数学杂志  2025, Vol. 45 Issue (2): 131-139   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
LUO Xiao-Yu
SHI Yong-Guo
JIANG Zhi-Jie
REMARKS ON ASYMPTOTIC EXPANSIONS OF COMPOSITIONS WITH THE ELEMENTARY FUNCTIONS
LUO Xiao-Yu1,2, SHI Yong-Guo2, JIANG Zhi-Jie1    
1. College of Mathematics and Statistics, Sichuan University of Science and Engineering, Sichuan 64300, China;
2. Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Sichuan 641100, China
Abstract: In this paper, we study asymptotic power series of the composition f(x)=h(g(x)), where $g(x)=\sum\limits_{n=0}^{\infty} b_n x^{-n}$, bn$\mathbb{R}$, and h is a given elementary function. The asymptotic expansions have been obtained for the composition with an exponential or logarithmic function. Using the recursive method, we present the asymptotic expansions for the composition with seven trigonometric functions, respectively. As an application, the asymptotic expansions of roots of some equations are given. Computational results show that our recursive formula is more efficient than the method of Lagrange's inverse theorem.
Keywords: asymptotic expansion     asymptotic power series     trigonometric function     composite function    
求解初等函数复合的渐近展开补注
罗小宇1,2, 石勇国2, 江治杰1    
1. 四川轻化工大学数学与统计学院, 四川 宜宾 644000;
2. 数据四川省恢复重点实验室, 内江师范学院数学与信息学院, 四川 内江 641100
摘要:本文研究了复合函数f (x)=h (g (x))的渐近幂级数, 其中$g(x)=\sum\limits_{n=0}^{\infty} b_n x^{-n}$, bn$\mathbb{R}$, h为给定初等函数.当h是指数或对数函数时, 复合函数的渐近展开已有结果.利用递推法, 本文分别获得了七个三角函数复合的渐近展开式.作为应用, 还给出了方程根的渐近展开.计算结果显示, 我们的递推公式比拉格朗日逆定理的方法更有效率.
关键词渐近展开    渐近幂级数    三角函数    复合函数    
1 Introduction

In asymptotic analysis, one kind of asymptotic expansions is the asymptotic power series, which is closely related to the formal power series. Both Copson [1] and Erdélyi [2] gave definitions of asymptotic expansions and asymptotic power series. The asymptotic expansion of the form

$ f(x) = a_0+\frac{a_1}{x}+\frac{a_2}{x^2}+\cdots \quad \text { as } x \rightarrow \infty $

is called asymptotic power series.

It is interesting to consider the asymptotic power series of the composition $ f(x)=h(g(x)) $ where $ g(x) = \sum\limits_{n=0}^{\infty} b_n x^{-n} $, $ b_n\in \mathbb{R} $, and $ h $ is some elementary function. In fact, there are some properties on the composition of such power series.

Lemma 1.1   [[2], p. 20] If the function $ h $ has expansion into power series

$ h(x)=\sum\limits_{n=0}^{\infty} c_n x^n, \quad \text { as } x \rightarrow 0 $

and $ g(x) = \sum_{n=0}^{\infty} b_n x^{-n} $ with leading coefficient $ b_0=0 $, then $ h(g(x)) $ has asymptotic expansion whose coefficients can be obtained by formal substitution and rearrangement of terms.

Lemma 1.2   [[2], p. 21] If the function $ f(x) = \sum_{n=0}^{\infty} a_n x^{-n} $ is differentiable and if $ f^{\prime} $ possesses an asymptotic power series expansion, then

$ f^{\prime}(x) = -\sum\limits_{n=1}^{\infty} na_n x^{-n-1}, \quad \text { as } x \rightarrow \infty \text {. } $

In 2013, Chen et al. [3] gave respectively these recursive formula for the asymptotic power series compounded with the power function, the logarithm function and exponential function.

