数学杂志  2024, Vol. 44 Issue (5): 397-405   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
ZHANG Jin-hu
The UNIFORM $C^0$ ESTIMATE AND WEIGHTED ESTIMATE OF GENERALIZED CHRISTOFFEL-MINKOWSKI PROBLEMS
ZHANG Jin-hu    
School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
Abstract: In this paper, we consider generalized Christoffel-Minkowski problems as follows $ \frac{\sigma_k(u_{ij}+u\delta_{ij} )}{\sigma_l(u_{ij}+u\delta_{ij} )} = u^{p-1}f(x), \quad x \in \mathbb{S}^n, $ where $0 \leq l < k \leq n$, $ p-1 > 0$ and $f$ is positive, and we establish the weighted gradient estimate and uniform $C^0$ estimate for the positive convex even solutions, which is a generalization of Guan-Xia [1] and Guan [2].
Keywords: weighted gradient estimate     convex solution     minkowski type problem    
广义Christoffel-Minkowski问题的一致$C^0$估计和加权估计
张金虎    
宁波大学数学与统计学院, 浙江 宁波 315211
摘要:本文考虑了广义Christoffel-Minkowski问题 $ \frac{\sigma_k(u_{ij}+u\delta_{ij})}{\sigma_l(u_{ij}+u\delta_{ij})} = u^{p-1}f(x), \quad x \in \mathbb{S}^n, $ 其中$ 0\leq l < k \leq n$是整数, $ p-1 > 0$, $f$是一个正函数. 对于上述方程的的正凸偶解, 本文建立了解的加权梯度估计和一致$C^0$估计. 这是对Guan-Xia[1]和Guan[2]中结果的一般化.
关键词加权梯度估计    凸解    Minkowski型问题    
1 Introduction

In this paper, we consider the following form of Hessian quotient type equation

$ \begin{align} \frac{\sigma _k(u_{ij}+u\delta_{ij} )}{\sigma _l(u_{ij}+u\delta_{ij} )} =u^{p-1}f(x), \; \; \; x \in \mathbb{S}^n, \end{align} $ (1.1)

where $ \sigma _k $ is the $ k $-th elementary symmetric function and $ u_{ij} $ is the second order covariant derivative of $ u $ with respect to an orthonormal frame on $ \mathbb{S}^n $, and a function $ u\in C^2(\mathbb{S}^n) $ is called convex if

$ \begin{align} (u_{ij}+u\delta _{ij})>0, \; \; \; on\; \; \; \mathbb{S}^n. \end{align} $ (1.2)

In fact, the equation (1.1) corresponds to a class of $ Lp $ Minkowski type problem. The $ Lp $ Minkowski problem introduced by Lutwak[3] is a generalisation of the classical Minkowski problem.

Given a Borel measure $ \mu $ on the unit sephere $ \mathbb{S}^n $, the $ Lp $ Minkowski problem concerns with the existence of a unique convex body $ \mathbb{K} $ in $ \mathbb{R}^{n+1} $ so that $ \mu $ is the $ Lp $ surface area measure of $ \mathbb{K} $,

$ \begin{align} d\mu=u^{1-p}dS_k, \end{align} $ (1.3)

where $ S_k $ is the ordinary surface area measure of $ \mathbb{K} $ and $ u:\mathbb{S}^n\mapsto \mathbb{R} $ is the support function of $ \mathbb{K} $. In the case of $ p=1 $, the $ Lp $ Minkowski problem reduces to the classical Minkowski problem. The classical Minkowski problem was considered by Minkowski in [4], which is to find the necessary and sufficient conditions on a given measure so that it is exactly the surface area measure of a convex body. The classical Minkowski problem corresponds to solve a Monge-Ampère type equation

$ \begin{align} \det (u_{ij}+u\delta_{ij}) =f(x), \quad x \in \mathbb{S}^n. \end{align} $ (1.4)

Many important contributions to Minkowski problems were done by Minkowski [5, 6], Alexandrov [7], Nirenberg [8], and Cheng-Yau [9], et al. Since the classical Minkowski problem, many Minkowski type problems have been introduced and extensively studied.

