数学杂志  2024, Vol. 44 Issue (6): 471-484   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
HUANG An
LONG Pin-hong
LIU Jin-lin
Gangadharan Murugusundaramoorthy
THE (p, q)-ANALOG OF MULTIVALENT BAZILEVIČ FUNCTIONS ASSOCIATED WITH A LIMACON
HUANG An1, LONG Pin-hong1, LIU Jin-lin2, Gangadharan Murugusundaramoorthy3    
1. School of Mathematics and Statistics, Ningxia University, Ningxia 750021, China;
2. Department of Mathematics, Yangzhou University, Jiangsu 225009, China;
3. Department of Mathematics, Vellore Institute of Technology, Tamilnadu, Vellore 632014, India
Abstract: This paper studies the problem of functional inequalities for analytic functions in classical geometric function theory. Using the differential subordination principle and $(p, q)$-derivative operator, it introduces $(p, q)$-analog of a class of multivalently Bazilevič functions associated with a limacon function, and obtains the corresponding coefficient estimates and the Fekete-Szegö inequality, which extend and improve the related results for starlike functions, even $q$- starlike functions.
Keywords: Fekete-Szegöinequality     symmetric Toeplitz determinant     multivalent function     Bazilevičfunction     (p, q)-derivative operator    
与蚶线有关的多叶Bazilevič函数的(p, q)-模拟
黄安1, 龙品红1, 刘金林2, 甘加达兰·穆鲁古桑德拉姆斯3    
1. 宁夏大学数学与统计学院, 宁夏 银川 750021;
2. 扬州大学数学系, 江苏 扬州 225009;
3. 韦洛尔理工学院数学系, 泰米尔纳德 韦洛尔 632014
摘要:本文研究了经典几何函数论中解析函数泛函不等式问题. 利用微分从属原理和$(p, q)$-导数算子, 引入了与limacon函数相关某类多叶Bazilevič函数的$(p, q)$-模拟, 获得了相应的系数估计和Fekete-Szegö不等式. 推广和改进了星型函数甚至$q$-星型函数相关结果.
关键词Fekete-Szegö不等式    对称Toeplitz行列式    多叶函数    Bazilevič函数    (p, q)-导算子    
1 Introduction

Denote by $ \mathcal{A}_{m}(m\in\mathbb{N}) $ the class of multivalently analytic functions $ f $ which are expanded with the Taylor-Maclaurin's series

$ \begin{equation} f(z)=z^{m}+\sum\limits^{\infty}_{n=m+1}a_{n}z^{n} \end{equation} $ (1.1)

in the open unit disk $ \mathbb{U}=\{z\in\mathbb{C}: \mid z\mid < 1\} $, where $ \mathcal{A}_{1}=\mathcal{A} $ is univalent analytic function class, and by $ \Lambda $ the class of Schwarz functions $ \omega $ with $ \omega(0)=0 $ and $ \mid \omega(z)\mid < 1 $ for $ z\in\mathbb{U} $. For two analytic functions $ F $ and $ G $ in $ \mathbb{U} $, if there has a Schwarz function $ \omega\in\Lambda $ such that $ F(z)=G(\omega(z)) $, then $ F $ is subordinate to $ G $ in $ \mathbb{U} $, i.e. $ F\prec G $. In addition, if $ G $ is univalent in $ \mathbb{U} $, then the following equivalence ([1, 2])

$ \begin{equation*} F\prec G\Leftrightarrow F(0)=G(0)\; \text{and}\; F(\mathbb{U})\subset G(\mathbb{U}) \end{equation*} $

holds true. Besides, if $ \omega(z)=z $, then $ F $ is majorized by $ G $ in $ \mathbb{U} $, i.e. $ F\leq G $.

The theory of quantum calculus known as $ q $-calculus is equivalent to traditional infinitesimal calculus without the notion of limits. The $ q $-calculus, was started by Euler and Jacobi, found many interesting applications in various areas of mathematics, physics and engineering sciences. On a recent investigation done by Sahai and Yadav in the theory of special functions by [3], quantum calculus based on two parameters $ (p, q) $ was quoted. Indeed generalization of $ q $-calculus is the post quantum calculus, denoted $ (p, q) $-calculus. The $ (p, q) $-integer was introduced in order to give a generalization or to unify several forms of $ q $-oscillator algebras, well known in the earlier physics literature related to the representation theory of single parameter quantum algebras [4]. Throughout this article, we will use basic notations and definitions of the $ (p, q) $- calculus as follows: Let $ p > 0, q > 0 $. For any non-negative integer $ n $, the $ (p, q) $-integer number $ n $, denoted by $ [n]_{p, q} $, is defined as

$ \begin{equation} \left[ n \right]_{p, q} = \frac{{{p^n} - {q^n}}}{{p - q}}, \qquad [0]_{p, q} = 0. \end{equation} $ (1.2)

The twin-basic number is a natural generalization of the $ q $-number, that is $ {\left[n \right]_q} = \frac{{1- {q^n}}}{{1 - q}} $ $ (q \neq 1). $ Similarly, the $ (p, q) $-differential operator of a function $ f $, analytic in $ |z| < 1 $, is defined by

$ \begin{equation} {{\mathcal{D}_{p, q}}}f \left( z \right) = \frac{{f\left( pz \right) - f\left( {qz} \right)}}{{z\left( {p - q} \right)}}\quad (p \neq q, \ z \in \mathbb{U} =\{z \in \mathbb{C}:\ |z|<1\}). \end{equation} $ (1.3)

One can easily show that $ \mathcal{D}_{p, q} f(z)\rightarrow f'(z) $ as $ p \rightarrow 1^{-} $ and $ q \rightarrow 1^{-} $. Since we cannot obtain $ (p, q) $-integers just by replacing $ q $ by $ q/p $ in the definition of $ q $-integers, it is clear that $ q $-integers and $ (p, q) $-integers differs. However, the definition (1.2) reduces to quantum calculus for the case $ p=1 $. Thus, we can say that $ (p, q) $-calculus can be taken as a generalization of q-calculus. The $ (p, q) $-factorial is defined by $ [0]_{p, q}! = 1, \quad [n]_{p, q}! = \prod\limits_{k=1}^{n}[k]_{p, q}! \quad (n \geq 1). $ Note that for $ p \rightarrow 1^{-} $, the $ (p, q) $ - factorial reduces to the $ q $ - factorial. Also, clearly $ \lim_{p \rightarrow 1^-}\lim_{q \rightarrow 1^-}[n]_{p, q} = n, $ and $ \lim_{p \to\ 1^{-}}\lim_{q \to\ 1^{-}}[n]_{p, q}! = n!. $ For details on $ q $-calculus and $ (p, q) $-calculus, one can refer to [4, 5] and [3].