Lemma 1.3   [[3], Lemma 3] Let $ g(x) = \sum_{n=1}^{\infty} b_n x^{-n} . $ Then $ f(x)=\exp (g(x)) $ has asymptotic power series

$ f(x)= \sum\limits_{n=0}^{\infty} a_n x^{-n}, $

where $ a_0=1 $ and

$ a_n=\frac{1}{n} \sum\limits_{k=1}^n k b_k a_{n-k}, \quad n \geq 1 . $

Lemma 1.4   [[3], Lemma 4] Let $ g(x) =\sum_{n=0}^{\infty} b_n x^{-n} $, $ b_0 \neq 0 $. Then $ f(x)=\ln (g(x)) $ has asymptotic power series

$ f(x) = \sum\limits_{n=1}^{\infty} a_n x^{-n}, $

where

$ a_n=\frac{b_n}{b_0}-\frac{1}{n b_0} \sum\limits_{k=1}^{n-1} k a_k b_{n-k}, \quad n \geq 1 . $

Lemma 1.5   [[3], Lemma 5] Let $ g(x) = \sum_{n=0}^{\infty} b_n x^{-n} $, $ b_0 \neq 0 $. Then $ f(x)=[g(x)]^r $, for all real $ r $, has asymptotic power series

$ f(x)=\sum\limits_{n=0}^{\infty} a_n x^{-n}, $

where

$ a_0 =b_0^r, \quad a_n =\frac{1}{n b_0} \sum\limits_{k=1}^n[k(1+r)-n] b_k a_{n-k}. $

These recursive formulas have a very wide range of applications to asymptotic expansions, for example, the new asymptotic expansions for Gamma function [4], the asymptotic expansion of the integral mean [5], the asymptotic expansion coefficients of Glaisher - Kinkelin type constants [6], Landau constants, Euler-Mascheroni constant, Stirling series [7] and explicit formulas for the Bell numbers and logarithmic polynomials [8].

Besides the above three elementary functions, it seems that no asymptotic expansion formula is given for the asymptotic power series compounded with trigonometric functions. The purpose of this paper is to present these recursive formula for the asymptotic power series compounded with seven trigonometric functions.

As an application, we use these results to give the asymptotic expansion of the roots of some equations, and our recursive method is more efficient than Lagrange's inverse theorem.

2 Main Results

First, we gives the asymptotic power series of $ f(x)=\tan(g(x)) $.

Theorem 2.1   Suppose that $ g(x) = \sum\limits_{n=0}^{\infty} b_n x^{-n} $. Then $ f(x)=\tan(g(x)) $ has asymptotic power series

$ f(x) =\sum\limits_{n=0}^{\infty} a_n x^{-n}, $

where $ a_0=\tan (b_0) $, and

$ \begin{eqnarray*} a_n&=&\frac{1}{n}\sum\limits_{k=1}^nk b_{k} c_{n-k}, \quad n \geq 1, \\ c_0&=&1+a_0^2, c_{n}=\sum\limits_{k=0}^na_{k} a_{n-k}, \quad n \geq 1; \end{eqnarray*} $

Proof   Taking the derivative of $ f (x) = \tan (g (x)) $ on both sides, and using the identity $ \sec^ 2 (g (x)) = 1 + \tan ^ 2(g (x)) $, we have

$ f^{\prime}(x)=\left(1+f^2(x)\right) g^{\prime}(x). $

Let $ 1+f^2(x) =\sum_{n=0}^{\infty} c_n x^{-n} $. Then

$ c_0=1+a_0^2, \quad c_n=\sum\limits_{k=0}^n a_k a_{n-k}, \quad n \geq 1. $

From $ f^{\prime}(x) = \sum_{n=0}^{\infty} (-n)a_n x^{-n-1} $, $ g^{\prime}(x) = \sum_{n=0}^{\infty}(-n) b_nx^{-n-1} $, we see that

$ \begin{eqnarray*} \left(\sum\limits_{n=1}^{\infty} (-n)b_{n} x^{-n-1}\right)\left(\sum\limits_{n=0}^{\infty} c_n x^{-n}\right)= \sum\limits_{n=1}^{\infty} \sum\limits_{k=1}^{n}(-k) b_{k}c_{n-k} x^{-n-1} =\sum\limits_{n=1}^{\infty} (-n) a_nx^{-n-1}. \end{eqnarray*} $

Consequently,

$ a_0=\tan b_0, \quad a_n=\frac{1}{n}\sum\limits_{k=1}^nk b_{k} c_{n-k}, \quad n\geq 1. $

This completes the proof of theorem 2.1.

