对SP0由巴什瓦定理得

$ \|u^{\varepsilon, n+1}\|^2=(x_R-x_L)\sum\limits_{l=-J/2}^{J/2-1}(\hat u_l^{\varepsilon, *})^2=h\sum\limits_{j=1}^{J}|u_j^{\varepsilon, *}|^2=h\sum\limits_{j=1}^{J}|u_j^{\varepsilon, n}|^2=\|u^{\varepsilon, n}\|^2, $

于是有

$ \|u^{\varepsilon, n+1}\|^2=...=\|u^{\varepsilon, 0}\|^2=\|u_0^{\varepsilon}\|^2=const, $

对于格式BSP1有

$ \|u^{\varepsilon, n+1}\|^2=\|u^{\varepsilon, *}\|^2=(x_R-x_L)\sum\limits_{l=-J/2}^{J/2-1}(\hat u_l^{\varepsilon, n})^2=h\sum\limits_{j=1}^{J}|u_j^{\varepsilon, n}|^2=\|u^{\varepsilon, n}\|^2, $

所以

$ \|u^{\varepsilon, n+1}\|^2=...=\|u^{\varepsilon, 0}\|^2=\|u_0^{\varepsilon}\|^2=const, $

与格式SP0和BSP1类似, 可以证明格式BSP2有

$ \|u^{\varepsilon, n+1}\|^2=\|u^{\varepsilon, **}\|^2=(x_R-x_L)\sum\limits_{l=-J/2}^{J/2-1}(\hat u_l^{\varepsilon, *})^2=h\sum\limits_{j=1}^{J}|u_j^{\varepsilon, *}|^2=h\sum\limits_{j=1}^{J}|u_j^{\varepsilon, n}|^2=\|u^{\varepsilon, n}\|^2, $

所以

$ \|u^{\varepsilon, n+1}\|^2=...=\|u^{\varepsilon, 0}\|^2=\|u_0^{\varepsilon}\|^2=const. $

尽管三点龙格-库塔格式(2.3)–(2.5)和五点龙格-库塔格式(2.11)–(2.15)不能够满足守恒律(3.1) 和(3.2), 在数值实验中我们可以看到, 它们也可以很好地满足两个守恒律.

4 平面波解

考虑当$ \beta=0 $时方程(1.7)–(1.9)的平面波解, 令

$ \begin{align} V=d, u^\varepsilon=Ae^{i(k\pi x/p-\omega t)}, \end{align} $ (4.1)

其中d, A, k和$ \omega $为常数. 将(4.1) 代入到(1.7)中, 得如下等式

$ \begin{align} i\varepsilon(-i\omega)u^{\varepsilon}+\frac{\varepsilon^2}{2}(i\cdot\frac{k\pi}{p})^2u^\varepsilon-(f(A^2)+d)u^\varepsilon=0, \end{align} $ (4.2)

$ \omega=\frac{\frac{\pi^2\varepsilon^2k^2}{2p^2}+f(A^2)+d}{\varepsilon}. $

在下面的论述中我们考虑如下离散形式的平面波解

$ \begin{align} V=d, u^\varepsilon=Ae^{i(k\pi jh/p-\omega n\tau)}. \end{align} $ (4.3)
4.1 三点龙格-库塔格式

将(4.3) 代入到(2.3)–(2.5), 得

$ u_j^{\varepsilon, *}=Ae^{-\frac{i\tau}{\varepsilon}(d+f(A^2))}\cdot e^{i(k\pi jh/p-\omega n\tau)}, u_j^{\varepsilon, n+1}=u_j^{\varepsilon, *}+\frac{1}{6}(K1_j+2K2_j+2K3_j+K4_j), $

整理得,

$ u_j^{\varepsilon, n+1}=(1+q+\frac{q^2}{2}+\frac{q^3}{6}+\frac{q^4}{24})u_j^{\varepsilon, *}, $

其中

$ q=\frac{i\varepsilon\tau}{h^2}(\cos\frac{k\pi h}{p}-1)=\frac{i\varepsilon\tau}{h^2}(-\frac{k^2\pi^2h^2}{2p^2}+O(h^4))=-\frac{i\varepsilon k^2\pi^2\tau}{2p^2}+O(h^2), $

于是有

$ u_j^{\varepsilon, n+1}=u_j^{\varepsilon, *}(1-\frac{i\varepsilon k^2\pi^2\tau}{2p^2}+O(\tau^2+h^2)), $

因为$ u_j^{\varepsilon, n+1}=Ae^{k\pi jh/p-\omega(n+1)\tau}, $所以有

$ \omega=\frac{\frac{\pi^2\varepsilon^2k^2}{2p^2}+f(A^2)+d}{\varepsilon}+O(\tau^2+h^2), $

所以三点龙格-库塔方法的精度为$ O(\tau^2+h^2) $, 同理可得五点龙格-库塔格式(2.11)–(2.13)的精度为$ O(\tau^2+h^4) $.