The $ L_p $ Minkowski problem ($ p \geq 1 $) is the problem of prescribing $ L_p $ surface area measure which was introduced by Lutwak [3], and is to solve a Hessian type geometric PDE

$ \begin{align} \det (u_{ij}+u\delta_{ij} ) =u^{p-1}f(x), \quad x \in \mathbb{S}^n, \end{align} $ (1.5)

and many important contributions to $ L_p $ Minkowski problems were done by Lutwak[3], Chou-Wang [10], Guan-Lin [11], Böröczky-Lutwak-Yang-Zhang[12], Lutwak-Oliker[13] and Lutwak-Yang-Zhang[14] et al.

The Christoffel-Minkowski problem concerns with the existence of convex bodies with prescribed $ k $-th surface area measure, which corresponds to finding convex solutions of the following geometric PDE

$ \begin{align} \sigma_k (u_{ij}+u\delta_{ij} ) = f(x), \quad x \in \mathbb{S}^n. \end{align} $ (1.6)

Important contributions to Christoffel-Minkowski problems were done by Guan-Ma [15] and Guan-Ma-Zhou [16] et al. The key tool is the constant rank theorem for fully nonlinear partial differential equations.

The $ L_p $-Christoffel-Minkowski problem corresponds to finding convex solutions of the following geometric PDE

$ \begin{align} \sigma_k (u_{ij}+u\delta_{ij} ) = u^{p-1} f(x), \quad x \in \mathbb{S}^n. \end{align} $ (1.7)

Equation (1.7) has been studied by Hu-Ma-Shen [17] in the case $ p-1 \geq k $, and Guan-Xia[1] for $ 1<p<k+1 $ and even prescribed data, by using the constant rank theorem.

This article is organized as follows. In Section 2, we present some properties of $ \sigma_k (\lambda) $ in Gårding's cone $ \Gamma_k $, which are important to the a priori estimates. In Section 3, we prove Theorem 3.1. At last we prove Theorem 4.2 in Section 4.

2 Preliminaries

In this section, we recall the definition and some basic properties of elementary symmetric functions, which could be found in [18].

Definition 2.1  For any $ k = 1, 2, \ldots, n, $ we set

$ \begin{align} \sigma_k(\lambda) = \sum _{1 \le i_1 < i_2 <\cdots<i_k\leq n}\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_k}, \qquad \text {for any} \quad\lambda=(\lambda_1, \ldots, \lambda_n)\in {\Bbb R}^n. \end{align} $ (2.1)

For convenience, let $ \sigma_0=1 $ and $ \sigma_k =0 $ for $ k>n $.

Denote by $ \sigma _k (\lambda \left| i \right) $ the symmetric function with $ \lambda_i = 0 $ and $ \sigma _k (\lambda \left| ij \right) $ the symmetric function with $ \lambda_i =\lambda_j = 0 $.

The following standard formulas of elementary symmetric functions are needed.

Proposition 2.2  Let $ \lambda=(\lambda_1, \ldots, \lambda_n)\in\mathbb{R}^n $ and $ k =0, 1, \ldots, n $. Then

$ \begin{align*} &\sigma_k(\lambda)=\sigma_k(\lambda|i)+\lambda_i\sigma_{k-1}(\lambda|i), \quad \forall \, 1\leq i\leq n, \\ &\sum\limits_{i=1}^n \lambda_i\sigma_{k-1}(\lambda|i)=k\sigma_{k}(\lambda), \\ &\sum\limits_{i=1}^n \sigma_{k}(\lambda|i)=(n-k)\sigma_{k}(\lambda). \end{align*} $