Remark 2.1   With the similar argument, we can obtain the asymptotic power series of the composition with the cotangent function, arc-tangent function and arc-cotangent function.

Suppose that $ g(x) = \sum_{n=0}^{\infty} b_n x^{-n} $. Then the following results hold:

(ⅰ) $ f(x)=\cot(g(x)) $ has asymptotic power series

$ f(x) =\sum\limits_{n=0}^{\infty} a_n x^{-n}, $

where $ a_0=\cot (b_0) $, and

$ \begin{eqnarray*} a_n&=&-\frac{1}{n}\sum\limits_{k=1}^nk b_{k} c_{n-k}, \quad n \geq 1, \\ c_0&=&1+a_0^2, c_n=\sum\limits_{k=0}^na_{k} a_{n-k}, \quad n \geq 1; \end{eqnarray*} $

(ⅱ) $ f(x)=\arctan(g(x)) $ has asymptotic power series

$ f(x) =\sum\limits_{n=0}^{\infty} a_n x^{-n}, $

where $ a_0=\arctan (b_0) $, and

$ a_1=\frac{b_1}{1+b_0^2}, \quad a_n=\frac{b_n}{1+b_0^2}-\frac{1}{n(1+b_0^2)} \sum\limits_{k=1}^{n-1} k a_k c_{n-k}, \quad n \geq 2, $
$ c_0=1+b_0^2, \quad c_n=\sum\limits_{k=0}^n b_k b_{n-k}, \quad n \geq 1; $

(ⅲ) $ f(x)={\rm arccot}(g(x)) $ has asymptotic power series

$ f(x) =\sum\limits_{n=0}^{\infty} a_n x^{-n}, $

where $ a_0={\rm arccot} (b_0) $, and

$ a_1=-\frac{b_1}{1+b_0^2}, \quad a_n=-\frac{b_n}{1+b_0^2}-\frac{1}{n(1+b_0^2)} \sum\limits_{k=1}^{n-1} k a_k c_{n-k}, \quad n \geq 2, $
$ c_0=1+b_0^2, \quad c_n=\sum\limits_{k=0}^n b_k b_{n-k}, \quad n \geq 1; $

Next, we give the asymptotic power series of $ f(x)=\sin(g(x)) $. In the following Theorem, without loss of generality, we assume that $ \cos(g(x))>0 $. In fact, the case $ \cos(g(x))\leq 0 $ is similar to the case $ \cos(g(x))>0 $.

Theorem 2.2   Suppose that $ g(x) = \sum_{n=0}^{\infty} b_n x^{-n} $ and $ \cos(g(x))>0 $. Then $ f(x)=\sin(g(x)) $ has asymptotic power series

$ f(x) = \sum\limits_{n=0}^{\infty} a_n x^{-n}, $

where $ a_0=\sin b_0 $, and

$ \begin{eqnarray*} a_n&=&\frac{1}{n}\sum\limits_{k=1}^{n} kb_kd_{n-k}, \quad n\geq 1, \\ d_0&=&\sqrt{1-a_0^2}, d_n=\frac{1}{nc_0}\sum\limits_{k=1}^n (\frac{3k}{2}-n)c_k d_{n-k}, \quad n\geq 1, \\ c_0&=&1-a_0^2, c_n=-\sum\limits_{k=0}^n a_k a_{n-k}, \quad n\geq 1; \end{eqnarray*} $

Proof   From $ \cos^2 (g(x))+\sin^2 (g(x))=1 $ and $ \cos(g(x))>0 $, differentiating both sides of $ f(x)=\sin (g(x)) $ yields that