For $ f\in\mathcal{A}_{m} $, define the $ (p, q) $-derivative or the $ q $-difference $ \mathcal{D}_{p, q}f(z) $ by

$ \begin{equation} \mathcal{D}_{p, q}f(z)=[m]_{p, q}z^{m-1}+\sum\limits^{\infty}_{n=m+1}[n]_{p, q}a_{n}z^{n-1}, \; \; (0<q\leq p\leq1), \end{equation} $ (1.4)

where the $ (p, q) $-derivative operator $ \mathcal{D}_{p, q}f(z) $ of $ f $ is defined by(1.3).

Recall in [6] that a limacon function $ \vartheta: \mathbb{U}\rightarrow \mathbb{C} $ is defined by

$ \begin{equation} \vartheta(z)=1+\sqrt{2}z+\frac{1}{2}z^{2}, \end{equation} $ (1.5)

whose image is of the bean shape(see FIG. 1), that is to say, the interior of

$ \begin{equation} \{\zeta=x+yi\in\mathbb{C}:(4x^{2}+4y^{2}-8x-5)^{2}+8(4x^{2}+4y^{2}-12x-3)^{2}=0\}. \end{equation} $ (1.6)
Figure 1 The image of $ \mathbb{U} $ under $ \vartheta(z) $.

With the development of quantum mechanics, the $ q $-calculus [7, 8] and $ (p, q) $-calculus [4], which are two generalizations of the ordinary calculus without the limit symbol, have been applied into many mathematical, physical and engineering fields (refer to [9] and [10]). Since the seminal paper of Ismail et al. [11], there has a great deal of work to generalize the analytic functions in $ q $-analysis and $ (p, q) $-analysis; referring to Srivastava's review paper [12] and [13-26]. For the multivalent analytic functions in $ q $-calculus sense, we also find some related advances in [25, 27-29]. In the article, we intend to probe this object by subordinating to a limacon [6] but not the Lemniscate of Bernoulli [30]. Specially, we introduce and study certain new subclass of analytic and multivalent Bazilevč functions related with $ (p, q) $-derivative operator and a limacon, and consider the corresponding estimates of the coefficients $ a_{m+1} $ and $ a_{m+2} $ as well as Fekete-Szegö functional inequalities. Meanwhile, the consequences and connections to all our results would also be pointed out.

Now, by making use of unified subordination technique by Ma-Mind[31] and $ (p, q) $-calculus sense, we define the following subclass of multivalent Bazilevič functions associated with a limacon function.

Definition 1.1 A function $ f\in\mathcal{A}_{m} $ is said to be in the class $ \mathcal{B}^{p, q}_{LC}(m, \lambda, \delta) $ if the following subordination

$ \begin{equation} (1-\lambda)\left(\frac{f(z)}{z^{m}}\right)^{\delta}+\lambda\frac{z\mathcal{D}_{p, q}f(z)}{[m]_{p, q}f(z)}\left(\frac{f(z)}{z^{m}}\right)^{\delta}\prec\vartheta(z) \end{equation} $ (1.7)

holds for $ z\in\mathbb{U} $, where $ \delta > 0 $ and $ \lambda\in\mathbb{C} $.

Remark 1.2 In term of Definition 1.1, by choosing some special parameters, we get the following reduced versions:

$ \mathcal{B}^{p, q}_{LC}(m, \lambda, 1)\equiv\mathcal{B}^{p, q}_{LC}(m, \lambda) $ and $ \mathcal{B}^{1, 1}_{LC}(m, \lambda)\equiv\mathcal{B}_{LC}(m, \lambda) $;

$ \mathcal{B}^{p, q}_{LC}(m, 1, \delta)\equiv\mathcal{B}^{p, q}_{LC}(m, \delta) $ and $ \mathcal{B}^{1, 1}_{LC}(m, \delta)\equiv\mathcal{B}_{LC}(m, \delta) $;

$ \mathcal{B}^{p, q}_{LC}(m, 1, 0)\equiv\mathcal{S}^{p, q}_{LC}(m) $ and $ \mathcal{S}^{1, 1}_{LC}(m)\equiv\mathcal{S}_{LC}(m) $;

$ \lim_{p, q\rightarrow1_{-}}\mathcal{B}^{p, q}_{LC}(m, \lambda, \delta) \equiv\mathcal{B}_{LC}(m, \lambda, \delta) $ and $ \mathcal{B}^{p, q}_{LC}(1, \lambda, \delta) \equiv\mathcal{B}^{p, q}_{LC}(\lambda, \delta). $

Remark 1.3 A function $ g $ belongs to the class $ \mathcal{B}_{LC}(1, 1, 0) $ if and only if there exists an analytic function $ q \prec \vartheta(z) $ such that

$ \begin{equation} \nonumber g(z)=z\exp\displaystyle{\int} ^{z}_{0}\frac{q(t)-1}{t}dt, \ \ \ z\in\mathbb{U}. \end{equation} $

The above intergral representation provides many examples of functions of the class $ \mathcal{B}_{LC}(1, 1, 0) $. Let $ q(t)=\vartheta(t^{n}) $, for $ n=1, 2, \cdot\cdot\cdot $, and $ t\in\mathbb{U} $. With with a simple calculation, we see that the function(see FIG. 2)

$ \begin{align*} \nonumber h(z)=&z\exp\int^{z}_{0}\frac{\sqrt{2}t^{n}+\frac{1}{2}t^{2n}}{t}dt \\=&z+\frac{\sqrt{2}}{n}z^{n+1}+\frac{1}{4n}z^{2n+1}+\cdot\cdot\cdot, \end{align*} $
Figure 2 The image of $ \mathbb{U} $ under $ h(z) $ with $ n=5, 8 $.

is an extreme function for the class $ \mathcal{B}_{LC}(1, 1, 0) $.