4.2 分裂谱格式

将(4.3)代入到格式SP0中, 由离散的傅里叶变换,

$ u_j^{\varepsilon, *}=e^{-\frac{i\tau}{\varepsilon}(d+f(A^2))}\cdot Ae^{i(\frac{k\pi jh}{p}-\omega n\tau)}=Ae^{-\frac{i\tau}{\varepsilon}(d+f(A^2))+i\frac{k\pi jh}{p}-i\omega n\tau}, $
$ \begin{eqnarray} \hat u_j^{\varepsilon, *} &=& \sum\limits_{j=0}^{J-1}u_j^{\varepsilon, *}e^{-i\frac{l\pi jh}{p}}=Ae^{[-\frac{i\tau}{\varepsilon}(d+f(A^2))-i\omega n\tau]}\cdot \sum\limits_{j=0}^{J-1}e^{i(\frac{k\pi jh}{p}-\frac{l\pi jh}{p})}\\ &=& \left\{ \begin{array}{cc} \begin{aligned} 0, l\neq k \\ J\cdot Ae^{[-\frac{i\tau}{\varepsilon}(d+f(A^2))-i\omega n\tau]}, l=k\nonumber \end{aligned} \end{array} \right. \end{eqnarray} $

并且

$ u_j^{\varepsilon, n+1}=\frac{1}{J}\sum\limits_{l=-\frac{J}{2}}^{\frac{J}{2}-1}e^{-\frac{i\varepsilon \pi^2l^2\tau}{2p^2}}\cdot \hat u_j^{\varepsilon, *}\cdot e^{i\frac{\pi ljh}{p}}=Ae^{-\frac{i\tau}{\varepsilon}(d+f(A^2))-i\omega n\tau}\cdot e^{-\frac{i\varepsilon \pi^2k^2\tau}{2p^2}}\cdot e^{i\frac{\pi kjh}{p}}, $

又因为

$ u_j^{\varepsilon, n+1}=Ae^{i(\frac{k\pi jh}{p}-\omega(n+1)\tau)}, $

整理得

$ \omega=\frac{\frac{\pi^2\varepsilon^2k^2}{2p^2}+f(A^2)+d}{\varepsilon}, $

所以分裂谱格式可以精确满足平面波解, 同理BSP1和BSP2也精确满足平面波解.

5 格式的稳定性

关于格式的稳定性有如下的定理:

定理5.1   三点龙格-库塔格式(2.3)–(2.5)、五点龙格-库塔格式(2.11)–(2.13)的稳定性条件分别为$ r\leq \frac{\sqrt{2}}{\varepsilon} $, $ r\leq\frac{12\sqrt{2}}{7\varepsilon} $, 其中$ r=\tau/h^2 $.

证明   假设$ V(x)=d $, 其中$ d $是个常数. 下面用线性化的方法证明三点龙格-库塔格式和五点龙格-库塔格式的稳定性. 考虑如下的解的形式

$ \begin{align} u_j^{\varepsilon, n}=\xi^{\varepsilon, n}e^{ikjh}, \end{align} $ (5.1)

将(5.1)式代入到(2.3)–(2.5), 我们得

$ u_j^{\varepsilon, *}=e^{-\frac{i\tau}{\varepsilon}(d+f(|\xi^n|^2))}\xi^ne^{ikjh}, $
$ u_j^{\varepsilon, n+1}=u_j^{\varepsilon, *}+\frac{1}{6}(K1_j+2K2_j+2K3_j+K4_j), $
$ \begin{eqnarray} K1_j&=&G(u_j^{\varepsilon, *})=\frac{i\varepsilon\tau}{2h^2}\cdot(e^{ikh}-2+e^{-ikh})u_j^{\varepsilon, *}\\ &=&i\varepsilon r(coskh-1)u_j^{\varepsilon, *}\equiv qu_j^{\varepsilon, *}, \end{eqnarray} $

