数学杂志  2024, Vol. 44 Issue (4): 358-368   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
申润拴
侯国林
分块对角算子矩阵在上三角扰动下的精细拟谱和固有拟谱
申润拴, 侯国林    
内蒙古大学数学科学学院, 内蒙古 呼和浩特 010021
摘要:本文研究了对角分块算子矩阵在上三角有界扰动情形下的精细拟谱和固有拟谱的问题. 利用空间分解技巧和算子的扰动原理等方法, 将谱的结论推广到拟谱上, 获得了对角分块算子矩阵在上三角有界扰动情形下的$\varepsilon$-单射性以及它的拟剩余谱与拟连续谱. 最后, 刻画了对角分块算子矩阵在上三角有界扰动情形下的固有拟点谱、固有拟剩余谱和固有拟连续谱.
关键词算子矩阵    拟点谱    拟剩余谱    拟连续谱    固有拟谱    
THE METICULOUS PSEUDO-SPECTRA AND INTRINSIC PSEUDO-SPECTRA FOR $2\times2$ DIAGONAL BLOCK OPERATOR MATRICES UNDER THE BOUNDED PERTURBATION OF UPPER-TRIANGULAR OPERATOR MATRICES
SHEN Run-shuan, HOU Guo-lin    
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract: In this paper, we study the problem of meticulous pseudo-spectra and intrinsic pseudo-spectra for the diagonal block operator matrices under the bounded perturbation of upper-triangular operator matrices. By means of space decomposition technique and perturbation principle of operators, we extend the spectral result to pseudo-spectrum and obtain the $\varepsilon$-injectivity and its pseudo-residual spectrum and pseudo-continuous spectrum for the diagonal block operator matrices with the bounded perturbation of upper-triangular operator matrices. Finally, the intrinsic pseudo-point spectrum, intrinsic pseudo-residual spectrum and intrinsic pseudo-continuous spectrum for the diagonal block operator matrices in the case of the bounded perturbation of upper-triangular operator matrices are described.
Keywords: operator matrices     pseudo-point spectrum     pseudo-residual spectrum     pseudo-continuous spectrum     innate pseudo-spectrum    
1 引言

线性算子谱理论是算子理论的重要组成部分, 在许多应用实践中具有举足轻重的作用. 自伴算子的谱理论是量子力学的基础, 非自伴算子的谱理论在实际应用中扮演重要角色. 非自伴算子的谱分析比自伴算子复杂, 比如在由非自伴算子决定的系统中, 当受迫振动频率的值离算子谱远的时候就可能发生共振现象[1]. 所以说, 对于非自伴算子, 仅仅用谱去刻画非自伴系统是不科学的. 又由于线性算子谱对扰动的敏感性, 相关数值算法不能保证它的精确性, 因此经典的谱分析在应用实践中出现很大的弊端. 为了克服这样的缺点, 后来人们提出了拟谱的概念. 拟谱是谱的延伸与推广, 能够更好地刻画非正规系统的稳定性[24]以及分析非正规性动力系统的瞬时状态[3, 5]. 学者们已从不同角度对其进行了研究, 并得到较好的结论. 文献[6, 7]研究了一些特殊算子的拟谱和线性算子的和、差与乘积之拟谱的保持问题. 文献[8]研究了两个矩阵在一定条件下具有相同的拟谱. 文献[9]讨论了矩阵的分数阶拟谱. 文献[10]研究了Banach空间中有界线性算子的本质拟谱和条件本质拟谱. 文献[11, 12]剖析了分块矩阵拟谱的上下界. 文献[13]讨论了在一定条件下分块算子矩阵对角元的本质拟谱与其在对角扰动下的本质拟谱之间的关系. 对于拟谱的更多结论, 请参阅[1416]及其引用文献.

分块算子矩阵是以Hilbert空间或Banach空间中线性算子为元素的特殊矩阵, 它广泛出现于系统理论、非线性分析以及发展方程等领域, 在应用偏微分方程求解问题、弹性力学、流体力学、量子力学等领域有重要应用. 近二十年来, 许多文献主要集中于对$ 2\times2 $上三角算子矩阵和$ 2\times2 $算子矩阵的的可逆性与正则性以及它们的谱分析和谱补问题的研究, 均获得了丰富的成果, 参见[1722]和塞尔维亚学者Dragana S. 最近出版的专著[23]. 为了更好地了解拟谱的特性, 文献[24]对拟谱作了精细划分, 讨论了闭线性算子与其共轭算子的精细拟谱之间的关系, 进而研究了Hamilton算子的拟谱结构. 在此基础上, 用对角元的拟谱刻画了整体算子矩阵的拟谱分布. 文献[25]对$ 2\times2 $分块对角算子矩阵在对角有界扰动情形下的拟谱作了精细描述, 同时也探讨了上三角有界扰动情形下的拟点谱分布.

本文在文献[24, 25]的基础上, 提出了稠定闭线性算子的$ \varepsilon $-单射, $ \varepsilon $-稠密以及固有拟谱、固有拟点谱、固有拟剩余谱和固有拟连续谱的概念, 研究了分块对角算子矩阵在上三角有界扰动情形下的$ \varepsilon $-单射性, 同时也得到了分块对角算子矩阵在上三角有界扰动情形下的拟剩余谱和拟连续谱. 最后, 给出了$ M_{0} $在上三角有界扰动情形下的固有拟点谱、固有拟剩余谱和固有拟连续谱的描述.

2 预备知识

在下文中, 始终用$ X, \; Y $表示无穷维可分的复Hilbert空间. 符号$ \mathcal{B}(X, Y), \; \mathcal{C}(X, Y) $分别表示从$ X $$ Y $的有界线性算子全体构成的集合和从$ X $$ Y $的稠定闭线性算子全体构成的集合. 为了简便, 记$ \mathcal{B}(X)=\mathcal{B}(X, X), \; \mathcal{C}(X)=\mathcal{C}(X, X). $$ T $$ X $中的稠定线性算子, 用$ T^{\ast} $, $ \mathcal{D}(T) $, $ \mathcal{N}(T) $, $ \mathcal{R}(T), $ $ \overline{\mathcal{R}(T)} $$ \mathcal{R}(T)^{\bot} $分别表示$ T $的共轭算子、定义域、零子空间、值域、值域的闭包和值域的正交补. 用$ T\mid_{\mathcal{M}} $表示$ T $在空间$ \mathcal{M} $上的限制. 统一用$ I $表示给定空间上的单位算子. 若$ T\in\mathcal{C}(X) $, 我们用$ \sigma(T) $, $ \rho(T) $, $ \sigma_{p}(T) $, $ \sigma_{r}(T) $$ \sigma_{c}(T) $分别表示$ T $的谱集、预解集、点谱、剩余谱和连续谱.