Denote by $ \mathcal{P} $ the class of all analytic and univalent functions $ \ell(z) $ with

$ \begin{equation} \ell(z)=1+\sum\limits^{\infty}_{n=1}c_{n}z^{n}, \; \; (z\in\mathbb{D}) \end{equation} $ (1.8)

satisfying $ \Re\; [\ell(z)] > 0 $ and $ \ell(0)=1 $. To proceed our results, we have to be ready for some indispensable Lemmas below.

Lemma 1.4 [See [32, 33]] Let $ \ell(z)\in\mathcal{P} $. Then the sharp estimates

$ \mid c_{n}\mid\leq2\; (n\in\mathbb{N}) $

are true. In Particular, the equality holds for all $ n $ for the following function

$ \begin{equation*} \ell(z)=\frac{1+z}{1-z}=1+\sum\limits^{\infty}_{n=1}2z^{n}. \end{equation*} $

Lemma 1.5 [See [31]] If $ \ell(z)\in\mathcal{P} $, then, for any complex $ \mu $,

$ \begin{align*} |c_2 - \mu c_1^2| \leq 2\max\left\lbrace 1, |2\mu - 1| \right\rbrace \end{align*} $

and the result is sharp for the functions

$ \begin{align*} \ell(z) = \dfrac{1+z}{1-z} \quad \mathit{\text{or}} \quad \ell(z) = \dfrac{1+z^2}{1-z^2}, \quad (z \in \mathbb{D}). \end{align*} $

Lemma 1.6 [See [31]] Assume that the function $ \ell(z)\in\mathcal{P} $ and $ \mu\in\mathbb{R} $. Then

$ \mid c_{2}-\mu c^{2}_{1}\mid\leq\left\{\begin{array}{ll} -4\mu+2\; \; &\mbox{if}\; \; \mu\leq0, \\ 2\; \; &\mbox{if}\; \; 0\leq\mu\leq1, \\ 4\mu-2\; \; &\mbox{if}\; \; \mu\geq1. \end{array}\right. $

For $ \mu < 0 $ or $ \mu > 1 $, the inequality holds literally if and only if $ \ell(z)=\frac{1+z}{1-z} $ or one of its rotations. If $ 0 < \mu < 1 $, the inequality holds literally if and only if $ \ell(z)=\frac{1+z^{2}}{1-z^{2}} $ or one of its rotations. In Particular, if $ \mu=0 $, then the sharp result holds for the following function

$ \begin{equation*} \ell(z)=\left(\frac{1}{2}+\frac{\varsigma}{2}\right)\frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{\varsigma}{2}\right)\frac{1-z}{1+z}, \quad(0\leq\varsigma\leq1) \end{equation*} $

or one of its rotations. If $ \mu=1 $, then the sharp result holds for the following function

$ \begin{equation*} \frac{1}{\ell(z)}=\left(\frac{1}{2}+\frac{\varsigma}{2}\right)\frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{\varsigma}{2}\right)\frac{1-z}{1+z}, \quad(0\leq\varsigma\leq1) \end{equation*} $

or one of its rotations. If $ 0 < \mu < 1 $, then the upper bound is sharp as the followings

$ \begin{equation*} \vert c_{2}-\mu c^{2}_{1}\vert+\mu\vert c_{1}\vert^{2}\leq2, \quad\left(0<\mu\leq\frac{1}{2}\right) \end{equation*} $

and

$ \begin{equation*} \vert c_{2}-\mu c^{2}_{1}\vert+(1-\mu)\vert c_{1}\vert^{2}\leq2, \quad\left(\frac{1}{2}<\mu<1\right). \end{equation*} $
2 Functional estimates for $ \mathcal{B}^{p, q}_{LC}(m, \lambda, \delta) $

Denote the function $ h\in\mathcal{P} $ by $ h(z)=\frac{1+u(z)}{1-u(z)}=1+\sum\limits^{\infty}_{n=1}c_{n}z^{n}. $ Then, from (1.8) we derive that

$ \begin{align} u(z) = \dfrac{h(z) - 1}{h(z) + 1} &= \dfrac{c_1}{2}z + \left( \dfrac{c_2}{2} - \dfrac{c_1^2}{4}\right) z^2 \\ &+ \left( \dfrac{c_3}{2} - \dfrac{c_2c_1}{2} + \dfrac{c_1^3}{8} \right)z^3 +\ldots, \; \; (z\in\mathbb{U}) \end{align} $ (2.1)

so that $ u(z)\in\Lambda $. By (1.5) and (2.1), we imply that

$ \begin{align} \vartheta(u(z))&=1+\frac{\sqrt{2}c_{1}}{2}z+\left[\frac{\sqrt{2}c_{2}}{2}-\frac{(2\sqrt{2}-1)c^{2}_{1}}{8}\right]z^{2}\\ &+\left[\frac{\sqrt{2}c_{3}}{2}-\frac{(2\sqrt{2}-1)c_{2}c_{1}}{4}+\frac{(\sqrt{2}-1)c^{3}_{1}}{8}\right]z^{3}\ldots, \; \; (z\in\mathbb{U}). \end{align} $ (2.2)

To begin with, we deal with the functional estimates for the class $ \mathcal{B}^{p, q}_{LC}(m, \lambda, \delta) $ and establish the next theorems for the coefficient bounds and the corresponding Feteke-Szegö problems.