其中

$ q=i\varepsilon r(coskh-1), $
$ K2_j=G((1+\frac{q}{2})u_j^{\varepsilon, *})=q(1+\frac{q}{2})u_j^{\varepsilon, *}, $
$ K3_j=q(1+\frac{q}{2}(1+\frac{q}{2}))u_j^{\varepsilon, *}, $
$ K4_j=q(1+q(1+\frac{q}{2}(1+\frac{q}{2})))u_j^{\varepsilon, *}, $

因为

$ u_j^{\varepsilon, n+1}=(1+q+\frac{q^2}{2}+\frac{q^3}{6}+\frac{q^4}{24})u_j^{\varepsilon, *}, $

又因为

$ u_j^{\varepsilon, n+1}=\xi^{\varepsilon, n+1}e^{ikjh}, $

所以有

$ \xi^{\varepsilon, n+1}=(1+q+\frac{q^2}{2}+\frac{q^3}{6}+\frac{q^4}{24})e^{-\frac{i\tau}{\varepsilon}(d+f(|\xi^n|^2))}\xi^{\varepsilon, n}. $

$ \begin{align} G(\tau, k)=(1+q+\frac{q^2}{2}+\frac{q^3}{6}+\frac{q^4}{24})e^{-\frac{i\tau}{\varepsilon}(d+f(|\xi^n|^2))}, p=\varepsilon r(coskh-1), \end{align} $ (5.2)

$ \begin{align} G(\tau, k)=(1+ip-\frac{p^2}{2}-i\frac{p^3}{6}+\frac{p^4}{24})e^{-\frac{i\tau}{\varepsilon}(d+f(|\xi^n|^2))}, \end{align} $ (5.3)

格式(2.3)–(2.5)是稳定的, 则$ G(\tau, k) $满足

$ |G(\tau, k)|^2=(1-\frac{p^2}{2}+\frac{p^4}{24})^2+(p-\frac{p^3}{6})^2\leq 1, $

于是有

$ \varepsilon^2r^2\sin^4{\frac{kh}{2}}-2\leq 0, $

三点龙格-库塔格式(2.3)–(2.5)的稳定性条件为$ r\leq \frac{\sqrt{2}}{\varepsilon}. $同理可证, 五点龙格-库塔格式的稳定性条件为$ r\leq \frac{12\sqrt{2}}{7\varepsilon}. $另外, 由定理3.1可知谱格式SP0, BSP1和BSP2是无条件稳定的[1].

6 模型问题

$ u_0^{\varepsilon}(x)\equiv A_0(x)e^{\frac{i}{\varepsilon}s_0(x)}. $

模型Ⅰ   平面波解的初值问题:当$ \beta=0 $时, 我们给出了(1.7)–(1.9)的平面波解, 令初值$ A_0(x)=A, S_0(x)=\frac{\varepsilon k\pi x}{p}, V_0^{\varepsilon}(x)=d. $精确解为

$ u^{\varepsilon}(x, t)=Ae^{i(\frac{k\pi x}{p}-\omega t)}, V_0^{\varepsilon}(x)=d, $

并且

$ \omega=\frac{\frac{\pi^2\varepsilon^2k^2}{2p^2}+f(A^2)+d}{\varepsilon}, $

在计算中取如下参数: $ A=5, k=1, p=10, d=1. $

模型Ⅱ   当$ \beta\neq 0 $时, 我们用第2节中的格式来计算密度函数$ \rho^{\varepsilon}(x, t)=|u^{\varepsilon}(x, t)|^2 $. 初值条件为$ A_0(x)=e^{-x^2} $, $ S_0(x)=\frac{1}{e^{3x}+e^{-3x}} $, $ \beta=1.0 $, $ V(x)=0 $, $ f(\rho)=-\rho $.

7 数值实验

本节用第2节的数值格式来计算模型Ⅰ和模型Ⅱ. 在计算模型Ⅰ时, 固定精度($ L_\infty $), 让步长$ h $$ \tau $自由. 对每个格式, 令步长$ h $$ \tau $尽量大, 既要达到给定的精度, 又能使格式保持稳定, 比较格式的计算时间. 计算的量如下:

守恒律

$ H_1^n=\|u^{\varepsilon, n}\|^2, $

$ H_2^n=\frac{\varepsilon^2}{2}h\sum\limits_{j=0}^{j=J-1}|\frac{u_{j+1}^{\varepsilon, n}-u_j^{\varepsilon, n}}{h}|^2 +F(\|u^{\varepsilon, n}\|^2)+h\sum\limits_{j=0}^{J-1}V_j|u_j^{\varepsilon, n}|^2, $

误差为

$ E_1=\frac{H_1^n-H_1^0}{H_1^0}, E_2=\frac{H_2^n-H_2^0}{H_2^0}, $

精确解的误差

$ L_\infty=\max\limits_{j}|u_j^{\varepsilon, n}-u^{\varepsilon}(x_j, t^n)|, $

其中$ u^{\varepsilon}(x_j, t^n) $为在点$ (x_j, t_n) $处的精确解. 模型Ⅰ的计算结果见表 1.