下面给出稠定闭线性算子的拟谱、拟点谱、拟剩余谱与拟连续谱定义.

定义2.1(参见[3])  令$ T\in \mathcal{C}(X) $. 对于任意的$ \varepsilon>0 $, 算子$ T $的拟谱$ \sigma_{\varepsilon}(T) $定义如下:

$ \sigma_{\varepsilon}(T)=\sigma(T)\cup\{\lambda\in\rho(T): \|(T-\lambda I)^{-1}\|>\frac{1}{\varepsilon}\}. $

利用扰动原理, 等价地可得到[2],

$ \begin{align*} \sigma_{\varepsilon}(T)=\bigcup\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}{\sigma(T+E)} =\{\lambda\in\mathbb{C}:\text{存在}\; E\in\mathcal{B}(X), \; \| E\|<\varepsilon, \; \text{使得}\; \lambda\in\sigma(T+E)\}. \end{align*} $

定义2.2(参见[24])  令$ T\in \mathcal{C}(X) $. 对于任意的$ \varepsilon>0 $, 定义

$ \begin{align*} \sigma_{\varepsilon, p}(T):&=\bigcup\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\sigma_{p}(T+E) =\{\lambda\in\mathbb{C}: \text{存在}\; E\in\mathcal{B}(X), \; \| E\|<\varepsilon, \; \text{使得}\; \lambda\in\sigma_{p}(T+E)\};\\ \sigma_{\varepsilon, r}(T):&=\bigcup\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\sigma_{r}(T+E) =\{\lambda\in\mathbb{C}: \text{存在}\; E\in\mathcal{B}(X), \; \| E\|<\varepsilon, \; \text{使得}\; \lambda\in\sigma_{r}(T+E)\};\\ \sigma_{\varepsilon, c}(T):&=\bigcup\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\sigma_{c}(T+E) =\{\lambda\in\mathbb{C}: \text{存在}\; E\in\mathcal{B}(X), \; \| E\|<\varepsilon, \; \text{使得}\; \lambda\in\sigma_{c}(T+E)\}, \end{align*} $

$ \sigma_{\varepsilon, p}(T) $, $ \sigma_{\varepsilon, r}(T) $$ \sigma_{\varepsilon, c}(T) $分别为$ T $的拟点谱、拟剩余谱和拟连续谱.

注2.1  容易看出

$ \begin{align*} &\sigma(T)\subseteq\sigma_{\varepsilon}(T), \; \sigma_{\alpha}(T)\subseteq\sigma_{\varepsilon, \alpha}(T), \; \alpha\in\{p, \; r, \; c\}, \\ & \sigma_{\varepsilon}(T)=\sigma_{\varepsilon, p}(T)\cup\sigma_{\varepsilon, r}(T)\cup\sigma_{\varepsilon, c}(T). \end{align*} $

$ \varepsilon\rightarrow0 $时, 拟点谱、拟剩余谱和拟连续谱分别退化为点谱、剩余谱和连续谱; 但对较大的正数$ \varepsilon $, 拟点谱、拟剩余谱、拟连续谱之间可能是有交集的(参见[24]).

定义2.3(参见[25])  设$ T\in\mathcal{C}(X) $$ \varepsilon>0 $. 定义$ T $$ \varepsilon $-零子空间$ \mathcal{N}_{\varepsilon}(T) $$ \varepsilon $-值域$ \mathcal{R}_{\varepsilon}(T) $分别为:

$ \begin{align*} \mathcal{N}_{\varepsilon}(T)&=\bigcup\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\mathcal{N}(T+E) =\{x\in\mathcal{D}(T):\; \text{使得}\; (T+E)x=0, \; \text{其中}\; E\in\mathcal{B}(X), \; \| E\|<\varepsilon\};\\ \mathcal{R}_{\varepsilon}(T)&=\bigcup\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\mathcal{R}(T+E) =\{(T+E)x:\; x\in \mathcal{D}(T), \; \text{其中}\; E\in\mathcal{B}(X)\; \text{且}\; \| E\|<\varepsilon\}. \end{align*} $

并称$ \alpha_{\varepsilon}(T)=\dim\mathcal{N}_{\varepsilon}(T) $$ T $$ \varepsilon $-零度, $ \; \beta_{\varepsilon}(T)=\dim\mathcal{R}_{\varepsilon}(T)^{\perp} $$ T $$ \varepsilon $-余维数.

定义2.4  设$ T\in\mathcal{C}(X) $$ \varepsilon>0 $. 如果存在$ E\in\mathcal{B}(X), \; \| E\|<\varepsilon $使得$ T+E $是单射, 则称线性算子$ T $$ \varepsilon $-单射, 如果$ \overline{\mathcal{R}(T+E)}=X $, 那么称线性算子$ T $$ \varepsilon $-稠密.

定义2.5  令$ T\in \mathcal{C}(X) $. 对于任意给定的$ \varepsilon>0 $, 定义

$ \begin{align*} \sigma^{I}_{\varepsilon}(T):&=\bigcap\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\sigma(T+E)\\ & =\{\lambda\in\mathbb{C}: \text{对于所有的}\; E\in\mathcal{B}(X), \; \| E\|<\varepsilon, \; \text{都有}\; \lambda\in\sigma(T+E)\}, \\ \sigma^{I}_{\varepsilon, p}(T):&=\bigcap\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\sigma_{p}(T+E)\\ & =\{\lambda\in\mathbb{C}: \text{对于所有的}\; E\in\mathcal{B}(X), \; \| E\|<\varepsilon, \; \text{都有}\; \lambda\in\sigma_{p}(T+E)\};\\ \sigma^{I}_{\varepsilon, r}(T):&=\bigcap\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\sigma_{r}(T+E)\\ & =\{\lambda\in\mathbb{C}: \text{对于所有的}\; E\in\mathcal{B}(X), \; \| E\|<\varepsilon, \; \text{都有}\; \lambda\in\sigma_{r}(T+E)\};\\ \sigma^{I}_{\varepsilon, c}(T):&=\bigcap\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\sigma_{c}(T+E)\\ & =\{\lambda\in\mathbb{C}: \text{对于所有的}\; E\in\mathcal{B}(X), \; \| E\|<\varepsilon, \; \text{都有}\; \lambda\in\sigma_{c}(T+E)\}, \end{align*} $

$ \sigma^{I}_{\varepsilon}(T), \; \sigma^{I}_{\varepsilon, p}(T) $, $ \sigma^{I}_{\varepsilon, r}(T) $$ \sigma^{I}_{\varepsilon, c}(T) $分别为$ T $的固有拟谱、固有拟点谱、固有拟剩余谱和固有拟连续谱.