Theorem 2.1 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{B}^{p, q}_{LC}(m, \lambda, \delta) $, then

$ \begin{equation} \vert a_{m+1}\vert\leq\frac{\sqrt{2}[m]_{p, q}}{\vert\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}\vert} \end{equation} $ (2.3)

and

$ \begin{eqnarray} \vert a_{m+2}\vert&\leq&\frac{(2\sqrt{2}-\frac{1}{2})[m]_{p, q}}{\vert\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}\vert}+\frac{2\vert\delta-1\vert[m]^{2}_{p, q}}{\vert\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}\vert^{2}}\\ &&\times\frac{\vert\lambda\vert\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta}{2}[m]_{p, q}}{\vert\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}\vert}. \end{eqnarray} $ (2.4)

Proof. Assume that $ f(z)\in\mathcal{B}^{p, q}_{LC}(m, \lambda, \delta) $. Then, there exists a Schwarz function $ u(z)\in\Lambda $ so that

$ (1-\lambda)\left(\frac{f(z)}{z^{m}}\right)^{\delta}+\lambda\frac{z\mathcal{D}_{p, q}f(z)}{[m]_{p, q}f(z)}\left(\frac{f(z)}{z^{m}}\right)^{\delta}=\vartheta(u(z)). $ (2.5)

Since

$ \begin{eqnarray} &&(1-\lambda)\left(\frac{f(z)}{z^{m}}\right)^{\delta}+\lambda\frac{z\mathcal{D}_{p, q}f(z)}{[m]_{p, q}f(z)}\left(\frac{f(z)}{z^{m}}\right)^{\delta}\\ &=&1+\left[\lambda\left(\frac{[m+1]_{p, q}}{[m]_{p, q}}-1\right)+\delta\right]a_{m+1}z +\big\{\left[\lambda\left(\frac{[m+2]_{p, q}}{[m]_{p, q}}-1\right)+\delta\right]a_{m+2}\\ &&+\left[\lambda(\delta-1)\left(\frac{[m+1]_{p, q}}{[m]_{p, q}}-1\right)+\frac{\delta(\delta-1)}{2}\right]a^{2}_{m+1}\big\}z^{2}+\cdots \end{eqnarray} $ (2.6)

for $ f\in\mathcal{A}_{m}(m\in\mathbb{N}) $, combing (2.5) and (2.6) with (2.2) we get that

$ \begin{equation*} \frac{\sqrt{2}c_{1}}{2}=\left[\lambda\left(\frac{[m+1]_{p, q}}{[m]_{p, q}}-1\right)+\delta\right]a_{m+1} \end{equation*} $

and

$ \begin{eqnarray*} \frac{\sqrt{2}c_{2}}{2}-\frac{(2\sqrt{2}-1)c^{2}_{1}}{8}&=&\left[\lambda\left(\frac{[m+2]_{p, q}}{[m]_{p, q}}-1\right)+\delta\right]a_{m+2}\\ &&+\left[\lambda(\delta-1)\left(\frac{[m+1]_{p, q}}{[m]_{p, q}}-1\right)+\frac{\delta(\delta-1)}{2}\right]a^{2}_{m+1}, \end{eqnarray*} $

such that

$ \begin{equation} a_{m+1}=\frac{\sqrt{2}[m]_{p, q}c_{1}}{2[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]} \end{equation} $ (2.7)

and

$ \begin{eqnarray} a_{m+2}&=&\frac{[4\sqrt{2}c_{2}-(2\sqrt{2}-1)c^{2}_{1}][m]_{p, q}}{8[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}-\frac{[m]^{2}_{p, q}c^{2}_{1}}{2[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}\\ &&\times\frac{\lambda(\delta-1)\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta(\delta-1)}{2}[m]_{p, q}}{[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}. \end{eqnarray} $ (2.8)

In view of Lemma 1.4 we imply that Theorem 2.1 holds true.

By taking $ m=1 $ or $ \lambda=1 $ or $ \lambda=1, \delta=0 $ in Theorem 2.1, we deduce the corollaries below.

Corollary 2.2 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{B}^{p, q}_{LC}(\lambda, \delta) $, then

$ \begin{equation*} \vert a_{2}\vert\leq\frac{\sqrt{2}}{\vert\lambda([2]_{p, q}-1)+\delta\vert} \end{equation*} $

and

$ \begin{eqnarray*} \vert a_{3}\vert\leq\frac{(2\sqrt{2}-\frac{1}{2})}{\vert\lambda([3]_{p, q}-1)+\delta\vert}+\frac{2\vert\delta-1\vert}{\vert\lambda([2]_{p, q}-1)+\delta\vert^{2}} \times\frac{\vert\lambda\vert\left([2]_{p, q}-1\right)+\frac{\delta}{2}}{\vert\lambda([3]_{p, q}-1)+\delta\vert}. \end{eqnarray*} $

Corollary 2.3 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{B}^{p, q}_{LC}(m, \delta) $, then

$ \begin{equation*} \vert a_{m+1}\vert\leq\frac{\sqrt{2}[m]_{p, q}}{([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}} \end{equation*} $

and

$ \begin{eqnarray*} \vert a_{m+2}\vert&\leq&\frac{(2\sqrt{2}-\frac{1}{2})[m]_{p, q}}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}+\frac{2\vert\delta-1\vert[m]^{2}_{p, q}}{[([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}\\ &&\times\frac{\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta}{2}[m]_{p, q}}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}. \end{eqnarray*} $

Corollary 2.4 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{S}^{p, q}_{LC}(m) $, then

$ \begin{equation*} \vert a_{m+1}\vert\leq\frac{\sqrt{2}[m]_{p, q}}{[m+1]_{p, q}-[m]_{p, q}} \end{equation*} $

and

$ \begin{eqnarray*} \vert a_{m+2}\vert&\leq&\frac{(2\sqrt{2}-\frac{1}{2})[m]_{p, q}}{[m+2]_{p, q}-[m]_{p, q}}+\frac{2[m]^{2}_{p, q}}{([m+1]_{p, q}-[m]_{p, q})([m+2]_{p, q}-[m]_{p, q})}. \end{eqnarray*} $

Theorem 2.5 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{B}^{p, q}_{LC}(m, \lambda, \delta) $, then

$ \begin{equation} \vert a_{m+2}-\mu a^{2}_{m+1}\vert\leq\frac{\sqrt{2}[m]_{p, q}\max\left\lbrace 1, |2\hbar - 1| \right\rbrace}{\vert\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}\vert} \end{equation} $ (2.9)

holds for $ \mu\in\mathbb{C} $, where

$ \begin{eqnarray*} \hbar&=&\frac{(4-\sqrt{2})}{8}+\frac{\sqrt{2}\mu[m]_{p, q}[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}{2[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}\notag\\ &&+\frac{\sqrt{2}[m]_{p, q}}{2}\times\frac{\lambda(\delta-1)\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta(\delta-1)}{2}[m]_{p, q}}{[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}. \end{eqnarray*} $

Proof For $ \mu\in\mathbb{C} $, by using (2.7) and (2.8), we infer that

$ \begin{equation} a_{m+2}-\mu a^{2}_{m+1}=\frac{\sqrt{2}[m]_{p, q}}{2[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\left(c_{2}-\hbar c^{2}_{1}\right), \end{equation} $ (2.10)

where

$ \begin{eqnarray*} \hbar&=&\frac{(4-\sqrt{2})}{8}+\frac{\sqrt{2}\mu[m]_{p, q}[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}{2[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}\notag\\ &+&\frac{\sqrt{2}[m]_{p, q}}{2}\times\frac{\lambda(\delta-1)\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta(\delta-1)}{2}[m]_{p, q}}{[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}. \end{eqnarray*} $

Then, we apply Lemma 1.5 into the equality (2.10) and show that Theorem 2.5 holds true.