Proposition 2.3  Let $ W=\left \{W_{ij} \right \} $ be an $ n \times n $ symmetric matrix and $ \lambda(W)= (\lambda_1, \lambda _2, \ldots , \lambda _{n}) $ be the eigenvalues of $ W $. If $ W=\left \{ W_{ij} \right \} $ is diagonal and $ \lambda_i= W_{ii} $, then

$ \begin{align} &\frac{{\partial \lambda _i }}{{\partial W_{ii} }} = 1, \quad \frac{{\partial \lambda _k }}{{\partial W_{ij} }} = 0, \text{otherwise} , \\ &\frac{{\partial ^2 \lambda _i }}{{\partial W_{ij} \partial W_{ji} }} = \frac{1}{{\lambda _i - \lambda _j }}, \quad i \ne j \text{ and } \lambda _i \ne \lambda _j, \\ &\frac{{\partial ^2 \lambda _i }}{{\partial W_{kl} \partial W_{pq} }} = 0 , \text{otherwise}. \end{align} $

Definition 2.1 can be extended to symmetric matrices by letting $ \sigma_k(W) = \sigma_k(\lambda(W)) $, where $ \lambda(W)= (\lambda _1(W), \lambda _2 (W), \cdots , \lambda _{n}(W)) $ are the eigenvalues of the symmetric matrix $ W $. We also denote by $ \sigma _k (W \left| i \right.) $ the symmetric function with $ W $ deleting the $ i $-row and $ i $-column and $ \sigma _k (W \left| ij \right.) $ the symmetric function with $ W $ deleting the $ i, j $-rows and $ i, j $-columns. Then we have the following properties.

Proposition 2.4  If $ W=\left \{ W_{ij} \right \} $ is diagonal and $ m $ is a positive integer, then

$ \begin{align} \frac{{\partial \sigma _m (W)}} {{\partial W_{ij} }} = \begin{cases} \sigma _{m - 1} (W\left| i \right.), &\text{if } i = j, \\ 0, &\text{if } i \ne j, \notag \end{cases} \end{align} $

and

$ \begin{align} \frac{{\partial ^2 \sigma _m (W)}} {{\partial W_{ij} \partial W_{kl} }} =\begin{cases} \sigma _{m - 2} (W\left| {ik} \right.), &\text{if } i = j, k = l, i \ne k, \\ - \sigma _{m - 2} (W\left| {ik} \right.), &\text{if } i = l, j = k, i \ne j, \\ 0, &\text{otherwise}.\notag \end{cases} \end{align} $

Recall that the classic Gårding's cone is defined as

$ \begin{equation} \label{1.2.7} \Gamma_k = \{ \lambda \in \mathbb{R}^n :\sigma _i (\lambda ) > 0, \forall 1 \le i \le k\}, \notag \end{equation} $

and the following properties are well known.

Proposition 2.5  For $ \lambda \in \Gamma_k $ and $ k > l \geq 0 $, $ r > s \geq 0 $, $ k \geq r $, $ l \geq s $, we have

$ \begin{align} \Bigg[\frac{{\sigma _k (\lambda )}/{C_n^k }}{{\sigma _l (\lambda )}/{C_n^l }}\Bigg]^{\frac{1}{k-l}} \le \Bigg[\frac{{\sigma _r (\lambda )}/{C_n^r }}{{\sigma _s (\lambda )}/{C_n^s }}\Bigg]^{\frac{1}{r-s}}, \end{align} $

with equality if and only if $ \lambda_1 = \lambda_2 = \cdots =\lambda_n >0 $.

Proposition 2.6  (1) $ \Gamma_k $ are convex cones, and $ \Gamma_1 \supset \Gamma_2 \supset \cdots \supset \Gamma_n $.