注2.2  易知

$ \begin{equation*} \sigma^{I}_{\varepsilon}(T)\subseteq\sigma(T), \sigma^{I}_{\varepsilon, \ast}(T)\subseteq\sigma_{\ast}(T), \; \ast\in\{p, \; r, \; c\}. \end{equation*} $

本文后续结果显示: 对于给定的$ \varepsilon>0 $, 上述包含关系是严格的.

$ A\in\mathcal{C}(X), \; B\in\mathcal{C}(Y) $, 下文中我们始终用

$ M_{0}=\left( \begin{array} {cc}{A} & {0}\\ {0}& {B} \end{array} \right) $

表示$ 2\times2 $对角分块算子矩阵. 同时我们考虑扰动算子为上三角有界扰动情形, 即

$ E=\left( \begin{array} {cc}{E_{11}} & {E_{12}}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus Y), $

其中$ E_{11}\in\mathcal{B}(X), \; E_{12}\in\mathcal{B}(Y, X), \; E_{22}\in\mathcal{B}(Y), \; \|E_{ij}\|<\varepsilon, \; i, \; j=1, \; 2 $$ \|E\|=\max\limits_{i, j=1, 2}\{\|E_{ij}\|\}<\varepsilon $. 并分别用$ \sigma^{T}_{\varepsilon, \ast}(M_{0}), \; \sigma^{I T}_{\varepsilon, \ast}(M_{0}) (\ast\in\{p, r, c\}) $表示$ M_{0} $在上三角有界扰动情形下的精细拟谱和固有精细拟谱.

3 主要结论及其证明
3.1 $ M_{0} $在上三角有界扰动情形下的精细拟谱

在本部分中, 首先我们讨论了$ M_{0} $在上三角有界扰动情形下的$ \varepsilon $-单射性, 在此基础上, 刻画了$ M_{0} $的拟剩余谱与拟连续谱分布.

在下文, 取常数$ \gamma $满足$ 0<\gamma<\varepsilon, $并且$ \gamma J $表示有界线性算子$ J $的数乘. 为了表述方便, 记

$ \begin{eqnarray*} \Delta_{0}&=&\{\lambda\in\mathbb{C}:\alpha_{\varepsilon}(B-\lambda I)>\beta_{\varepsilon}(A-\lambda I)\};\\ \Delta_{1}&=&\{\lambda\in\mathbb{C}:1\leq\alpha_{\varepsilon}(B-\lambda I)=\beta_{\varepsilon}(A-\lambda I)\};\\ \Delta_{2}&=&\{\lambda\in\mathbb{C}:0<\alpha_{\varepsilon}(B-\lambda I)<\beta_{\varepsilon}(A-\lambda I)\}. \end{eqnarray*} $

引理3.1.1 [25]  若$ M_{0} $$ 2\times2 $对角分块算子矩阵, 则

$ \begin{eqnarray*} \sigma^{T}_{\varepsilon, p}(M_{0})=\sigma_{\varepsilon, p}(A)\cup\Delta_{0}\cup\Delta_{1}\cup\Delta_{2}. \end{eqnarray*} $

引理3.1.2 [26]  设$ T\in\mathcal{B}(X, Y), \; \mathcal{R}(T) $不闭, 那么存在无穷维子空间$ X_{0}\subseteq \overline{\mathcal{R}(T)} $使得$ X_{0}\cap\mathcal{R}(T)=\{0\}. $

定理3.1.3  设$ \varepsilon>0, $算子$ M_{0} $$ \varepsilon $-单射的充要条件$ A $$ \varepsilon $-单射且满足如下条件之一:

$ (1) $ $ \mathcal{R}_{\varepsilon}(A) $闭的且$ \alpha_{\varepsilon}(B)\leq\beta_{\varepsilon}(A) $;

$ (2) $ $ \mathcal{R}_{\varepsilon}(A) $不闭.

  (充分性.) 设$ A $$ \varepsilon $-单射, 则存在算子$ E_{11}\in\mathcal{B}(X), \; \|E_{11}\|<\varepsilon $使得$ A+E_{11} $是单射. 如果$ \mathcal{R}_{\varepsilon}(A) $闭且$ \alpha_{\varepsilon}(B)\leq\beta_{\varepsilon}(A), $那么定义一下方有界算子$ J:\mathcal{N}_{\varepsilon}(B)\rightarrow \mathcal{R}_{\varepsilon}(A)^{\perp}, \; \|J\|=1. $

$ \begin{equation} E_{12}=\left( \begin{array} {cc}{\gamma J} & {0} \\ {0}& {0} \end{array} \right):\left(\begin{array} {c}{\mathcal{N}_{\varepsilon}(B)} \\ {\mathcal{N}_{\varepsilon}(B)^{\perp}}\end{array} \right)\rightarrow \left(\begin{array} {c}{\mathcal{R}_{\varepsilon}(A)^{\perp}} \\ {\mathcal{R}_{\varepsilon}(A)} \end{array} \right). \end{equation} $ (3.1)

如前所述$ \gamma $表示一常数且$ 0<\gamma<\varepsilon. $显然, $ \|E_{12}\|=\|\gamma J\|<\varepsilon $. 取

$ \begin{equation} E=\left( \begin{array} {cc}{E_{11}} & {E_{12}}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus Y), \; \|E\|=\max\limits_{i, j}\{\|E_{ij}\|\}<\varepsilon, \end{equation} $ (3.2)

其中$ E_{22}\in\mathcal{B}(Y), \; \|E_{22}\|<\varepsilon $.

