1892年, Segre[1]对复数域做了自然扩展, 创造了一个新的数字系统, 叫做双复数. 与四元数不同, 这种数字系统是满足乘法交换律的环, 由于它是一个具有非零零因子的环, 所以双复变理论在许多方面与复变理论不同. 自20世纪末以来, 双复函数理论被广泛应用到工程学, 统计学, 物理学以及经济学等领域, 现在已经成为了复分析的热点话题之一. Luna-elizarars[2, 3]将许多经典的复分析理论推广到双复分析中, 比如双复Weierstrass定理, 双复多项式的代数基本定理, 双复柯西收敛定理以及双复阿贝尔定理. Johnston和Makdad[4]讨论了双复幂级数比值判别法和延拓定理. Price[5]研究了双复变量(以及多复变量)的全纯函数理论. Emanuello[6]研究了双复函数的Möbius变换, 并讨论了其共形性、传递性和不动点. 李泽坤和戴滨林研究了双复Schwarz引理[7]和双复Möbius变换[8]. 陈利涛和戴滨林讨论了双复Möbius变换中的不动点[9]. Goswami讨论了Riemann-Liouville双复阶分数运算[10]. 详情请参见文献[2, 7, 9, 11–19].
在他们工作的基础上, 我们进一步研究了双复全纯函数的性质. 首先给出了双复函数退化为常数函数的几个充分必要条件. 其次, 我们在复变函数唯一性定理的基础上得到了双复全纯函的唯一性定理. 最后, 应用唯一性定理, 我们得到了一些等式.
本文的结构如下: 第二节初步介绍了双复数的一些预备知识和已有的结论; 在第三节中, 我们得到了双复函数退化为常数函数的几个延伸的充分必要条件; 在第四节中, 我们给出了双复全纯函数的唯一性定理; 在第五节中, 我们给出了唯一性定理的应用.
在开始我们的主要结果之前, 我们回顾一下双复函数的基础知识.
我们直接从定义双复数的集合$ \mathbb{BC} $开始
这里$ \mathbb{C}\left ( \mathit{i} \right ) $是复数的集合, 它的虚数单位是$ \mathit{i} $, 并且这里$ \mathit{i} $和$ \mathit{j} \ne \mathit{i} $是可交换的虚数单位, 即$ \mathit{ij} $=$ \mathit{ji} $, $ \mathit{i} ^{2} =\mathit{j} ^{2} =-1 $.
另外, 定义为$ Z = \mathit{Z}_{1} +\mathit{j} \mathit{Z}_{2} $的双复数有多个其他形式的表述
$ \mathbb{BC} $中任意双复数的共轭有如下三种类型
集合$ \left \{ e =\frac{1+ij}{2} , e^{+} =\frac{1-ij}{2} \right \} $是双复数$ \mathbb{BC} $幂等表示的基, 因此$ z=z_{1}+jz_{2} $的幂等表示可以唯一的写成$ z=\beta _{1}e +\beta _{2}e^{+} $, 这里$ \beta _{1} =z_{1} -iz_{2} , \beta _{2} =z_{1} +iz_{2} \in \mathbb{C}\left ( \mathit{i} \right ) $. 对这两个双复数$ z=\beta _{1} e+\beta _{2} e^{+} $和$ w=\gamma _{1} e+\gamma _{2} e^{+} $我们有以下几点
由于双复数有多种表示形式, 双复函数$ \mathit{F} : \Omega \to \mathbb{BC} $也有多种表示形式$ \left ( \Omega \mbox {是} \mathbb{BC} \mbox {中一个非空集合}\right ) $
$ f_{1} , f_{2}, g_{1}, g_{2} $是$ \mathbb{C} \left ( i \right ) - $值函数, $ \rho _{1} , \rho _{2}, \gamma _{1}, \gamma _{2} $是$ \mathbb{C} \left ( j \right ) - $值函数, $ \mathfrak{f} _{1} , \mathfrak{f} _{2}, \mathfrak{g}_{1}, \mathfrak{g} _{2} $是双曲值函数, 且$ f_{kl} $是实值函数.