表 1 表1: $ \beta=0 $, $ f(\rho)=-\rho $, T=1.0, A=5.0, k=1.0, 精度$ L\infty<0.05 $, t=1.0平面波解计算结果比较

文[4][5]中对小$ \varepsilon $的线性schrödinger方程的有限差分进行了研究, 结果表明为了保证良好的近似, 时间步长$ \tau $和空间步长$ h $满足如下关系:

$ h=o(\varepsilon), \tau=o(\varepsilon). $

对于模型Ⅱ, 我们取$ \varepsilon=0.1 $, 为了画出密度函数的较精确图像, 令空间步长$ h=0.015625 $和一个较小的时间步长$ \tau=0.002 $. 图 1图 2给出了用五点龙格-库塔格式和Bsp2计算的结果, 表 2给出了所有格式的计算时间.

图 1 五点龙格-库塔格式计算的密度$ \rho^{\varepsilon}(x, t)=|u^{\varepsilon}(x, t)|^2 $

图 2 Bsp2格式计算的密度$ \rho^{\varepsilon}(x, t)=|u^{\varepsilon}(x, t)|^2 $

表 2 $ \beta=1.0 $, $ \varepsilon=0.1 $, $ h=0.015625 $, $ \tau=0.002 $, 模型Ⅱ计算结果比较

表 1可知, 当$ \varepsilon $=1, 0.1, 0.01, 0.001, 0, 0001时, 所有的格式都能够很好的计算平面波解. 其中, 分裂的五点龙格-库塔格式和三点龙格-库塔格式用的时间较少. 表 2中数据也表明五点龙格-库塔格式和三点龙格-库塔格式用的时间较少, 具有较高的计算效率. 由计算结果可知, 所有的格式都可以很好的计算, 其中分裂的五点龙格-库塔格式精度高, 计算时间少, 是最有效的和可靠的.

参考文献
[1] Bao W., Jin S., Markowich P.A.. Numerical study of time-splitting spectral discretizations of nonlinear schrödinger equation in the semiclassical regimes[J]. SIAM J.sci.Compt, 2003, 25(1): 27–64. DOI:10.1137/S1064827501393253
[2] Chang Qianshun, Wang Yau-shu, Lin Chi-kun. Numerical computations for long-wave short-wave interaction equations in semi-classical limit[J]. J.Comput.Phys, 2008, 227(19): 8489–8507. DOI:10.1016/j.jcp.2008.05.015
[3] Xu Qiubin, Chang Qianshun. New numerical methods for the coupled Nonlinear Schrodinger equations[J]. Acta. Mathematicae. Applicatae Sinica., 2010, 26(2): 205–218. DOI:10.1007/s10255-007-7098-2
[4] Markowich Peter, Pietra Paola, Pohl Carsten. Numerical approximation of quadratic observables of schrödinger type equations in the semiclassical limit[J]. Numer. Math, 1999, 81(4): 595–630. DOI:10.1007/s002110050406
[5] Markowich Peter, Pietra Paola, Pohl Carsten, Stimming Hans. A Wigner measure analysis of the Dufort-Frankel scheme for the schrödinger equation[J]. SIAM J. Numer.Anal, 2002, 40(4): 1281–1310. DOI:10.1137/S0036142900381734
[6] Chang Q., Guo B., Jiang H.. Finite difference method for generalized zakharov equations[J]. Math. Comput., 1995, 64(210): 537–553. DOI:10.1090/S0025-5718-1995-1284664-5
[7] Bao W., Jaksch D.. An explicit unconditionally stable numerical method for solving damped nonlinear schrödinger equations with a focusing nonlinearity[J]. SIAM.J.Numer.Anal, 2003, 41(4): 1406–1426. DOI:10.1137/S0036142902413391
[8] Fannjiang A., Jin Shi, Papanicolaou G.. High frequency behaviour of the focusing nonlinear schrödinger equation with random inhomogeneities[J]. SIAM.J.Appl.Math, 2003, 63(4): 1328–1358. DOI:10.1137/S003613999935559X