$ \left(\begin{array} {c}{x} \\ {y} \end{array} \right)\in \mathcal{D}(M_{0}+E) $, 令

$ \begin{eqnarray} (M_{0}+E)\left(\begin{array} {c}{x} \\ {y} \end{array} \right)&=&\left( \begin{array} {cc}{A+E_{11}} & {E_{12}}\\ {0}& {B+E_{22}} \end{array} \right)\left(\begin{array} {c}{x} \\ {y} \end{array} \right)\\ &=&\left( \begin{array} {c}{(A+E_{11})x+E_{12}y}\\ {(B+E_{22})y} \end{array} \right)\\&=&\textbf{0}. \end{eqnarray} $ (3.3)

可以得到

$ \begin{equation} y\in\mathcal{N}(B+E_{22})\subseteq\mathcal{N}_{\varepsilon}(B)\; \text{且}\; (A+E_{11})x=-E_{12}y. \end{equation} $ (3.4)

进而, 有

$ \begin{equation} (A+E_{11})x=-\gamma Jy=0. \end{equation} $ (3.5)

结合$ J $的定义得到$ y=0 $. 又因为$ A+E_{11} $是单射, 所以$ x=0. $这表明$ M_{0}+E $是单射. 即$ M_{0} $$ \varepsilon $-单射.

如果$ \mathcal{R}_{\varepsilon}(A) $不闭, 那么有$ \beta_{\varepsilon}(A)=\infty. $于是, 根据引理3.1.2知, 必存在闭子空间$ X_{0}\subset \overline{\mathcal{R}_{\varepsilon}(A)} $满足$ X_{0}\cap\mathcal{R}_{\varepsilon}(A)=\{0\}. $现定义一下方有界算子

$ \begin{equation} E^{(1)}_{12}:\mathcal{N}_{\varepsilon}(B)\rightarrow \overline{\mathcal{R}_{\varepsilon}(A)} \end{equation} $ (3.6)

使得$ \mathcal{R}(E^{(1)}_{12})\subseteq X_{0}. $

$ \begin{equation} E_{12}=\left( \begin{array} {cc}{E^{(2)}_{12}} & {E^{(3)}_{12}} \\ {E^{(1)}_{12}}& {E^{(4)}_{12}} \end{array} \right):\left(\begin{array} {c}{\mathcal{N}_{\varepsilon}(B)} \\ {\mathcal{N}_{\varepsilon}(B)^{\perp}}\end{array} \right)\rightarrow \left(\begin{array} {c}{\mathcal{R}_{\varepsilon}(A)^{\perp}} \\ {\overline{\mathcal{R}_{\varepsilon}(A)}} \end{array} \right). \end{equation} $ (3.7)

这里$ E^{(i)}_{12}\in\mathcal{B}(Y, X) $$ \|E^{(i)}_{12}\|<\varepsilon. $

根据$ E^{(1)}_{12} $定义, 有

$ \begin{equation} \mathcal{N}(E^{(2)}_{12})\cap\mathcal{N}(E^{(1)}_{12})=\{0\}\; \text{且}\; \mathcal{R}(E^{(1)}_{12})\cap\mathcal{R}_{\varepsilon}(A)=\{0\}, \end{equation} $ (3.8)

从而$ E_{12}|_{\mathcal{N}_{\varepsilon}(B)} $是单射且

$ \begin{equation} \mathcal{R}(E_{12}\mid_{\mathcal{N}_{\varepsilon}(B)})\cap\mathcal{R}_{\varepsilon}(A)=\{0\}. \end{equation} $ (3.9)

又由于$ A $$ \varepsilon $-单射, 故存在算子$ E_{11}\in\mathcal{B}(X), \; \|E_{11}\|<\varepsilon $使得$ A+E_{11} $是单射. 取

$ \begin{equation*} E=\left( \begin{array} {cc}{E_{11}} & {E_{12}}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus Y), \; \|E\|=\max\limits_{i, j}\{\|E_{ij}\|\}<\varepsilon, \end{equation*} $

其中$ E_{22}\in\mathcal{B}(Y), \; \|E_{22}\|<\varepsilon $.

$ \left(\begin{array} {c}{x_{1}} \\ {y_{1}} \end{array} \right)\in \mathcal{D}(M_{0}+E) $, 令$ (M_{0}+E)\left(\begin{array} {c}{x_{1}} \\ {y_{1}} \end{array} \right)=\textbf{0}. $如同等式$ 3.3-3.5 $, 易得$ M_{0} $$ \varepsilon $-单射.

(必要性.) 假设算子$ M_{0} $$ \varepsilon $-单射, 则存在

$ \begin{equation*} E=\left( \begin{array} {cc}{E_{11}} & {E_{12}}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus Y), \; \|E\|=\max\limits_{i, j}\{\|E_{ij}\|\}<\varepsilon, \end{equation*} $

使得算子$ M_{0}+E $是单射, 这表明$ A $$ \varepsilon $-单射且$ \mathcal{N}(E_{12})\cap\mathcal{N}(B+E_{22})=\{0\}. $进而,

$ \begin{equation} E_{12}(\mathcal{N}(B+E_{22}))\cap\mathcal{R}(A+E_{11})=\{0\}. \end{equation} $ (3.10)

如果$ \mathcal{R}_{\varepsilon}(A) $不闭, 则结论自然成立. 以下讨论$ \mathcal{R}_{\varepsilon}(A) $为闭的情形, 考虑$ E_{12} $的下述分解:

$ \begin{equation} E_{12}=\left( \begin{array} {cc}{E^{(2)}_{12}} & {E^{(3)}_{12}} \\ {E^{(1)}_{12}}& {E^{(4)}_{12}} \end{array} \right):\left(\begin{array} {c}{\mathcal{N}_{\varepsilon}(B)} \\ {\mathcal{N}_{\varepsilon}(B)^{\perp}}\end{array} \right)\rightarrow \left(\begin{array} {c}{\mathcal{R}_{\varepsilon}(A)^{\perp}} \\ {\mathcal{R}_{\varepsilon}(A)} \end{array} \right), \end{equation} $ (3.11)

$ E_{12}(\mathcal{N}(B+E_{22}))\cap\mathcal{R}(A+E_{11})=\{0\}, $

$ \mathcal{N}(E^{(2)}_{12})\subseteq\mathcal{N}(E^{(1)}_{12}) $. 又由$ E_{12}|_{\mathcal{N}(B+E_{22})} $是单射, 故$ \mathcal{N}(E^{(2)}_{12})\cap\mathcal{N}(E^{(1)}_{12})=\{0\}. $从而$ \mathcal{N}(E^{(2)}_{12})=\{0\}. $进一步推出, 算子$ E^{(2)}_{12} $是单射. 从而, $ \alpha_{\varepsilon}(B)\leq\beta_{\varepsilon}(A). $

通过对定理3.1.3的逆否命题的分析, 得到如下推论.