(2) If $ \lambda=(\lambda_1, \ldots, \lambda_n) \in \Gamma_k $ with $ \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n $, then $ \lambda _{k} > 0 $,

$ \begin{align} \label{1.2.9} \sigma_{k-1} (\lambda|n) \geq\sigma_{k-1} (\lambda|n-1) \geq \cdots \geq \sigma_{k-1} (\lambda|1) >0. \end{align} $

(3) If $ \lambda=(\lambda_1, \ldots, \lambda_n) \in \Gamma_k $, then $ \sigma_k(\lambda)^{\frac{1}{k}} $ and $ \Big[\frac{\sigma_k(\lambda)}{\sigma_l(\lambda)}\Big]^{\frac{1}{k-l}} $ $ (0 \leq l <k \leq n) $ are concave with respect to $ \lambda $. Equivalently, for any $ (\xi_1, \ldots, \xi_n) $, we have

$ \begin{align} \sum\limits_{i, j=1}^n\frac{\partial ^2 \Big[\frac{\sigma_k(\lambda)}{\sigma_l(\lambda)}\Big]}{\partial\lambda_i \partial \lambda_j} \xi_i \xi_j \leq& (1- \frac{1}{k-l}) \frac{[\sum\limits_{i=1}^n \frac{\partial \Big[\frac{\sigma_k(\lambda)}{\sigma_l(\lambda)}\Big]}{\partial\lambda_i} \xi_i ]^2}{\frac{\sigma_k(\lambda)}{\sigma_l(\lambda)}}. \end{align} $
3 Weighted Gradient Estimate

Theorem 3.1  Suppose $ u \in C^{3}(\mathbb{S}^{n}) $ is a positive convex solution of the equation (1.1), where $ 0 \leq l < k \leq n $, $ p-1>0 $, and $ f\in C^1(\mathbb{S}^n) $ is a smooth, positive function. Then we have the weighted gradient estimate

$ \begin{align} \frac{|\nabla u|^2}{u^\gamma} \leq A (\max\limits_{\mathbb{S}^{n}} u) ^{2-\gamma}, \quad \forall\; x \in \mathbb{S}^n, \end{align} $ (3.1)

where $ \gamma =\min \{1, \frac{p-1}{k-l}\} $ and $ A $ is a positive constant depending on $ n $, $ k $, $ l $, $ p $, $ min_{\mathbb{S}^{n}} f $ and $ \left \| f \right \| _{C^{1} } $.

Proof  Following the idea of [1, 2], we prove Theorem 3.1 by a contradiction argument.

Let

$ \Phi =\frac{|\nabla u|^2}{u ^\gamma}, $

where $ \gamma =\min \{1, \frac{p-1}{k-l}\}\in (0, 1] $. Denote $ M_u = \max_{\mathbb{S}^n} u $. Assume $ \Phi $ attains maximum at $ x_{0} $. We may choose an orthonormal frame on $ \mathbb{S}^n $ such that

$ \begin{eqnarray*} u_{1}=|\nabla u|, \quad \text{and}\; \{u_{ij}\}_{2\leq i, j\leq n}\; \text{is diagonal}. \end{eqnarray*} $

In the following, we compute at $ x_0 $. Then we have at $ x_0 $,

$ \begin{eqnarray} 0=(\log \Phi)_{i}= \frac{2u_{k}u_{ki}}{|\nabla u|^{2}} - \gamma \frac{u_{i}}{u}, \end{eqnarray} $ (3.2)

hence we have

$ \begin{align} &u_{11} = \frac{\gamma}{2}\frac{u_1^2}{u}, \\ &u_{1i} = 0, \quad i = 2, \cdots, n. \end{align} $ (3.3)

Hence $ \{ u_{ij} \}_{1 \leq i, j \leq n} $ is diagonal, $ \{ b_{ij} \}_{1 \leq i, j \leq n} $ is diagonal with $ b_{ij}:=u_{ij}+u \delta_{ij} $, and $ \{ F^{ij} \}_{1 \leq i, j \leq n} $ is diagonal, where