Similarly, by fixing $ \mu=0 $ or $ m=1 $, or $ \lambda=1 $, or $ \lambda=1 $, $ \delta=0 $ in Theorem 2.5, we obtain the next corollaries as follows.

Corollary 2.6 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{B}^{p, q}_{LC}(m, \lambda, \delta) $, then

$ \begin{equation*} \vert a_{m+2}\vert\leq\frac{\sqrt{2}[m]_{p, q}\max\left\lbrace 1, |2\hbar - 1| \right\rbrace}{\vert\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}\vert}, \end{equation*} $

where

$ \begin{eqnarray*} \hbar=\frac{(4-\sqrt{2})}{8}+\frac{\sqrt{2}[m]_{p, q}}{2}\times\frac{\lambda(\delta-1)\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta(\delta-1)}{2}[m]_{p, q}}{[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}. \end{eqnarray*} $

Corollary 2.7 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{B}^{p, q}_{LC}(\lambda, \delta) $, then

$ \begin{equation*} \vert a_{3}-\mu a^{2}_{2}\vert\leq\frac{\sqrt{2}\max\left\lbrace 1, |2\hbar - 1| \right\rbrace}{\vert\lambda([3]_{p, q}-1)+\delta\vert} \end{equation*} $

holds for $ \mu\in\mathbb{C} $, where

$ \begin{eqnarray*} \hbar&=&\frac{(4-\sqrt{2})}{8}+\frac{\sqrt{2}\mu[\lambda([3]_{p, q}-1)+\delta]}{2[\lambda([2]_{p, q}-1)+\delta]^{2}}+\frac{\lambda(\delta-1)\left([2]_{p, q}-1\right)+\frac{\delta(\delta-1)}{2}}{\sqrt{2}[\lambda([2]_{p, q}-1)+\delta]^{2}}. \end{eqnarray*} $

Corollary 2.8 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{B}^{p, q}_{LC}(m, \delta) $, then

$ \begin{equation} \vert a_{m+2}-\mu a^{2}_{m+1}\vert\leq\frac{\sqrt{2}[m]_{p, q}\max\left\lbrace 1, |2\hbar - 1| \right\rbrace}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}} \end{equation} $ (2.11)

holds for $ \mu\in\mathbb{C} $, where

$ \begin{eqnarray*} \hbar&=&\frac{(4-\sqrt{2})}{8}+\frac{\sqrt{2}\mu[m]_{p, q}[([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}{2[([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}\notag\\ &&+\frac{\sqrt{2}(\delta-1)[m]_{p, q}}{2}\times\frac{\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta}{2}[m]_{p, q}}{[([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}. \end{eqnarray*} $

Corollary 2.9 If $ f(z) $ given by (1.1) belongs to the class $ \mathcal{S}^{p, q}_{LC}(m) $, then

$ \begin{equation} \vert a_{m+2}-\mu a^{2}_{m+1}\vert\leq\frac{\sqrt{2}[m]_{p, q}\max\left\lbrace 1, |2\hbar - 1| \right\rbrace}{[m+2]_{p, q}-[m]_{p, q}} \end{equation} $ (2.12)

holds for $ \mu\in\mathbb{C} $, where

$ \begin{eqnarray*} \hbar&=&\frac{(4-\sqrt{2})}{8}+\frac{\sqrt{2}[m]_{p, q}[\mu([m+2]_{p, q}-[m]_{p, q})-([m+1]_{p, q}-[m]_{p, q})]}{2([m+1]_{p, q}-[m]_{p, q})^{2}}. \end{eqnarray*} $

If we let $ \mu\in\mathbb{R} $ and $ \lambda\in\mathbb{R}_{+} $, then we are based on the proof of Theorem 2.5 and Lemma 1.6 to establish the Fekete-Szegö functional inequality for $ \mathcal{B}^{p, q}_{LC}(m, \lambda, \delta) $.

Theorem 2.10 For $ \mu\in\mathbb{R} $ and $ \lambda\in\mathbb{R} $, if $ f(z)\in\mathcal{A}_{m} $ belongs to the class $ \mathcal{B}^{p, q}_{LC}(m, \lambda, \delta) $, then

$ \vert a_{m+2}-\mu a^{2}_{m+1}\vert\leq\left\{\begin{array}{ll} \frac{\sqrt{2}[m]_{p, q}(-2\hbar + 1)}{\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}, \; (\mu\leq\Xi_{1});\\ \frac{\sqrt{2}[m]_{p, q}}{\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}, \; (\Xi_{1}\leq\mu\leq\Xi_{2});\\ \frac{\sqrt{2}[m]_{p, q}(2\hbar - 1)}{\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}, \; (\mu\geq\Xi_{2}), \end{array}\right. $

where $ \hbar $ is the same as in Theorem 2.5, and

$ \begin{eqnarray*} \Xi_{1}&=&\frac{(-2\sqrt{2}+1)}{4}\frac{[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}{[m]_{p, q}[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\\ &&-\frac{\lambda(\delta-1)\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta(\delta-1)}{2}[m]_{p, q}}{[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]} \end{eqnarray*} $

and

$ \begin{eqnarray*} \Xi_{2}&=&\frac{(2\sqrt{2}+1)}{4}\frac{[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}{[m]_{p, q}[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\\ &&-\frac{\lambda(\delta-1)\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta(\delta-1)}{2}[m]_{p, q}}{[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}. \end{eqnarray*} $