推论3.1.4  设$ \varepsilon>0 $, 则有

$ \begin{equation} \sigma^{IT}_{\varepsilon, p}(M_{0})=\sigma^{I}_{\varepsilon, p}(A)\cup\{\lambda\in\mathbb{C}:\alpha_{\varepsilon}(B-\lambda I)>\beta_{\varepsilon}(A-\lambda I)\}. \end{equation} $ (3.12)

接下来, 我们来讨论上三角有界扰动情形下的拟剩余谱.

为了表述的方便, 在下文记

$ \begin{eqnarray*} \Delta_{3}&=&\{\overline{\lambda}\in\mathbb{C}:\alpha_{\varepsilon}(A^{\ast}-\overline{\lambda}I)>\beta_{\varepsilon}(B^{\ast}-\overline{\lambda} I)\};\\ \Delta_{4}&=&\{\overline{\lambda}\in\mathbb{C}:1\leq\alpha_{\varepsilon}(A^{\ast}-\overline{\lambda}I)=\beta_{\varepsilon}(B^{\ast}-\overline{\lambda} I)\};\\ \Delta_{5}&=&\{\overline{\lambda}\in\mathbb{C}:0<\alpha_{\varepsilon}(A^{\ast}-\overline{\lambda}I)<\beta_{\varepsilon}(B^{\ast}-\overline{\lambda} I)\}. \end{eqnarray*} $

定理3.1.5  设$ \; \lambda\in\mathbb{C} $, $ \lambda\in\sigma^{T}_{\varepsilon, r}(M_{0}) $的充要条件为$ A-\lambda I\; $$ \varepsilon $-单射且满足以下条件之一:

$ (1) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $是闭的, $ \alpha_{\varepsilon}(B-\lambda I)\leq\beta_{\varepsilon}(A-\lambda I) $$ \{\lambda:\overline{\lambda}\in\sigma_{\varepsilon, p}(B^{\ast})\cup\Delta_{3}\cup\Delta_{4}\cup\Delta_{5}\} $;

$ (2) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $不闭且$ \{\lambda:\overline{\lambda}\in\sigma_{\varepsilon, p}(B^{\ast})\cup\Delta_{3}\cup\Delta_{4}\cup\Delta_{5}. \}$.

  假设$ \lambda\in\sigma^{T}_{\varepsilon, r}(M_{0}) $, 那么存在

$ E=\left( \begin{array} {cc}{E_{11}} & {E_{12}}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus Y), \; \|E\|=\max\limits_{i, j}\{\|E_{ij}\|\}<\varepsilon, $

使得算子$ M_{0}+E-\lambda I $是单射且$ \overline{\mathcal{R}(M_{0}+E-\lambda I)}\neq X\oplus Y. $这样, 我们根据定理3.1.3得, 算子$ M_{0}+E-\lambda I $$ \varepsilon $-单射的充要条件为算子$ A-\lambda I $$ \varepsilon $-单射且满足以下条件之一: $ \mathcal{R}_{\varepsilon}(A-\lambda I) $是闭的且$ \alpha_{\varepsilon}(B-\lambda I)\leq\beta_{\varepsilon}(A-\lambda I) $$ \mathcal{R}_{\varepsilon}(A-\lambda I) $不闭.

另一方面, 由$ \; \overline{\mathcal{R}(M_{0}+E-\lambda I)}\neq X\oplus Y $知, $ \mathcal{N}(M_{0}^{\ast}+E^{\ast}-\overline{\lambda }I)\neq\{0\}. $$ \overline{\lambda }\in\sigma^{T}_{\varepsilon, p}(M_{0}^{\ast}). $根据引理3.1.1得,

$ \begin{equation} \overline{\lambda}\in\sigma_{\varepsilon, p}(B^{\ast})\cup\Delta_{3}\cup\Delta_{4}\cup\Delta_{5}. \end{equation} $ (3.13)

综上所述, 有$ \lambda\in\sigma^{T}_{\varepsilon, r}(M_{0}) $的充要条件为$ A-\lambda I\; $$ \varepsilon $-单射且满足以下条件之一:

$ (1) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $是闭的, $ \alpha_{\varepsilon}(B-\lambda I)\leq\beta_{\varepsilon}(A-\lambda I) $$ \{\lambda:\overline{\lambda}\in\sigma_{\varepsilon, p}(B^{\ast})\cup\Delta_{3}\cup\Delta_{4}\cup\Delta_{5}. \}$;

$ (2) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $不闭且$ \{\lambda:\overline{\lambda}\in\sigma_{\varepsilon, p}(B^{\ast})\cup\Delta_{3}\cup\Delta_{4}\cup\Delta_{5}. \}$.

根据上述已有结论和方法, 下面将研究上三角有界扰动情形下的拟连续谱.

定理3.1.6  设$ \; \lambda\in\mathbb{C} $, $ \lambda\in\sigma_{\varepsilon, c}^{T}(M_{0})\backslash\sigma_{\varepsilon, \delta}(A) $的充要条件为$ A-\lambda I $$ \varepsilon $-单射, $ B-\lambda I $$ \varepsilon $-稠密, $ \lambda\in\sigma_{\varepsilon, \delta}(B) $且满足以下四种情形之一:

$ (1) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $闭, $ \mathcal{R}_{\varepsilon}(B-\lambda I) $闭, $ \alpha_{\varepsilon}(B-\lambda I)\leq\beta_{\varepsilon}(A-\lambda I) $, $ \alpha_{\varepsilon}(A^{\ast}-\overline{\lambda} I)\leq\beta_{\varepsilon}(B^{\ast}-\overline{\lambda} I); $

$ (2) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $闭, $ \mathcal{R}_{\varepsilon}(B-\lambda I) $不闭, $ \alpha_{\varepsilon}(B-\lambda I)\leq\beta_{\varepsilon}(A-\lambda I) $;

$ (3) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $不闭, $ \mathcal{R}_{\varepsilon}(B-\lambda I) $闭, $ \alpha_{\varepsilon}(A^{\ast}-\overline{\lambda} I)\leq\beta_{\varepsilon}(B^{\ast}-\overline{\lambda} I) $;

$ (4) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $不闭, $ \mathcal{R}_{\varepsilon}(B-\lambda I) $不闭.