$ \begin{align} F^{ij}=\frac{\partial \left [ \frac{\sigma_k(\lambda)}{\sigma_l(\lambda)} \right ] }{\partial b_{ij}}. \end{align} $ (3.4)

Also, at $ x_0 $, we have

$ \begin{align} 0 &\ge F^{ii}(\log{\Phi } )_{ii}\\ &= F^{ii}\frac{2u_{ii}^2+2u_lu_{lii}}{\left | \nabla u \right |^2 } -\gamma \frac{F^{ii}u_{ii}}{u}+\gamma (1-\gamma ) \frac{F^{ii}u_i^2}{u^2} \\ &=\frac{2F^{ii}u_{ii}^2}{u_1^2}+\frac{2F^{ii}u_1(b_{ii, 1}-u_i\delta _{1i})}{u_1^2}-\gamma \frac{F^{ii}u_{ii}}{u}+\gamma (1-\gamma )\frac{F^{ii}u_i^2}{u^2} \\ &\ge \frac{2F^{ii}u_{ii}^2}{u_1^2}+2(p-1)u^{p-2}f+\frac{2u^{p-1}f_1}{u_1}-2F^{11}-\gamma \frac{F^{ii}b_{ii}}{u}+2(1-\gamma )\frac{F^{11}u_{11}}{u} \\ &\ge 2F^{11}(\frac{u_{11}^2}{u_1^2}-1 )+2(p-1)\frac{F}{u}+\frac{2u^{p-1}f_1}{u_1}-\gamma (k-l)\frac{F}{u}. \end{align} $ (3.5)

By (3.3), if $ A\ge\frac{4}{\gamma^2} $,

$ \begin{align} \frac{u_{11}^2}{u_1^2}-1 \ge \frac{\gamma ^2}{4} A \frac{M_u}{u}-1 \ge 0. \end{align} $ (3.6)

By the definition of $ \Phi $, we have

$ \begin{align} \frac{2u^{p-1}f_1}{u_1}&\ge -Cu^{p-1}\Phi^{-\frac{1}{2}}u^{-\frac{\gamma}{2} } \\ &\ge -\frac{C}{\sqrt{A}}M_u^{-1+\frac{\gamma}{2}}u^{p-1}u^{-\frac{\gamma}{2}}\\ &\ge -\frac{C}{\sqrt{A} }u^{p-1}u^{-1}\\ &\ge -\frac{C}{\sqrt{A} }\frac{F}{u}. \end{align} $ (3.7)

Combining (3.5), (3.6) and (3.7), we have

$ \begin{align} 0 &\ge F^{ii}(\log\Phi)_{ii} \\ & \ge 2F^{11}(\frac{u_{11}^2}{u_1^2}-1 )+2(p-1)\frac{F}{u}-\frac{C}{\sqrt{A}}\frac{F}{u}-\gamma (k-l)\frac{F}{u}\\ & \ge [2(p-1)-\frac{C}{\sqrt{A}}-\gamma (k-l) ]\frac{F}{u} \\ & > 0, \end{align} $ (3.8)

if we choose $ A > \frac{C^2}{p-1} $. This is a contradiction. Hence Theorem 3.1 holds.

Remark 3.2  If we choose

$ \begin{align} \Phi = \frac{|\nabla u|^2}{(u - \min u)^\gamma}, \end{align} $ (3.9)

following the idea of [1, 2], we can prove

$ \begin{align} \frac{|\nabla u(x)|^2}{(u(x)- \min u)^\gamma} \leq A \max\limits_{\mathbb{S}^n} u^{2- \gamma}, \quad \forall\; x \in \mathbb{S}^n. \end{align} $ (3.10)
4 The Uniform $ C^0 $ Estimate

Following Lemma 3.1 in [2], we can get the positive lower bound and upper bound of $ u $. In fact, we can prove the following lemma (see [19]).