In addition, we take

$ \begin{eqnarray*} \Xi_{3}&=&\frac{[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}{[m]_{p, q}[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\\ &&-\frac{\lambda(\delta-1)\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta(\delta-1)}{2}[m]_{p, q}}{[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}. \end{eqnarray*} $

Then, each of the following inequalities holds:

(A) For $ \mu\in[\Xi_{1}, \Xi_{3}] $,

$ \begin{eqnarray*} &&\vert a_{m+2}-\mu a^{2}_{m+1}\vert+\frac{\sqrt{2}\hbar[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}{[m]_{p, q}[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\vert a_{m+1}\vert^{2}\\ &\leq&\frac{\sqrt{2}[m]_{p, q}}{[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}; \end{eqnarray*} $

(B) For $ \mu\in[\Xi_{3}, \Xi_{2}] $,

$ \begin{eqnarray*} &&\vert a_{m+2}-\mu a^{2}_{m+1}\vert+\frac{\sqrt{2}(1-\hbar)[\lambda([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}{[m]_{p, q}[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\vert a_{m+1}\vert^{2}\\ &\leq&\frac{\sqrt{2}[m]_{p, q}}{[\lambda([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}. \end{eqnarray*} $

Similarly, by letting $ m=1 $, or $ \lambda=1 $, or $ \lambda=1 $, $ \delta=0 $ in Theorem 2.10, we provide the following corollaries.

Corollary 2.11 For $ \mu\in\mathbb{R} $ and $ \lambda\in\mathbb{R}_{+} $, if $ f(z)\in\mathcal{A} $ belongs to the class $ \mathcal{B}^{p, q}_{LC}(\lambda, \delta) $, then

$ \vert a_{3}-\mu a^{2}_{2}\vert\leq\left\{\begin{array}{ll} \frac{\sqrt{2}(-2\hbar + 1)}{\lambda([3]_{p, q}-1)+\delta}, \; (\mu\leq\Pi_{1});\\ \frac{\sqrt{2}}{\lambda([3]_{p, q}-1)+\delta}, \; (\Pi_{1}\leq\mu\leq\Pi_{2});\\ \frac{\sqrt{2}(2\hbar - 1)}{\lambda([3]_{p, q}-1)+\delta}, \; (\mu\geq\Pi_{2}), \end{array}\right. $

where $ \hbar $ is the same as in Corollary 2.7, and

$ \begin{eqnarray*} \Pi_{1}&=&\frac{(-2\sqrt{2}+1)}{4}\frac{[\lambda([2]_{p, q}-1)+\delta]^{2}}{[\lambda([3]_{p, q}-1)+\delta]}-\frac{\lambda(\delta-1)\left([2]_{p, q}-1\right)+\frac{\delta(\delta-1)}{2}}{\lambda([3]_{p, q}-1)+\delta} \end{eqnarray*} $

and

$ \begin{eqnarray*} \Pi_{2}&=&\frac{(2\sqrt{2}+1)}{4}\frac{[\lambda([2]_{p, q}-1)+\delta]^{2}}{[\lambda([3]_{p, q}-1)+\delta]}-\frac{\lambda(\delta-1)\left([2]_{p, q}-1\right)+\frac{\delta(\delta-1)}{2}}{\lambda([3]_{p, q}-1)+\delta}. \end{eqnarray*} $

In addition, we take

$ \begin{eqnarray*} \Pi_{3}&=&\frac{[\lambda([2]_{p, q}-1)+\delta]^{2}}{\lambda([3]_{p, q}-1)+\delta}-\frac{\lambda(\delta-1)\left([2]_{p, q}-1\right)+\frac{\delta(\delta-1)}{2}}{\lambda([3]_{p, q}-1)+\delta}. \end{eqnarray*} $

Then, each of the following inequalities holds:

(A) For $ \mu\in[\Pi_{1}, \Pi_{3}] $,

$ \begin{eqnarray*} \vert a_{3}-\mu a^{2}_{2}\vert+\frac{\sqrt{2}\hbar[\lambda([2]_{p, q}-1)+\delta]^{2}}{\lambda([3]_{p, q}-1)+\delta}\vert a_{2}\vert^{2} \leq\frac{\sqrt{2}}{\lambda([3]_{p, q}-1)+\delta}; \end{eqnarray*} $

(B) For $ \mu\in[\Pi_{3}, \Pi_{2}] $,

$ \begin{eqnarray*} \vert a_{3}-\mu a^{2}_{2}\vert+\frac{\sqrt{2}(1-\hbar)[\lambda([2]_{p, q}-1)+\delta]^{2}}{\lambda([3]_{p, q}-1)+\delta}\vert a_{2}\vert^{2}\leq\frac{\sqrt{2}}{\lambda([3]_{p, q}-1)+\delta}. \end{eqnarray*} $

Corollary 2.12 For $ \mu\in\mathbb{R} $, if $ f(z)\in\mathcal{A}_{m} $ belongs to the class $ \mathcal{B}^{p, q}_{LC}(m, \delta) $, then

$ \vert a_{m+2}-\mu a^{2}_{m+1}\vert\leq\left\{\begin{array}{ll} \frac{\sqrt{2}[m]_{p, q}(-2\hbar + 1)}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}, \; (\mu\leq\Sigma_{1});\\ \frac{\sqrt{2}[m]_{p, q}}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}, \; (\Sigma_{1}\leq\mu\leq\Sigma_{2});\\ \frac{\sqrt{2}[m]_{p, q}(2\hbar - 1)}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}, \; (\mu\geq\Sigma_{2}), \end{array}\right. $

where $ \hbar $ is the same as in Corollary 2.8, and

$ \begin{eqnarray*} \Sigma_{1}&=&\frac{(-2\sqrt{2}+1)}{4}\frac{[([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}{[m]_{p, q}[([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\\ &&-\frac{(\delta-1)[\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta}{2}[m]_{p, q}]}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}} \end{eqnarray*} $

and

$ \begin{eqnarray*} \Sigma_{2}&=&\frac{(2\sqrt{2}+1)}{4}\frac{[([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}{[m]_{p, q}[([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\\ &&-\frac{(\delta-1)[\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta}{2}[m]_{p, q}]}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}. \end{eqnarray*} $