  设$ \lambda\in\sigma_{\varepsilon, c}^{T}(M_{0}) $, 那么存在算子$ E=\left( \begin{array} {cc}{E_{11}} & {E_{12}}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus Y), \; \|E\|=\max\limits_{i, j}\{\|E_{ij}\|\}<\varepsilon, $使得$ \mathcal{N}(M_{0}+E-\lambda I)=\{0\}, \; \overline{\mathcal{R}(M_{0}+E-\lambda I)}=X\oplus Y $$ \mathcal{R}(M_{0}+E-\lambda I)\neq X\oplus Y. $首先根据定理3.1.3知: 算子$ M_{0}+E-\lambda I $是单射的充要条件, 算子$ A-\lambda I $$ \varepsilon $-单射且满足以下条件之一:

(ⅰ) $ \mathcal{R}_{\varepsilon}(A-\lambda I) $是闭的且$ \alpha_{\varepsilon}(B-\lambda I)\leq\beta_{\varepsilon}(A-\lambda I) $;

(ⅱ) $ \mathcal{R}_{\varepsilon}(A-\lambda I) $不闭.

其次, $ \overline{\mathcal{R}(M_{0}+E-\lambda I)}=X\oplus Y $意味着$ \mathcal{N}(M^{\ast}_{0}+E^{\ast}-\overline{\lambda} I)=\{0\}, $这表明$ M^{\ast}_{0}-\overline{\lambda} I $$ \varepsilon $-单射. 根据定理3.1.3得, 算子$ B^{\ast}-\overline{\lambda} I $$ \varepsilon $-单射且满足以下条件之一:

(a) $ \mathcal{R}_{\varepsilon}(B^{\ast}-\overline{\lambda} I) $是闭的且$ \alpha_{\varepsilon}(A^{\ast}-\overline{\lambda} I)\leq\beta_{\varepsilon}(B^{\ast}-\overline{\lambda} I); $

(b) $ \mathcal{R}_{\varepsilon}(B^{\ast}-\overline{\lambda} I) $不闭.

然而, 由$ B^{\ast}-\overline{\lambda} I $$ \varepsilon $-单射, 得$ B-\lambda I $$ \varepsilon $-稠密.

$ \mathcal{R}(M_{0}+E-\lambda I)\neq X\oplus Y $, $ \lambda\not\in\sigma_{\varepsilon, \delta}(A) $知, $ \; \mathcal{R}(B+E_{22}-\lambda I)\neq Y. $因此$ \lambda\in\sigma_{\varepsilon, \delta}(B) $.

综上所述, $ \lambda\in\sigma_{\varepsilon, c}^{T}(M_{0})\backslash\sigma_{\varepsilon, \delta}(A) $的充要条件为$ A-\lambda I $$ \varepsilon $-单射, $ B-\lambda I $$ \varepsilon $-稠密, $ \lambda\in\sigma_{\varepsilon, \delta}(B) $且以下四种情形之一成立:

$ (1) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $闭, $ \mathcal{R}_{\varepsilon}(B-\lambda I) $闭, $ \alpha_{\varepsilon}(B-\lambda I)\leq\beta_{\varepsilon}(A-\lambda I) $, $ \alpha_{\varepsilon}(A^{\ast}-\overline{\lambda} I)\leq\beta_{\varepsilon}(B^{\ast}-\overline{\lambda} I); $

$ (2) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $闭, $ \mathcal{R}_{\varepsilon}(B-\lambda I) $不闭, $ \alpha_{\varepsilon}(B-\lambda I)\leq\beta_{\varepsilon}(A-\lambda I) $;

$ (3) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $不闭, $ \mathcal{R}_{\varepsilon}(B-\lambda I) $闭, $ \alpha_{\varepsilon}(A^{\ast}-\overline{\lambda} I)\leq\beta_{\varepsilon}(B^{\ast}-\overline{\lambda} I) $;

$ (4) $ $ \mathcal{R}_{\varepsilon}(A-\lambda I) $不闭, $ \mathcal{R}_{\varepsilon}(B-\lambda I) $不闭.

3.2 $ M_{0} $在上三角有界扰动情形下的固有精细拟谱

定理3.2.1  设$ \varepsilon>0 $, 则有

$ \begin{equation} \sigma^{IT}_{\varepsilon, r}(M_{0})=(\sigma^{I}_{\varepsilon, r}(B)\setminus\sigma_{\varepsilon, p}(A))\cup\{\lambda:\; \lambda\in\Gamma\}\backslash(\sigma_{\varepsilon, p}(A)\cup\sigma_{\varepsilon, p}(B)). \end{equation} $ (3.14)

在这里, $ \Gamma=\{\lambda: \; \dim(\bigcap\limits_{\substack{E_{11}\in\mathcal{B}(X)\\\| E_{11}\|<\varepsilon}}\overline{\mathcal{R}(A+E_{11}-\lambda I)})^{\bot}>0\} $.

  假设$ \lambda\in\sigma^{IT}_{\varepsilon, r}(M_{0}) $, 那么对于所有的

$ E=\left( \begin{array} {cc}{E_{11}} & {E_{12}}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus Y), \; \|E\|=\max\limits_{i, j}\{\|E_{ij}\|\}<\varepsilon, $

算子$ M_{0}+E-\lambda I $是单射且$ \overline{\mathcal{R}(M_{0}+E-\lambda I)}\neq X\oplus Y. $算子$ \; M_{0}+E-\lambda I $是单射等价于$ \lambda\not\in\sigma^{T}_{\varepsilon, p}(M_{0}). $从而, 我们根据引理3.1.1可得$ \lambda\not\in\sigma_{\varepsilon, p}(A)\cup\Delta_{0}\cup\Delta_{1}\cup\Delta_{2} $. 经进一步分析得$ \lambda\not\in\sigma_{\varepsilon, p}(A)\cup\sigma_{\varepsilon, p}(B). $而由$ \overline{\mathcal{R}(M_{0}+E-\lambda I)}\neq X\oplus Y $知, $ \; \mathcal{N}(M_{0}^{\ast}+E^{\ast}-\overline{\lambda }I)\neq\{0\}, $

$ \overline{\lambda }\in\sigma^{IT}_{\varepsilon, p}(M^{\ast}_{0}). $

根据推论3.1.4知,

$ \begin{equation} \overline{\lambda}\in\sigma^{I}_{\varepsilon, p}(B^{\ast})\cup\{\lambda\in\mathbb{C}:\alpha_{\varepsilon}(A^{\ast}-\overline{\lambda} I)>\beta_{\varepsilon}(B^{\ast}-\overline{\lambda }I)\}. \end{equation} $ (3.15)