Lemma 4.1  Assume $ u $ is a positive even convex function on $ \mathbb{S}^n $ satisfying condition

$ \begin{align} \frac{|\nabla u|^2}{u^\gamma}(x) \leq A \max\limits_{\mathbb{S}^n} u^{2-\gamma}, \quad \forall\; x \in \mathbb{S}^n, \end{align} $ (4.1)

for some $ \gamma \in (0, 1) $ and $ A>0 $. Then the following non-collapsing estimate holds,

$ \begin{align} \frac{\max u}{\min u} \leq C, \end{align} $ (4.2)

where $ C $ depends only on $ n $, $ \gamma $ and $ A $.

Proof  The proof is similar with [2]. For complete, we give the proof here.

Let $ \Omega $ be the convex body with support function $ u $. Since $ u $ is even, the center of mass of $ \Omega $ is the origin. From the John Lemma, there is an ellipsoid $ E $ centered at the origin, such that

$ \begin{align} E \subset \Omega \subset (n+1)^{\frac{3}{2}} E. \end{align} $

Write $ E $

$ \begin{align} \frac{x_1^2}{b^2_1}+ \cdots + \frac{x_{n+1}^2}{b^2_{n+1}} \leq 1, \end{align} $

with longest axis $ b_1 $, and the shortest axis $ b_{n+1} $. We have

$ \begin{align} b_1 \leq \max u \leq (n+1)^{\frac{3}{2}} b_1, \quad b_{n+1} \leq \min u \leq (n+1)^{\frac{3}{2}} b_{n+1}. \end{align} $

Recall that the support function of $ E $ is

$ \begin{align} u_E(x) = \sqrt{b^2_1 x_1^2 + \cdots + b^2_{n+1} x_{n+1}^2 }, \quad x \in \mathbb{S}^n, \end{align} $

and then

$ \begin{align} u_E(x) \leq u(x) \leq (n+1)^{\frac{3}{2}} u_E(x) , \quad x \in \mathbb{S}^n. \end{align} $

Restrict the support function $ u_E $ to the slice $ S := \{x \in \mathbb{S}^n | x = (x_1, 0, \cdots, 0, x_{n+1})\} $. Set

$ \begin{align} v(s) = u_E(s, 0, \cdots, 0, \sqrt{1-s^2})= \sqrt{b^2_1 s^2 + b^2_{n+1} (1-s^2) } \geq b_1 s, \quad s \in [0, 1]. \end{align} $

Hence

$ \begin{align} v(t (\frac{b_{n+1}}{b_1})^{\frac{2-\gamma}{2}}) \geq t b_1^{\frac{\gamma}{2}} b_{n+1}^{\frac{2-\gamma}{2}}, \end{align} $

for $ t \in [0, (\frac{b_1}{b_{n+1}})^{\frac{2-\gamma}{2}}] $. On the other hand, set $ q(s) = u(s, 0, \cdots, 0, \sqrt{1-s^2})^{\frac{2-\gamma}{2}} $. By the weighted gradient estimate

$ \begin{align} |\frac{d}{ds} q(s)| \leq \frac{|\nabla u(s, 0, \cdots, 0, \sqrt{1-s^2})|}{u ^{\frac{\gamma}{2}}} \leq A^{\frac{1}{2}} (\max u)^{\frac{2-\gamma}{2}} \leq A^{\frac{1}{2}}(n+1)^{\frac{3(2-\gamma)}{4}} b_1 ^{\frac{2-\gamma}{2}}. \end{align} $

Hence

$ \begin{align} q(t (\frac{b_{n+1}}{b_1})^{\frac{2-\gamma}{2}}) \leq& q(0) + A^{\frac{1}{2}}(n+1)^{\frac{3(2-\gamma)}{4}} b_1 ^{\frac{2-\gamma}{2}} \cdot t (\frac{b_{n+1}}{b_1})^{\frac{2-\gamma}{2}} \\ \leq& [ (n+1)^{\frac{3}{2}} b_{n+1} ]^{\frac{2-\gamma}{2}} + t A^{\frac{1}{2}}(n+1)^{\frac{3(2-\gamma)}{4}} b_{n+1}^{\frac{2-\gamma}{2}} \\ =& (n+1)^{\frac{3(2-\gamma)}{4}}[ 1 + t A^{\frac{1}{2}}] b_{n+1}^{\frac{2-\gamma}{2}}. \end{align} $