$ \begin{equation} g^{\prime}(x) \sqrt{1-f^2(x)} =f^{\prime}(x). \end{equation} $ (2.1)

Put $ 1-(f(x))^2= \sum_{n=0}^{\infty} c_n x^{-n} $. Then we have

$ c_0=1-a_0^2, \quad c_n=-\sum\limits_{k=0}^n a_k a_{n-k} , \quad n\geq 1, $

since

$ (f(x))^2 =\left(\sum\limits_{n=0}^{\infty} a_n x^{-n}\right)\left(\sum\limits_{n=0}^{\infty} a_n x^{-n}\right) = \sum\limits_{n=0}^{\infty} \sum\limits_{k=0}^n a_k a_{n-k} x^{-n}. $

For the sake of convenience, put $ \sqrt{1-f^2(x)} = \sum_{n=0}^{\infty} d_n x^{-n} $. By Lemma 1.5, one see that

$ d_0=\sqrt{1-a_0^2}, \quad d_n=\frac{1}{nc_0}\sum\limits_{k=1}^n (\frac{3k}{2}-n)c_k d_{n-k} , \quad n\geq 1. $

Together with

$ g^{\prime}(x)=\sum\limits_{n=1}^{\infty}(-n) b_n x^{-n-1}, \quad f^{\prime}(x) =\sum\limits_{n=1}^{\infty} a_n(-n) x^{-n-1}, $

it follows from Eq. (2.1) that

$ \sum\limits_{n=1}^{\infty} (-n)b_n x^{-n-1}\sum\limits_{n=0}^{\infty} d_n x^{-n}= \sum\limits_{n=1}^{\infty} (-n)a_n x^{-n-1}. $

Comparing the coefficients of $ x^{-n-1} $, one can see that

$ \sum\limits_{k=1}^{n} kb_kd_{n-k}=na_n. $

Therefore,

$ a_0=\sin b_0, \quad a_n=\frac{1}{n}\sum\limits_{k=1}^{n} kb_kd_{n-k}, \quad n\geq 1. $

This completes the proof of Theorem 2.2.

Remark 2.2   With the similar argument, we can obtain the asymptotic power series of the composition with the arc-sine function and arc-cosine function.

(ⅰ) $ f(x)=\arcsin(g(x)) $ has asymptotic power series $ f(x) = \sum_{n=0}^{\infty} a_n x^{-n}, $ where

$ \begin{eqnarray*} a_0=\arcsin b_0, && a_1=\frac{b_1}{\sqrt{1-b_0^2}}, \quad a_n=\frac{b_n}{d_0}-\frac{1}{nd_0}\sum\limits_{k=1}^{n-1} ka_kd_{n-k}, \quad n\geq2, \\ d_0=\sqrt{1-b_0^2}, && d_n=\frac{1}{nc_0}\sum\limits_{k=1}^n (\frac{3k}{2}-n)c_k d_{n-k} , \quad n\geq 1, \\ c_0=1-b_0^2, && c_n=-\sum\limits_{k=0}^n b_k b_{n-k} , \quad n\geq 1; \end{eqnarray*} $

(ⅱ) $ f(x)=\arccos(g(x)) $ has asymptotic power series $ f(x) = \sum_{n=0}^{\infty} a_n x^{-n}, $ where

$ \begin{eqnarray*} a_0=\arccos b_0, && a_1=\frac{b_1}{\sqrt{1-b_0^2}}, \quad a_n=-\frac{b_n}{d_0}-\frac{1}{nd_0}\sum\limits_{k=1}^{n-1} ka_kd_{n-k}, \quad n\geq2, \\ d_0=\sqrt{1-b_0^2}, && d_n=\frac{1}{nc_0}\sum\limits_{k=1}^n (\frac{3k}{2}-n)c_k d_{n-k} , \quad n\geq 1, \\ c_0=1-b_0^2, && c_n=-\sum\limits_{k=0}^n b_k b_{n-k} , \quad n\geq 1. \end{eqnarray*} $
3 Applications

In this section, we will use Theorem 2.1 to give the asymptotic behavior of roots of the equation $ x=\cot x $.