$ \overline{\lambda}\in\sigma^{I}_{\varepsilon, p}(B^{\ast}) $可得, $ \; \mathcal{N}(B^{\ast}+E_{22}^{\ast}-\overline{\lambda }I)\neq\{0\}. $从而, 有$ \overline{\mathcal{R}(B+E_{22}-\lambda I)}\neq X. $由于

$ \begin{align} \alpha_{\varepsilon}(A^{\ast}-\overline{\lambda}I)=&\dim(\bigcup\limits_{\substack{E_{11}\in\mathcal{B}(X)\nonumber\\\| E_{11}\|<\varepsilon}}\mathcal{N}(A^{\ast}+E_{11}^{\ast}-\overline{\lambda} I)) \\ =&\dim(\bigcup\limits_{\substack{E_{11}\in\mathcal{B}(X)\nonumber\\\| E_{11}\|<\varepsilon}}\overline{\mathcal{R}(A+E_{11}-\lambda I)}^{\bot}) \\ =&\dim(\bigcap\limits_{\substack{E_{11}\in\mathcal{B}(X)\\\| E_{11}\|<\varepsilon}}\overline{\mathcal{R}(A+E_{11}-\lambda I)})^{\bot}, \end{align} $ (3.16)
$ \begin{align} \beta_{\varepsilon}(B^{\ast}-\overline{\lambda}I)=&\dim(\bigcup\limits_{\substack{E_{22}\in\mathcal{B}(Y)\nonumber\\ \| E_{22}\|<\varepsilon}}\mathcal{R}(B^{\ast}+E_{22}^{\ast}-\overline{\lambda }I))^{\bot} \\ =&\dim(\bigcap\limits_{\substack{E_{22}\in\mathcal{B}(Y)\nonumber\\ \| E_{22}\|<\varepsilon}}\mathcal{R}(B^{\ast}+E_{22}^{\ast}-\overline{\lambda} I)^{\bot}) \\ =&\dim(\bigcap\limits_{\substack{E_{22}\in\mathcal{B}(Y)\\\| E_{22}\|<\varepsilon}}\mathcal{N}(B+E_{22}-\lambda I)). \end{align} $ (3.17)

故当$ \lambda\not\in\sigma_{\varepsilon, p}(A)\cup\sigma_{\varepsilon, p}(B) $时,

$ \begin{equation} \{\lambda:\dim(\bigcap\limits_{\substack{E_{11}\in\mathcal{B}(X)\\\| E_{11}\|<\varepsilon}}\overline{\mathcal{R}(A+E_{11}-\lambda I)})^{\bot}>\beta_{\varepsilon}(B^{\ast}-\overline{\lambda}I)\} \end{equation} $ (3.18)

等价于

$ \begin{equation} \{\lambda:\dim(\bigcap\limits_{\substack{E_{11}\in\mathcal{B}(X)\\\| E_{11}\|<\varepsilon}}\overline{\mathcal{R}(A+E_{11}-\lambda I)})^{\bot}>0\}. \end{equation} $ (3.19)

综上所述, 我们有

$ \begin{equation*} \sigma^{IT}_{\varepsilon, r}(M_{0})=(\sigma^{I}_{\varepsilon, r}(B)\setminus\sigma_{\varepsilon, p}(A))\cup\{\lambda:\; \lambda\in\Gamma\}\backslash(\sigma_{\varepsilon, p}(A)\cup\sigma_{\varepsilon, p}(B)). \end{equation*} $

定理3.2.2  设$ \varepsilon>0 $, 则

$ \begin{equation} \sigma^{IT}_{\varepsilon, c}(M_{0})=(\sigma^{I}_{\varepsilon, c}(A)\cap\sigma^{I}_{\varepsilon, c}(B)) \cup(\sigma^{I}_{\varepsilon, c}(A)\cap\rho_{\varepsilon}(B))\cup(\sigma^{I}_{\varepsilon, c}(B)\cap\rho_{\varepsilon}(A)). \end{equation} $ (3.20)

  设$ \lambda\in\sigma^{IT}_{\varepsilon, c}(M_{0}) $, 那么对于所有的算子$ E=\left( \begin{array} {cc}{E_{11}} & {E_{12}}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus Y), \; \|E\|=\max\limits_{i, j}\{\|E_{ij}\|\}<\varepsilon, $使得$ \mathcal{N}(M_{0}+E-\lambda I)=\{0\}, \; \overline{\mathcal{R}(M_{0}+E-\lambda I)}=X\oplus Y $$ \mathcal{R}(M_{0}+E-\lambda I)\neq X\oplus Y. $这样, 由$ \mathcal{N}(M_{0}+E-\lambda I)=\{0\} $得, $ \lambda\not\in\sigma^{T}_{\varepsilon, p}(M_{0}). $

$ \lambda\not\in\sigma_{\varepsilon, p}(A)\cup\Delta_{0}\cup\Delta_{1}\cup\Delta_{2}. $

这进一步说明了$ \lambda\not\in\sigma_{\varepsilon, p}(A)\cup\sigma_{\varepsilon, p}(B). $故对于所有的$ E_{11}\in\mathcal{B}(X), \; E_{22}\in\mathcal{B}(Y), $

$ \mathcal{N}(A+E_{11}-\lambda I)=\{0\}\; \text{且}\; \mathcal{N}(B+E_{22}-\lambda I)=\{0\}. $

其次, 由$ \overline{\mathcal{R}(M_{0}+E-\lambda I)}=X\oplus Y $$ \mathcal{N}(M^{\ast}_{0}+E^{\ast}-\overline{\lambda} I)=\{0\}. $从而有$ \overline{\lambda}\not\in\sigma^{T}_{\varepsilon, p}(M^{\ast}_{0}). $

$ \overline{\lambda}\not\in\sigma_{\varepsilon, p}(B^{\ast})\cup\Delta_{3}\cup\Delta_{4}\cup\Delta_{5}. $

进而表明$ \overline{\lambda}\not\in\sigma_{\varepsilon, p}(A^{\ast})\cup\sigma_{\varepsilon, p}(B^{\ast}). $因此对于所有的$ E_{11}\in\mathcal{B}(X), \; E_{22}\in\mathcal{B}(Y), $

$ \overline{\mathcal{R}(A+E_{11}-\lambda I)}=X\; \text{且}\; \overline{\mathcal{R}(B+E_{22}-\lambda I)}=Y. $

最后由$ \mathcal{R}(M_{0}+E-\lambda I)\neq X\oplus Y $可知, 对于对应的$ E_{11}\in\mathcal{B}(X), \; E_{22}\in\mathcal{B}(Y) $,

$ \mathcal{R}(A+E_{11}-\lambda I)\neq X\; \text{或}\; \mathcal{R}(B+E_{22}-\lambda I)\neq Y. $

假设上述情形不成立, 那么我们就得到存在$ E_{11}\in\mathcal{B}(X), \; E_{22}\in\mathcal{B}(Y) $使得$ \mathcal{R}(A+E_{11}-\lambda I)=X $$ \; \mathcal{R}(B+E_{22}-\lambda I)=Y. $这样, 显然有$ \mathcal{R}(M_{0}+E-\lambda I)= X\oplus Y $成立. 这与已知是矛盾的.