Thus

$ \begin{align} u(t (\frac{b_{n+1}}{b_1})^{\frac{2-\gamma}{2}}, 0, \cdots, 0, \sqrt{1-t^2 (\frac{b_{n+1}}{b_1})^{2-\gamma}}) \leq(n+1)^{\frac{3}{2}} [1 + t A^{\frac{1}{2}}]^{\frac{2}{2-\gamma}} b_{n+1}. \end{align} $

Since $ u_E(x) \leq u(x) $, we obtain

$ \begin{align} t b_1^{\frac{\gamma}{2}} b_{n+1}^{\frac{2-\gamma}{2}}\leq (n+1)^{\frac{3}{2}} [ 1+ t A^{\frac{1}{2}}]^{\frac{2}{2-\gamma}} b_{n+1}. \end{align} $

Let $ t= A^{-\frac{1}{2}} $, then we have

$ \begin{align} \frac{b_1}{b_{n+1}}\leq (n+1)^{\frac{3}{\gamma}}2^{\frac{4}{(2-\gamma)\gamma}} A^{\frac{1}{\gamma}}. \end{align} $

Hence

$ \begin{align} \frac{\max u}{\min u} \leq (n+1)^{\frac{3}{2}} \frac{b_1}{b_{n+1}}\leq (n+1)^{(\frac{3}{2}+\frac{3}{\gamma})}2^{\frac{4}{(2-\gamma)\gamma}} A^{\frac{1}{\gamma}}. \end{align} $

Now we start to prove Theorem 4.2.

Theorem 4.2  Suppose $ u \in C^{3}(\mathbb{S}^{n}) $ is a positive convex even solution of the equation (1.1), where $ 0 \leq l < k \leq n $, $ p-1>0 $, and $ f\in C^1(\mathbb{S}^n) $ is a positive even function. Then we have the following uniform $ C^0 $ estimate

$ \begin{align} &0 < c_0 \leq u \leq C_0 , \quad \text{if } \; p-1\ne k-l, \end{align} $ (4.3)
$ \begin{align} &0 < 1 \leq \frac{u}{\min u} \leq C_0 , \quad \text{if } \; p-1 = k-l, \end{align} $ (4.4)

where $ c_0 $ and $ C_0 $ are two positive constants depending only on $ n $, $ k $, $ l $, $ p $, $ \min_{\mathbb{S}^{n}} f $ and $ ||f||_{C^1} $.

Proof  When $ p-1> k-l $, we can get directly from the equation (1.1)

$ \begin{align} \min u \geq \big[ \frac{C_{n}^k}{C_{n}^l} \frac{1}{\min f}\big]^{\frac{1}{p-1-(k-l)}}, \quad \max u \geq \big[ \frac{C_{n}^k}{C_{n}^l} \frac{1}{\max f}\big]^{\frac{1}{p-1-(k-l)}}. \end{align} $

When $ p-1 = k-l $, Theorem 4.2 holds from Theorem 3.1 and Lemma 4.1. When $ 0<p-1<k-l $, we know from the equation (1.1)

$ \begin{align} \min u \leq \big[ \frac{C_{n}^k}{C_{n}^l} \frac{1}{\max f}\big]^{\frac{1}{p-1-(k-l)}}, \quad \max u \geq \big[ \frac{C_{n}^k}{C_{n}^l} \frac{1}{\min f}\big]^{\frac{1}{p-1-(k-l)}}. \end{align} $

Remark 4.3  From [20], the constant rank theorem holds if $ f^{-\frac{1}{p-1 +k-l}} $ is spherical convex and $ p-1 \geq 0 $. From [16], the existence theorem of the positive convex even solutions of (1.1) holds by the method of degree theory.