In addition, we take

$ \begin{eqnarray*} \Sigma_{3}&=&\frac{[([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}{[m]_{p, q}[([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\\ &&-\frac{(\delta-1)[\left([m+1]_{p, q}-[m]_{p, q}\right)+\frac{\delta(\delta-1)}{2}[m]_{p, q}]}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}. \end{eqnarray*} $

Then, each of the following inequalities holds:

(A) For $ \mu\in[\Sigma_{1}, \Sigma_{3}] $,

$ \begin{eqnarray*} &&\vert a_{m+2}-\mu a^{2}_{m+1}\vert+\frac{\sqrt{2}\hbar[([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}{[m]_{p, q}[([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\vert a_{m+1}\vert^{2}\\ &\leq&\frac{\sqrt{2}[m]_{p, q}}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}; \end{eqnarray*} $

(B) For $ \mu\in[\Sigma_{3}, \Sigma_{2}] $,

$ \begin{eqnarray*} &&\vert a_{m+2}-\mu a^{2}_{m+1}\vert+\frac{\sqrt{2}(1-\hbar)[([m+1]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]^{2}}{[m]_{p, q}[([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}]}\vert a_{m+1}\vert^{2}\\ &\leq&\frac{\sqrt{2}[m]_{p, q}}{([m+2]_{p, q}-[m]_{p, q})+\delta[m]_{p, q}}. \end{eqnarray*} $

Corollary 2.13 For $ \mu\in\mathbb{R} $, if $ f(z)\in\mathcal{A}_{m} $ belongs to the class $ \mathcal{S}^{p, q}_{LC}(m) $, then

$ \vert a_{m+2}-\mu a^{2}_{m+1}\vert\leq\left\{\begin{array}{ll} \frac{\sqrt{2}[m]_{p, q}(-2\hbar + 1)}{[m+2]_{p, q}-[m]_{p, q}}, \; (\mu\leq\Upsilon_{1});\\ \frac{\sqrt{2}[m]_{p, q}}{[m+2]_{p, q}-[m]_{p, q}}, \; (\Upsilon_{1}\leq\mu\leq\Upsilon_{2});\\ \frac{\sqrt{2}[m]_{p, q}(2\hbar -1)}{[m+2]_{p, q}-[m]_{p, q}}, \; (\mu\geq\Upsilon_{2}), \end{array}\right. $

where $ \hbar $ is the same as in Corollary 2.9, and

$ \begin{eqnarray*} \Upsilon_{1}=\frac{(-2\sqrt{2}+1)}{4}\frac{([m+1]_{p, q}-[m]_{p, q})^{2}}{[m]_{p, q}([m+2]_{p, q}-[m]_{p, q})}+\frac{[m+1]_{p, q}-[m]_{p, q}}{[m+2]_{p, q}-[m]_{p, q}} \end{eqnarray*} $

and

$ \begin{eqnarray*} \Upsilon_{2}=\frac{(2\sqrt{2}+1)}{4}\frac{([m+1]_{p, q}-[m]_{p, q})^{2}}{[m]_{p, q}([m+2]_{p, q}-[m]_{p, q})}+\frac{[m+1]_{p, q}-[m]_{p, q}}{[m+2]_{p, q}-[m]_{p, q}}. \end{eqnarray*} $

In addition, we take

$ \begin{eqnarray*} \Upsilon_{3}&=&\frac{([m+1]_{p, q}-[m]_{p, q})^{2}}{[m]_{p, q}([m+2]_{p, q}-[m]_{p, q})}+\frac{[m+1]_{p, q}-[m]_{p, q}}{[m+2]_{p, q}-[m]_{p, q}}. \end{eqnarray*} $

Then, each of the following inequalities holds:

(A) For $ \mu\in[\Upsilon_{1}, \Upsilon_{3}] $,

$ \begin{eqnarray*} \vert a_{m+2}-\mu a^{2}_{m+1}\vert+\frac{\sqrt{2}\hbar([m+1]_{p, q}-[m]_{p, q})^{2}}{[m]_{p, q}([m+2]_{p, q}-[m]_{p, q})}\vert a_{m+1}\vert^{2}\leq\frac{\sqrt{2}[m]_{p, q}}{[m+2]_{p, q}-[m]_{p, q}}; \end{eqnarray*} $

(B) For $ \mu\in[\Upsilon_{3}, \Upsilon_{2}] $,

$ \begin{eqnarray*} \vert a_{m+2}-\mu a^{2}_{m+1}\vert+\frac{\sqrt{2}(1-\hbar)([m+1]_{p, q}-[m]_{p, q})^{2}}{[m]_{p, q}([m+2]_{p, q}-[m]_{p, q})}\vert a_{m+1}\vert^{2}\leq\frac{\sqrt{2}[m]_{p, q}}{[m+2]_{p, q}-[m]_{p, q}}. \end{eqnarray*} $
3 Conclusion

Our objective is to generalize some classical interesting results in geometric function theory from the ordinary analysis to $ q $-analysis or $ (p, q) $-analysis. Here, by using the $ (p, q) $-derivative operator and Bazilevič function, certain new subclass of analytic and multivalent functions can be defined to improve the classical starlike functions and even $ q $-starlike functions. In our main results, for this class we obtain the corresponding bound estimates of the coefficients $ a_{m+1} $ and $ a_{m+2} $ and the Fekete-Szegö functional inequalities. Of course, we may choose another special functions to replace Bazilevič function and the limacon function, which are leaved out the interested readers to realize.