对于双复函数$ \mathit{F}=\mathit{f} _{1}+\mathit{j} \mathit{f} _{2} $也有三种类型的共轭
定理2.1[3] 如果双复函数$ \mathit{F}=f_{11} +if_{12}+ jf_{21}+kf_{22} $在$ Z_{0}=\mathit{x} _{1, 0} +\mathit{i}\mathit{y} _{1, 0}+\mathit{j}\mathit{x} _{2, 0} +\mathit{k}\mathit{y} _{2, 0} $处可导, 则有下面两条结论
1. 实偏导数$ \frac{\partial F}{\partial x_{l} } \left ( Z_{0} \right ) $和$ \frac{\partial F}{\partial y_{l} } \left ( Z_{0} \right ) $存在, 其中$ l $=1, 2.
2. 实偏导数满足下面等式
通过这个等式, 可以得到相应的柯西黎曼条件
当$ F $用其他的形式表示时, 可以得到不同的柯西黎曼条件.
定理2.2[3] 如果双复函数$ F= \rho _{1} +\mathit{i} \rho _{2} $在$ Z_{0}=\zeta _{1, 0}+\mathit{i}\zeta _{2, 0} $处可导, 则有
1. $ \mathbb{C}\left ( j \right ) $的偏导数$ F_{\xi _{l} }^{'} \left ( Z_{0} \right ) $存在, 其中$ l $=1, 2.
2. 复偏导数满足下列等式
这里
可以得到相应的柯西黎曼条件
此外, 对于$ \mathit{F}=\mathit{f} _{1} + \mathit{j}\mathit{f} _{2} $, $ \mathit{F}=\mathit{g} _{1} +\mathit{k}\mathit{g} _{2} $, $ \mathit{F}=\gamma _{1} +\mathit{k}\gamma _{2} $, $ \mathit{F}=\mathfrak{f} _{1} +\mathit{i}\mathfrak{f} _{2} $, $ \mathit{F}=\mathfrak{g} _{1} +j\mathfrak{g} _{2} $, 有类似的柯西黎曼条件, 这里我就不一一赘述了. 更多的细节, 请查阅[3].
双复全纯函数满足一定的条件会退化为常数函数. 下面是一个双复全纯函数退化为常数函数的充分必要条件.
引理2.1[3] 设$ F:\Omega \to \mathbb{BC} $是开区域$ \Omega $上的双复全纯函数. 当且仅当$ {F}' \left ( Z \right ) =0 $对所有的$ Z \in \Omega $成立时, $ F $是常数函数.
下面, 我们研究双复全纯函数退化成常数函数的一些充要条件.
定理3.1 设$ \mathit{F} $是双复全纯函数, 在开区域$ \Omega \in \mathbb{BC} $中连续. 当且仅当满足下列条件中的任意一条, 则$ \mathit{F} $是常数函数
1. $ \bar{F} $在区域$ \Omega \in \mathbb{BC} $上解析. 或者$ F^{\dagger } $, $ F^{*} $在区域$ \Omega \in \mathbb{BC} $上解析.
2. 若$ F = \rho _{1} +\mathit{i} \rho _{2} $, 则$ \rho _{2} =\rho _{1}^{2} $. 对于$ \mathit{F}=\mathit{f} _{1} + \mathit{j}\mathit{f} _{2} $, $ \mathit{F}=\mathit{g} _{1} +\mathit{k}\mathit{g} _{2} $, $ \mathit{F}=\gamma _{1} +\mathit{k}\gamma _{2} $, $ \mathit{F}=\mathfrak{f} _{1} +\mathit{i}\mathfrak{f} _{2} $, $ \mathit{F}=\mathfrak{g} _{1} +j\mathfrak{g} _{2} $, 可以得出类似的条件.