Example 3.1   We can see that there exists a unique root $ x_n $ of the equation $ x=\cot x $ such that $ x_n \in(n \pi, (n+1) \pi) $ for every fixed $ n\in \mathbb{Z} $. Then $ x_n $ has asymptotic power series

$ x_n=n \pi+\frac{1}{n \pi}+\frac{b_2}{(n \pi)^2}+\frac{b_3}{(n \pi)^3}+\cdots , \quad n \rightarrow \infty, $

where

$ b_1=1; b_{2n}=0; $
$ b_3=-\frac{4}{3};b_5=\frac{53}{15}; b_7=-\frac{1226}{105}; b_9=\frac{13597}{315}; b_{11}=-\frac{65782}{385}; $
$ b_{13}=\frac{478551932}{675675}; b_{15}=-\frac{6152345618}{2027025}; b_{17}=\frac{3217326704057}{241215975}. $

Proof   Let $ \omega=n\pi $ and $ z=\sum_{n=1}^{\infty}b_n \omega^{-n} $. It follows from Theorem 2.1 that

$ \tan(z)=\sum\limits_{n=1}^{\infty}a_n \omega^{-n}, $

where

$ b_0=0, a_0=0, c_0=1, b_1=1, $
$ a_n=\frac{1}{n}\sum\limits_{k=1}^{n}kb_kc_{n-k}, \quad c_n= \sum\limits_{k=0}^{n}a_ka_{n-k}, \quad n\geq 1. $

From $ (\omega +z)\tan(\omega +z)=(\omega +z)\tan(z)=1 $, we see that

$ \sum\limits_{n = 1}^\infty {a_n}{\omega^{ - n + 1}} + \left( {\sum\limits_{n = 1}^\infty {{b_n}{\omega^{ - n}}} } \right)\left( {\sum\limits_{n = 1}^\infty {{a_n}{\omega^{ - n}}} } \right) = \sum\limits_{n = 0}^\infty {a_{n + 1}}{\omega^{ - n}} + \sum\limits_{n = 1}^\infty {\sum\limits_{k = 1}^\infty {{a_k}{b_{n - k}}{\omega^{ - n}}} } = 1, $

where $ b_0=1, a_1=1 $. Then

$ \sum\limits_{n = 1}^\infty {{a_{n + 1}}{\omega^{ - n}} + \sum\limits_{n = 1}^\infty {\sum\limits_{k = 1}^n {{a_k}{b_{n - k}}{\omega^{ - n}}} } = 0}. $

Comparing the coefficients of $ \omega^{ - n} $, we obtain

$ {a_{n + 1}} = - \sum\limits_{k = 1}^n {{a_k}{b_{n - k}}}. $

Thus,

$ \frac{1}{n+1}\sum\limits_{k=1}^{n+1}kb_kc_{n+1-k}= b_{n+1}c_{0} +\frac{1}{n+1}\sum\limits_{k=1}^{n}kb_kc_{n+1-k}= - \sum\limits_{k = 1}^n {{a_k}{b_{n - k}}} , $

Therefore,

$ b_{n+1}=-\frac{1}{n+1}\sum\limits_{k=1}^{n}kb_kc_{n+1-k} - \sum\limits_{k = 1}^n {{a_k}{b_{n - k}}} , $

where

$ b_0=0, a_0=0, c_0=1, b_1=1, c_1=0, a_1=1, $
$ a_n=\frac{1}{n}\sum\limits_{k=1}^{n}kb_kc_{n-k}, \quad c_n= \sum\limits_{k=0}^{n}a_ka_{n-k}, \quad n\geq 1. $

Using the software MATLAB, it is easy to get the values of the previous terms:

$ b_1=1; b_{2n}=0; $
$ b_3=-\frac{4}{3};b_5=\frac{53}{15}; b_7=-\frac{1226}{105}; b_9=\frac{13597}{315}; b_{11}=-\frac{65782}{385}; $
$ b_{13}=\frac{478551932}{675675}; b_{15}=-\frac{6152345618}{2027025}; b_{17}=\frac{3217326704057}{241215975}. $