References
[1]
Bulboacǎ T. Differential subordinations and superordinations. Recent Results[M]. Cluj-Napoca: House of Scientific Book Publ., 2005.
[2]
Miller S S, Mocanu P T. Differential Subordinations: Theory and applications. series on monographs and textbooks in pure and Appl. Math. No. 225[M]. New York: Marcel Dekker Inc., 2000.
[3]
Sahai V, Yadav S. Representations of two parameter quantum algebras and $p, q$-special functions[J]. Math. Anal. Appl., 2007, 335(1): 268-279. DOI:10.1016/j.jmaa.2007.01.072
[4]
Chakrabarti R, Jagannathan R. A $(p, q)$-oscillator realization of two-parameter quantum algebras[J]. Journal of Physics A: Mathematical and General, 1991, 24(13): L711-L718. DOI:10.1088/0305-4470/24/13/002
[5]
Araci S, Duran U, Acikgoz M, Srivastava H M. {A certain $(p, q)$-derivative operator and associated divided differences}[J]. J. Inequal. Appl., 2016, 1-8.
[6]
Yunus Y, Halim S A, Akbarally A B. Subclass of starlike functions associated with a limacon[C]. In AIP Conference Proceeding(Vol 1974 No. 1). AIP publishing, 2018.
[7]
Jackson F H. $q$-difference equations[J]. Amer. J. Math., 1910, 32: 305-314. DOI:10.2307/2370183
[8]
Jackson F H. On $q$-definite integrals[J]. Quart. J. Pure Appl. Math., 1910, 41: 193-203.
[9]
Cheung P, Kac V G. Quantum Calculus[M]. New York: Springer-Verlag, 2002.
[10]
Rajković P M, Marinković S D, Stanković M S. Fractional integrals and derivatives in $q$-calculus[J]. Appl. Anal. Discrete Math., 2007, 1: 311-323. DOI:10.2298/AADM0701311R
[11]
Ismail M E H, Merkes E, Styer D. A generalization of starlike functions[J]. Complex Variables Theory Appl., 1990, 14(1-4): 77-84.
[12]
Srivastava H M. Operators of basic (or $q$-)calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis[J]. Iran. J. Sci. Technol. Trans. Sci., 2020, 44(1): 327-344. DOI:10.1007/s40995-019-00815-0
[13]
Ahmad K, Arif M, Liu Jinlin. Convolution properties for a family of analytic functions involving $q$-analogue of Ruscheweyh differential operator[J]. Turkish J. Math., 2019, 43(3): 1712-1720. DOI:10.3906/mat-1812-6
[14]
Aldweby H, Darus M. Coefficient estimates of classes of $q$-starlike and $q$-convex functions[J]. Advanced Studies in Contemporary Math., 2016, 26(1): 21-26.
[15]
Aouf M K, Seoudy T M. Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by $q$-Analogue of Ruscheweyh operator[J]. Constructive Mathematical Analysis, 2020, 3(1): 36-44. DOI:10.33205/cma.648478
[16]
Aouf M K, Seoudy T M. Fekete-Szegö inequalities for certain subclass of analytic functions with complex order involving $q$-derivative operator[J]. Turkish J. Ineq., 2020, 4(2): 22-28.
[17]
Khan B, Srivastava H M, Tahir M, Darus M, Ahmad Q Z, Khan N. Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions[J]. AIMS Mathematics, 2021, 6: 1024-1039. DOI:10.3934/math.2021061
[18]
Long Pinhong, Tang Huo, Wang Wenshuai. Functional inequalities for several classes of $q$-starlike and $q$-convex type analytic and multivalent functions using a generalized Bernardi integral operator[J]. AIMS Mathematics, 2020, 6(2): 1191-1208.
[19]
Rehman M S U, Ahmad Q Z, Srivastava H M, Khan N, Darus M, Khan B. Applications of higher-order $q$-derivatives to the subclass of $q$-starlike functions associated with the Janowski functions[J]. AIMS Mathematics, 2021, 6: 1110-1125. DOI:10.3934/math.2021067
[20]
Ramachandran C, Vanitha L, Kanas S. Certain results on $q$-starlike and $q$-convex error functions[J]. Math. Slovaca, 2018, 68(2): 361-368. DOI:10.1515/ms-2017-0107
[21]
Seoudy T M, Aouf M K. Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order[J]. J. Math. Inequal., 2016, 10(1): 135-145.
[22]
Srivastava H M, Alt$\imath$nkaya S, Yalc$\imath$n S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric $q$-derivative operator[J]. Filomath, 2018, 32(2): 503-516. DOI:10.2298/FIL1802503S
[23]
Srivastava H M, Eman S A. Fekete-Szegö inequality for classes of $(p, q)$-starlike and $(p, q)$-convex functions[J]. Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemáticas, 2019, 113(4): 3563-3584. DOI:10.1007/s13398-019-00713-5
[24]
Srivastava H M, El-Deeb S M. The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the $q$-convolution[J]. AIMS Mathematics, 2020, 5(6): 7087-7106. DOI:10.3934/math.2020454
[25]
Srivastava H M, Mostafa A O, Aouf M K, Zayed H M. Basic and fractional q-calculus and associated Fekete-Szegö problem for $p$-vanlently $q$-starlike functions and $p$-valently $q$-convex functions of complex order[J]. Miskolc Math. Notes, 2019, 20(1): 489-509. DOI:10.18514/MMN.2019.2405
[26]
Srivastava H M, Tahir M, Khan B, Ahmad Q Z, Khan N. Some general families of $q$-starlike functions associated with the Janowski functions[J]. Filomat, 2019, 33(9): 2613-2626. DOI:10.2298/FIL1909613S
[27]
Arif M, Srivastava H M, Umar S. Some applications of a $q$-analogue of the Ruscheweyh type operator for multivalent functions[J]. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (RACSAM), 2019, 113: 1211-1221. DOI:10.1007/s13398-018-0539-3
[28]
Purohit S D. A new class of multivalently analytic functions associated with fractional $q$-calculus operators[J]. Fract. Differ. Calc., 2012, 2(2): 129-138.
[29]
Cotirla L, Wanas A K. Applications of Laguerre polynomials for Bazilevič and $\theta$-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions[J]. Symmetry, 2023, 15(2): 406. DOI:10.3390/sym15020406
[30]
Al-Shbeil I, Shaba T G, Lupas A A, Alhefthi R K. Exploring a distinct group of analytical functions linked with Bernoulli's Lemniscate using the $q$-derivative[J]. Heliyon, 2024, 10(14): e34095. DOI:10.1016/j.heliyon.2024.e34095
[31]
Ma Wancang, Minda D. A unified treatment of some special classes of univalent functions[C]. Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Lang and S. Zhang (Editors), International Press, 1994, 157-169.
[32]
Duren P L. Univalent functions, grundlehren der mathematischen wissenschaften 259[M]. New York: Springer, 1983.
[33]
Goodman A W. Univalent functions, VolI[M]. Washington, New Jersey: Polygonal Publishing House, 1983.