3. 若$ F = \rho _{1} +\mathit{i} \rho _{2} $, 则$ a\rho _{1} +b\rho _{2} =c $ $ \left ( \mbox{a, b, c是实数且不全为0} \right ) $. 对于$ \mathit{F}=\mathit{f} _{1} + \mathit{j}\mathit{f} _{2} $, $ \mathit{F}=\mathit{g} _{1} +\mathit{k}\mathit{g} _{2} $, $ \mathit{F}=\gamma _{1} +\mathit{k}\gamma _{2} $, $ \mathit{F}=\mathfrak{f} _{1} +\mathit{i}\mathfrak{f} _{2} $, $ \mathit{F}=\mathfrak{g} _{1} +j\mathfrak{g} _{2} $, 可以得出类似的条件.
证 $ F=\rho _{1} +i\rho _{2} $, 且$ \bar{F} =\rho _{1} - i\rho _{2} $. 双复变量Z可以被写成$ Z=\xi _{1} +i\xi _{2} $. 因为$ F $是区域$ \Omega \in \mathbb{BC} $上的解析函数, 它满足柯西黎曼条件
类似的, $ \bar{F} $也满足柯西黎曼条件
通过$ \left ( 1 \right ) $和$ \left ( 2 \right ) $, 可以得到
在文献[3], Luna-Elizarrarás给出了双复函数的偏导数公式
所以$ {F}' \left ( Z \right )=0 $. 通过这个定理, 就得到了$ \mathit{F} $是连续函数即条件$ \left( 1 \right) $. 设$ F=f_{1} +if _{2} $, 则$ F^{\dagger } =f_{1} - if _{2} $, 当$ F^{\dagger } $是双复全纯函数, 容易得到$ \mathit{F} $是连续函数. 类似的也可以证明$ F^{*} $是双复全纯函数.
$ F=\rho _{1} +i\rho _{2}=\rho _{1} +i\rho _{1}^{2} $, 它满足柯西黎曼条件
我们有
所以
在这种情况下, $ {F}' \left ( Z \right ) =F_{\xi _{1} }^{'}\left ( Z \right )=\rho _{1, \xi _{1} }^{'} \left ( Z \right ) +i\rho _{2, \xi _{1} }^{'} \left ( Z \right )=0 $, 所以$ \mathit{F} $是常数函数也就证明了$ \left( 2 \right) $. 对于$ \mathit{F}=\mathit{f} _{1} + \mathit{j}\mathit{f} _{2} $, $ f_{2} =f _{1}^{2} $等等表示形式也有类似的结论.
当$ a\ne 0 $, 且$ \rho _{1} =\frac{c-b\rho _{2} }{a} $, $ F = \frac{c-b\rho _{2} }{a} +\mathit{i} \rho _{2} $. $ F $满足柯西黎曼条件
我们可以得到
因为a, b是实数, $ \rho _{1, \xi _{1} }^{'} =0 $. 则$ \rho _{2, \xi _{1} }^{'} =\rho _{1, \xi _{1} }^{'} =0 $. 在这种情况下, $ {F}' \left ( Z \right ) =F_{\xi _{1} }^{'}\left ( Z \right )=\rho _{1, \xi _{1} }^{'} \left ( Z \right ) +i\rho _{2, \xi _{1} }^{'} \left ( Z \right )=0 $, 所以$ \mathit{F} $是常数函数.
当$ a= 0 $, 且$ \rho _{2} =\frac{c}{b} $是常数函数. $ F=\rho _{1} +i\frac{c}{b} $, 它满足柯西黎曼条件
在这种情况下, $ {F}' \left ( Z \right ) =F_{\xi _{1} }^{'}\left ( Z \right )=\rho _{1, \xi _{1} }^{'} \left ( Z \right ) +i\rho _{2, \xi _{1} }^{'} \left ( Z \right )=0 $, 所以$ \mathit{F} $是常数函数. 综上所述, 我们已经证明了$ \left( 3 \right) $. 对于$ \mathit{F}=\mathit{f} _{1} + \mathit{j}\mathit{f} _{2} $, $ af _{1} +bf _{2} =c $等等表示形式也有类似的结论.
