矩阵多项式特征值估计在现代工程学和数学物理等很多领域有重要的应用[1]. 矩阵多项式特征值估计方法往往可以在一般矩阵特征值估计方法的基础上, 通过适当的推广而得到, 而矩阵特征值估计方法较为成熟. Brauer A在1947年通过改进Gershgorin定理, 给出了矩阵特征值估计的Brauer定理[2]. Li Chaoqian和Li Yaotang在文[3] 中推广了矩阵特征值估计的Brauer定理, 给出了更为精确的广义Brauer集. 而矩阵多项式特征值的精确计算较为困难, 关于其数值计算见[4, 5]. 在一些应用中, 需要对矩阵多项式特征值的界进行估计. 2001年, Tisseur F和Higham N J在文[6]中刻画了矩阵多项式的伪谱, 以此来估计其特征值. 2009年, 王学锋, 王卫国和刘新国介绍了几类特殊类型的矩阵多项式特征值界的估计方法[7]. 2018年, Michailidou C, Panayiotis P将矩阵特征值估计的Gershgorin定理, 广义Gershgorin定理, Brauer定理, Dashnic-Zusmanovich定理进行推广, 得到了矩阵多项式的特征值估计相关定理以及相应的结果[8]. 本文在以上工作的基础上, 将矩阵特征值估计的广义Brauer集推广到矩阵多项式, 给出了其特征值估计的广义Brauer集, 并对该集合的性质进行了详细的研究.
本文主要研究矩阵多项式$ P(\lambda) $, 即
其中$ A_{0}, A_{1}, \cdots, A_{m}\in\mathbb{C}^{n\times n}\; (A_{m}\neq0), $ $ \lambda $为一个复变量, 且行列式det $ P(\lambda) $不完全为零. 若$ x_{0}\; (x_{0}\in\mathbb{C}^{n}) $是$ P(\mu)\; x=0 $的非零解, 则称$ \mu $为$ P(\lambda) $的特征值, 且$ x_{0} $是对应于$ \mu $的特征向量. $ P(\lambda) $的有限谱是所有有限特征值构成的集合, 即
此外, 对于无穷特征值$ \mu=\infty $, 考虑矩阵多项式
可验证$ 0 $是$ \hat{P}(\lambda) $的特征值当且仅当$ \infty $是$ P(\lambda) $的特征值, 即可转化为研究$ \hat{P}(\lambda) $的$ 0 $特征值问题.
下面列出与本文相关的引理和符号.
全文中规定$ N=\{1, 2, \cdots, n\} $.
引理1.1[3] 设矩阵$ A\in\mathbb{C}^{n\times n} $, 对于任意的$ i, \; j\in N, \; j<i $, $ \alpha\in[0, 1] $, 记
则
进而
其中$ r_i(A)=\sum\limits_{j\in N\setminus\{i\}}\mid(A)_{i, j}\mid, \; c_i(A)=r_i(A^T), $ $ (A)_{i, j} $为$ A $的第$ (i, \; j) $项. 称$ \mathcal{T}_{i, j, \alpha}(A) $为矩阵$ A $的第$ (i, \; j) $项广义Brauer集, 称$ \mathcal{T}(A) $为矩阵$ A $的广义Brauer集.
类似于$ (1.2) $式, 对于任意的$ i, \; j\in N, \; j<i $, $ \alpha\in[0, 1] $, 下面给出矩阵多项式$ P(\lambda) $的相关集合. 记
其中$ r_i(P(\mu))=\sum\limits_{j\in N\setminus\{i\}}\mid(P(\mu))_{i, j}\mid, \; c_i(P(\mu))=r_i((P(\mu))^T), $同时称$ \mathcal{T}_{i, j, \alpha}(P) $为矩阵多项式$ P(\lambda) $的第$ (i, \; j) $项广义Brauer集, 称$ \mathcal{T}(P) $为矩阵多项式$ P(\lambda) $的广义Brauer集. 此外,
进一步
即当$ \mu=0 $位于$ \mathcal{T}_{i, j, \alpha}(\hat{P}) $中(也位于$ \mathcal{T}(\hat{P}) $中)时, $ \mu=\infty $位于$ \mathcal{T}_{i, j, \alpha}(P) $中(也位于$ \mathcal{T}(P) $中).
在$ (1.4) $式中, 当$ \alpha=1 $和$ 0 $时, 集合退化为文献[8]中定义$ 4.1 $的Brauer集及转置情形的Brauer集,
因此本文只讨论$ \alpha\in(0, 1) $的情况.