There is another method in [9, p. 24]. From the intersections of $ y=x $ and $ y=\cot x $, one can find that $ x=\cot x $ has infinitely many roots. Further, we have

$ x_n \in(n \pi, (n+1) \pi), \quad n= \pm 1, \pm 2, \pm 3, \cdots . $

Without loss of generality, assume $ x_n>0 $ and $ n \pi<x_n<(n+1) \pi $. Then

$ x_n=\cot x_n=\cot \left(x_n-n \pi\right) . $

Since $ x_n \rightarrow \infty $, one has $ x_n-n \pi \rightarrow 0 $. Let $ z=x_n-n \pi $ and $ \omega=n\pi $. Thus $ \omega+z=\cot z $. Consequently,

$ \omega^{-1}=\frac{\sin z}{\cos z-z \sin z} =\frac{z}{\frac{z(\cos z-z \sin z)}{\sin z}}. $

Using the Lagrange's inverse theorem [9, p. 22], one has

$ \begin{eqnarray*} z & =& \sum\limits_{n=1}^{\infty} \frac{1}{n !} \frac{d^{n-1}}{d \zeta^{n-1}}\left\{\left(\frac{\zeta(\cos \zeta-\zeta \sin \zeta)}{\sin \zeta}\right)^n\right\}_{\zeta=0} \omega^{-n} \\ & =&\omega^{-1}+b_2 \omega^{-2}+b_3 \omega^{-3}+\cdots. \end{eqnarray*} $

Namely,

$ x_n=n \pi+z=n \pi+\frac{1}{n \pi}+\frac{b_2}{(n \pi)^2}+\cdots=n \pi+\frac{1}{n \pi}+O\left(\frac{1}{n^2}\right) . $

Using the symbolic calculation software MAPLE, it is easy to get the values of the previous terms:

$ b_1=1; b_{2}=b_4=b_6=b_8=b_{10}=0; $
$ b_3=-\frac{4}{3};b_5=\frac{53}{15}; b_7=-\frac{1226}{105}; b_9=\frac{13597}{315}; b_{11}=-\frac{65782}{385}. $

Comparing these two methods, we can see that the recursive method is more efficient than Lagrange's inverse theorem. At the same time, we are sure that some higher derivatives can be solved by the recursive method.

References
[1]
Copson E T. Asymptotic expansions[M]. Cambridge University Press, 1965.
[2]
Erdelyi A. Asymptotic expansions[M]. New York: Dover Publications, 1956.
[3]
Chen C P, Elezovic N, Vukšić L. Asymptotic formulae associated with the Wallis power function and digamma function[J]. J. Class. Anal, 2013, 2(2): 151-166.
[4]
Chen C P. Asymptotic expansions of the gamma function related to Windschitl' s formula[J]. Applied Mathematics and Computation, 2014, 245: 174-180. DOI:10.1016/j.amc.2014.07.080
[5]
Elezovic N, Vukšić L. Asymptotic expansions of integral means and applications to the ratio of gamma functions[J]. Applied Mathematics and Computation, 2014, 235: 187-200. DOI:10.1016/j.amc.2014.02.026
[6]
Xu A. Asymptotic expansions related to the Glaisher-Kinkelin constant and its analogues[J]. Journal of Number Theory, 2016, 163: 255-266. DOI:10.1016/j.jnt.2015.11.010
[7]
Chen C P. Coe-cients of asymptotic expansions for Landau constants and Euler-Mascheroni constant and Stirling series[J]. Chinese Annals of Mathematics, Ser. A, 2021, 42(01): 89-104.
[8]
Qi F, Shi X T, Liu F F. Expansions of the exponential and the logarithm of power series and applications[J]. Arabian Journal of Mathematics, 2017, 6(2): 95-108. DOI:10.1007/s40065-017-0166-4
[9]
De Bruijn N G. Asymptotic methods in analysis[M]. Courier Corporation, 1981.