在这一节中, 我们将复全纯函数的唯一性定理推广到双复全纯函数, 并给出例题以便于更好地理解.
定理4.1 设$ F(Z) $和$ G(Z) $是单连通区域$ \Omega \in \mathbb{BC} $上的双复解析函数. 设$ Z_{k} $是区域$ \Omega $上的彼此不同的点$ \left ( k = 1, 2, 3... \right ) $. 点列$ \left \{ Z_{k} \right \} $在$ \Omega $上有极限点$ Z_{0} $. 如果$ F\left ( Z_{k} \right ) =G\left ( Z_{k} \right ) $ $ \left ( k=1, 2, 3... \right ) $, 那么在$ \Omega $内, 有$ F\left ( Z \right ) =G\left ( Z \right ) $.
证 $ F(Z) $和$ G(Z) $有幂等表示形式
对于所有的$ Z=\beta _{1}e+\beta _{2} e^{+} \in \Omega $. 易得$ F\left ( Z_{k} \right ) =G\left ( Z_{k} \right ) $, 则
我们可以容易得到下面的结论
因为点列$ Z_{k} =\beta _{1, k}e+ \beta _{2, k}e^{+} $有极限点$ Z_{0}=\beta _{1, 0} e+\beta _{2, 0} e^{+} $, $ \beta _{1, k} $有极限点$ \beta _{1, 0} $, $ \beta _{2, k} $有极限点$ \beta _{2, 0} $. 通过复数的唯一性定理可以容易得到
以上我们已经证明了在$ \Omega $内, $ F\left ( Z \right ) =G\left ( Z \right ) $.
例1 我们可以通过双复函数的唯一性定理证明得到以下结论:$ \sin ^{2}Z+ \cos ^{2}Z=1\left ( Z\in \mathbb{BC} \right ) $.
设$ F\left ( Z \right ) =\sin ^{2}Z+ \cos ^{2}Z\left ( Z\in \mathbb{BC} \right ) $, $ g\left ( z \right ) =\sin ^{2}z+ \cos ^{2}z\left ( z\in \mathbb{C}\left ( \mathit{i} \right ) \right ) $. 由于$ F\left ( Z \right ) =g\left ( z \right ) \left ( Z\in \mathbb{C}\left ( \mathit{i} \right ) \right ) $, 通过唯一性定理我们有$ \sin ^{2}Z+ \cos ^{2}Z=1\left ( Z\in \mathbb{BC} \right ) $.
应用双复全纯函数的唯一性定理, 复全纯函数理论的许多现有结果可以推广到双复全纯函数, 这为双复全纯函数的进一步研究奠定了基础. 此外, 涉及复全纯函数的方程都可以立即扩展到相应的双复全纯函数方程, 只需要将$ z\in \mathbb{C}\left ( \mathit{i} \right ) $替换成$ Z\in \mathbb{BC} $, 这个定理避免了直接证明恒等式的一系列繁琐过程. 下面就是通过这个定理得到的六个简单但重要的结论, 其中$ \left (Z \in \mathbb{BC} \right) $
1. $ \mbox {当}F\left ( Z \right ) =\cos Z, \; {F}' \left ( Z \right ) =\sin Z $
2. $ \sin Z=\frac{e^{iZ}-e^{-iZ} }{2i} $
3. $ \mbox {当}F\left ( Z \right ) =Z ^{n} \; \; , {F\left ( Z \right ) }' =nZ^{n-1} $
4. $ e^{iZ} =\cos Z +i\sin Z $
5. $ \cot Z=\frac{\cos Z}{\sin Z} $
6. $ \mbox {如果Z可逆, }\; \; e^{LogZ} =Z $