下面利用矩阵多项式的广义Brauer估计其特征值的范围.
定理2.1 设$ P(\lambda) $为由$ (1.1) $式定义的矩阵多项式, 则$ P(\lambda) $的特征值包含在其广义Brauer集($ (1.5) $式) 中.
证 设$ \mu $为矩阵多项式$ P(\lambda) $的有限特征值, 即$ \mu\in\sigma(P) $, 由$ (1.3) $式有$ 0\in\sigma(P(\mu))\subseteq\mathcal{T}(P(\mu)) $, 进而有$ \mu\in\mathcal{T}(P) $. 对于$ P(\lambda) $的无限特征值$ \mu=\infty $, 有$ 0\in\sigma(\hat{P}(\mu))\subseteq\mathcal{T}(\hat{P}(\mu)), $即$ \mu=\infty $包含在$ \mathcal{T}(P) $中. 故广义Brauer集包含$ P(\lambda) $的所有特征值.
接着讨论矩阵多项式的广义Brauer集的基本性质.
定理2.2 令$ i, \; j\in N $, 则对由$ (1.1) $式中定义的$ n\times n $阶矩阵多项式$ P(\lambda) $, 以下结论成立
(ⅰ) $ \mathcal{T}_{i, j, \alpha}(P) $是$ \mathbb{C} $的闭子集.
(ⅱ) 对任意$ b\in\mathbb{C}\backslash\{0\}, $若矩阵多项式满足
则有
(ⅲ) 如果$ (P(\lambda))_{i, i}=0 $或$ (P(\lambda))_{j, j}=0 $, 那么$ \mathcal{T}_{i, j, \alpha}(P)=\mathbb{C}. $
(ⅳ) 若系数矩阵$ A_0, \; A_1, \; \cdots, \; A_m $的第$ i $行, 第$ i $列; 第$ j $行, 第$ j $列均为实数, 则$ \mathcal{T}_{i, j, a}(P) $相对于实轴对称.
证 (ⅰ) 令$ \mu\not\in\mathcal{T}_{i, j, \alpha}(P), $于是
由连续性, 存在无限接近于$ \mu $的$ \hat{\mu} $, 使得
故$ \hat{\mu}\not\in\mathcal{T}_{i, j, \alpha}(P), $因此集合$ \mathbb{C}\backslash\mathcal{T}_{i, j, \alpha}(P) $是开集, 即$ \mathcal{T}_{i, j, \alpha}(P) $是$ \mathbb{C} $的闭子集.
(ⅱ) 通过$ (1.4) $式, 易得
(ⅲ) 如果$ (P(\lambda))_{i, i}=0 $或$ (P(\lambda))_{j, j}=0 $, 那么对任意的$ \mu\in\mathbb{C} $, 不等式
恒成立, 于是$ \mathcal{T}_{i, j, \alpha}(P)=\mathbb{C}. $
(ⅳ) 对任意的$ \mu\in\mathcal{T}_{i, j, \alpha}(P), $如果系数矩阵$ A_0, \; A_1, \cdots, \; A_m $的第$ i $行, 第$ i $列; 第$ j $行, 第$ j $列均为实数, 那么
因此
或
于是$ \bar{\mu}\in\mathcal{T}_{i, j, \alpha}(P), $故$ \mathcal{T}_{i, j, \alpha}(P) $相对于实轴对称.
在$ (1.4) $式中, 当不等式分别取“$ < $”和“=”时, 广义Brauer中内点和边界点满足如下的性质.
定理2.3 令$ i, \; j\in N, \; j<i $, 那么集合
位于$ \mathcal{T}_{i, j, \alpha}(P) $集的内部. 进一步, $ \mathcal{T}_{i, j, \alpha}(P) $的边界$ \partial\mathcal{T}_{i, j, \alpha}(P) $满足
证 设$ \mu\in\mathcal{T}_{i, j, \alpha}(P), $即
由连续性, 存在$ \varepsilon>0, $对于$ \hat{\mu}\in\mathbb{C} $, 当$ |\mu-\hat{\mu}|\leq\varepsilon $时, 都有
于是$ \mu $是$ \mathcal{T}_{i, j, \alpha}(P) $的内点.
下面再讨论广义Brauer的有界性. 对于$ i, \; j\in N, \; j<i $, 定义如下集合
定理2.4 假设$ \beta_i, \; \gamma_i, \; \beta_j, \; \gamma_j $非空, 那么
(ⅰ) 若$ i\in\beta_i $ (即$ i\in\gamma_i $), $ j\in\beta_j $ (即$ j\in\gamma_j $), 且$ 0 $不是$ \mathcal{T}_{i, j, \alpha}(\hat{P}) $的孤立点, 则$ \mathcal{T}_{i, j, \alpha}(P) $无界当且仅当$ 0\in\mathcal{T}_{i, j, \alpha}(A_m) $.