References
[1]
Guan P F, Xia C. Lp Christoffel-Minkowski problem: the case $1<p<k+1$[J]. Calculus of Variations and Partial Differential Equations, 2018, 57(2): 69. DOI:10.1007/s00526-018-1341-y
[2]
Guan P F. A weighted gradient estimate for solutions of $ L^ p $ Christoffel-Minkowski problem[J]. Mathematics in Engineering, 2023, 5(3): 1-14.
[3]
Lutwak E. The Brunn-Minkowski-Firey theory. Ⅰ. mixed volumes and the minkowski problem[J]. Journal of Differential Geometry, 1993, 38(1): 131-150.
[4]
Minkowski H. Allgemeine Lehrsätze über die konvexen Polyeder[J]. Ausgewählte Arbeiten zur Zahlentheorie und zur Geometrie: Mit D. Hilberts Gedächtnisrede auf H. Minkowski, Göttingen 1909, 1989, 121-139.
[5]
Alexandrov A D. Convex polyhedra[M]. Berlin: Springer, 2005.
[6]
Schneider R. Convex bodies: the Brunn-Minkowski theory[M]. Cambridge university press, 2014.
[7]
Alexandrov A D. Selected works. Part 1: Selected scientific papers[M]. Amsterdam: Gordon and Breach Publishers, 1996.
[8]
Nirenberg L. The Weyl and Minkowski problems in differential geometry in the large[J]. Communications on Pure and Applied Mathematics, 1953, 6(3): 337-394. DOI:10.1002/cpa.3160060303
[9]
Cheng S Y, Yau S T. On the regularity of the n-dimensional Minkowski problem[J]. Comm. Pure Appl. Math, 1977, 20: 41-68.
[10]
Chou K S, Wang X J. The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry[J]. Advances in Mathematics, 2006, 205(1): 33-83. DOI:10.1016/j.aim.2005.07.004
[11]
Guan P F, Lin C S. On Equation $\det(u_{ij}+\delta_{ij}u)= u^pf$ on $\mathbb{S}^n$[J]. preprint, 1999.
[12]
Böröczky K, Lutwak E, Yang D, Zhang G Y. The logarithmic Minkowski problem[J]. Journal of the American Mathematical Society, 2013, 26(3): 831-852.
[13]
Lutwak E, Oliker V. On the regularity of solutions to a generalization of the Minkowski problem[J]. Journal of Differential Geometry, 1995, 41(1): 227-246.
[14]
Lutwak E, Yang D, Zhang G Y. On the Lp-Minkowski problem[J]. Transactions of the American Mathematical Society, 2004, 356(11): 4359-4370.
[15]
Guan P F, Ma X N. The Christoffel-Minkowski problem Ⅰ: Convexity of solutions of a Hessian equation[J]. Inventiones Mathematicae, 2003, 151(3): 553-577.
[16]
Guan P F, Ma X N, Zhou F. The Christoffel-Minkowski problem Ⅲ: Existence and convexity of admissible solutions[J]. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 2006, 59(9): 1352-1376.
[17]
Hu C Q, Ma X N, Shen C L. On the Christoffel-Minkowski problem of Firey's p-sum[J]. Calculus of Variations and Partial Differential Equations, 2004, 21: 137-155.
[18]
Lieberman G. Second order parabolic differential equations[M]. World scientific, 1996.
[19]
Chen C Q, Mei X Q, Xu L. The $L_{p}$ Minkowski type problem for a class of mixed Hessian quotient equations: $0<p-1< k-l$[J]. preprint, 2023.
[20]
Chen C Q, Xu L. The Lp Minkowski type problem for a class of mixed Hessian quotient equations[J]. Advances in Mathematics, 2022, 411: 108794.