(ⅱ) 若$ i\in\bar{\beta_i} $ (即$ i\in\bar{\gamma_i} $), $ j\in\bar{\beta_j} $ (即$ j\in\bar{\gamma_j} $), 则$ 0\in\mathcal{T}_{i, j, \alpha}(A_m) $且$ \mathcal{T}_{i, j, \alpha}(P) $是无界的.
证 (ⅰ) 先证必要性.
当$ i\in\beta_i $, $ j\in\beta_j $时, 有$ (A_m)_{i, i}\neq0, \; (A_m)_{j, j}\neq0 $. 由原点不是$ \mathcal{T}_{i, j, \alpha}(\hat{P}) $的孤立点, $ \mathcal{T}_{i, j, \alpha}(P) $无界, 令$ \{\mu_l\}_{l\in N} $为$ \mathcal{T}_{i, j, \alpha}(P)\backslash\{0\} $中的序列, $ \mid\mu_l\mid\rightarrow \infty $, 故对任意的$ l\in N $, 有
即
当$ l\rightarrow +\infty $时, 有
故$ 0\in\mathcal{T}_{i, j, \alpha}(A_m) $.
再证充分性.
由于$ 0\in\mathcal{T}_{i, j, \alpha}(A_m) $, 即
故$ 0\in\mathcal{T}_{i, j, \alpha}(\hat{P}), $由$ (1.6) $式得$ \infty\in\mathcal{T}_{i, j, \alpha}(P) $ (根据假设$ 0 $不是$ \mathcal{T}_{i, j, \alpha}(\hat{P}) $的孤立点, 从而$ \infty $不是$ \mathcal{T}_{i, j, \alpha}(P) $孤立点), 因此$ \mathcal{T}_{i, j, \alpha}(P) $是无界的.
(ⅱ) 因为$ i\in\bar{\beta_i} $, $ j\in\bar{\beta_j} $, 所以有$ (A_m)_{i, i}=(A_m)_{j, j}=0. $因此$ 0\in\mathcal{T}_{i, j, \alpha}(A_m), $且
其中系数矩阵$ (A_m)_{i, p}, \; p\in\; N\backslash\{i\} $和$ (A_m)_{j, p}, \; p\in N\backslash\{j\} $分别至少存在一项同时不为零, 且$ (A_m)_{q, i}, \; q\in N\backslash\{i\} $和$ (A_m)_{q, j}, \; q\in N\backslash\{j\} $分别至少存在一项同时不为零. 因此对于足够大的$ |\mu| $, 有$ \mu\in\mathcal{T}_{i, j, \alpha}(P) $, 即存在实数$ M>0 $, 使得对任意$ |\mu|\geq M\; (\mu\in\mathbb{C}), $有$ \mu\in\mathcal{T}_{i, j, \alpha}(P), $即$ \{\mu\in\mathbb{C}:\mid\mu\mid\geq M\}\subseteq\mathcal{T}_{i, j, \alpha}(P), $故$ \mathcal{T}_{i, j, \alpha}(P) $是无界的.
下面通过算例来比较文中的广义Brauer集与文献[8]中的Brauer集.
例3.1 设矩阵多项式
经计算可得矩阵多项式$ P_{1}(\lambda) $的特征值, 从下面的表 1可见.
矩阵多项式$ P_{1}(\lambda) $的Brauer集和广义Brauer集分别见图 1和图 2.
例3.2 设矩阵多项式
经计算可得矩阵多项式$ P_{2}(\lambda) $的特征值, 从下面的表 2可见.
矩阵多项式$ P_{2}(\lambda) $的Brauer集和广义Brauer集分别见图 3和图 4.
例3.3 设矩阵多项式
经计算可得矩阵多项式$ P_{3}(\lambda) $的特征值, 从下面的表 3可见.
矩阵多项式$ P_{3}(\lambda) $的Brauer集和广义Brauer集分别见图 5和图 6.
注 以上三个例子中, 图中红色点为相应矩阵多项式的特征值, 蓝色区域为特征值的估计区域. 显然例3.1和例3.2中的估计区域均为有界区域, 而例3.3中的估计区域均为无界区域. 无论特征值估计区域是否有界, 广义Brauer集给出的估计区域更为精确.