综上所述, 得

$ \begin{equation*} \sigma^{IT}_{\varepsilon, c}(M_{0})=(\sigma^{I}_{\varepsilon, c}(A)\cap\sigma^{I}_{\varepsilon, c}(B)) \cup(\sigma^{I}_{\varepsilon, c}(A)\cap\rho_{\varepsilon}(B))\cup(\sigma^{I}_{\varepsilon, c}(B)\cap\rho_{\varepsilon}(A)). \end{equation*} $

注3.1  通过以上研究, 我们不难发现:

$ \begin{equation} \sigma^{IT}_{\varepsilon, \ast}(M_{0})\subseteq\sigma_{\ast}(M_{0}), \; \ast\in\{p, \; r, \; c\}. \end{equation} $ (3.21)

经简单分析, 上述包含关系是严格的, 这进一步印证了注2.2的断言. 另外, $ \varepsilon\rightarrow0 $时, $ \sigma^{IT}_{\varepsilon, \ast}(M_{0}) $退化为$ \sigma_{\ast}(M_{0}), $这说明结果是合理的. 设$ M_{C}=\left( \begin{array} {cc}{A} & {C}\\ {0}& {B} \end{array} \right) $表示$ 2\times2 $上三角分块算子矩阵, 文献[18]给出了$ \bigcap\limits_{\substack{C\in\mathcal{B}(Y, X)}}\sigma_{\ast}(M_{C}) $的描述, 这为本文结果的证明提供了思路. 经进一步分析, 我们有如下结论:

$ \begin{equation} \bigcap\limits_{\substack{C\in\mathcal{B}(Y, X)}}\sigma_{\ast}(M_{C})\subseteq\sigma^{IT}_{\varepsilon, \ast}(M_{0}), \; \ast\in\{p, \; r, \; c\}. \end{equation} $ (3.22)
参考文献
[1] Trefethen L N. Pseudospectra of linear operators[J]. SIAM Review-Society for Industrial and Applied Mathematics, 1997, 39(3): 383–406.
[2] Davies E B. Linear operators and their spectra[M]. Cambridge: Cambridge University Press, 2007.
[3] Trefethen L N, Embree M. Spectra and pseudospectra: the behavior of nonnormal matrices and operators[M]. Princeton: Princeton University Press, 2005.
[4] Lancaster P, Psarrakos P. On the pseudospectra of matrix polynomials[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 27(1): 115–129. DOI:10.1137/S0895479804441420
[5] Embree M, Trefethen L N. Generalizing eigenvalue theorems to pesudospectra theorems[J]. SIAM Journal On Scientific Computing, 2001, 23(2): 583–590. DOI:10.1137/S1064827500373012
[6] Cui J L, Forstall V, Li C K, et al. Properties and preservers of the pseudospectrum[J]. Linear Algebra and its Applications, 2012, 436(2): 316–325. DOI:10.1016/j.laa.2011.03.044
[7] Cui J L, Li C K, Poon Y T. Pseudospectra of special operators and pseudospectrum preservers[J]. Journal of Mathematical Analysis and Applications, 2014, 419(2): 1261–1273. DOI:10.1016/j.jmaa.2014.05.041
[8] Ostermann M. Pseudospectra and simultaneous power control[J]. Linear Algebra and its Applications, 2023, 658(1): 49–61.
[9] Šanca E, Kostić V R, Cvetković L. Fractional pseudospectra and their localizations[J]. Linear Algebra and its Applications, 2018, 559(15): 244–269.
[10] Ammar A, Bouchekoua A, Lazrag N. The condition $\varepsilon$-pseudospectra on non-Archimedean Banach space[J]. Boletin De La Sociedad Matematica Mexicana, 2022, 28(29): 1–24.
[11] Roy N, Karow M, Bora S, et al. Approximation of pseudospectra of block triangular matrices[J]. Linear Algebra and its Applications, 2021, 623: 398–419. DOI:10.1016/j.laa.2020.08.008
[12] Kostić V R, Cvetković L, Šanca E. From pseudospectra of diagonal blocks to pseudospectrum of a full matrix[J]. Journal Of Computational and Applied Mathematics, 2021, 386: 113265. DOI:10.1016/j.cam.2020.113265
[13] Ammar A, Boukettaya B, Jeribi A. A note on the essential pseudospectra and application[J]. Linear and Multilinear Algebra, 2016, 64(8): 1474–1483. DOI:10.1080/03081087.2015.1091436
[14] Ammar A, Jeribi A. The essential pseudo-spectra of a sequence of linear operators[J]. Complex Analysis and Operator Theory, 2018, 12(3): 835–848. DOI:10.1007/s11785-018-0776-7
[15] Raouafi S. Operators with minimal pseudospectra and connections to normality[J]. Operators and Matrices, 2020, 14(1): 91–103.
[16] Ferro R, Virtanen J A. A note on structured pseudospectra of block matrices[J]. Journal Of Computational and Applied Mathematics, 2017, 322: 18–24. DOI:10.1016/j.cam.2017.03.020
[17] Chen A, Hou G L, Hai G J. Perturbation of spectra for a class of $2\times2$ operator matrices[J]. Acta Mathematicae Applicatae Sinica, English Series, 2012, 28(4): 711–720. DOI:10.1007/s10255-012-0195-x
[18] Zhang S F, Wu Z Y, Zhong H J. Continuous spectrum, point spectrum and residual spectrum of operator matrices[J]. Linear Algebra and its Applications, 2010, 433(3): 653–661. DOI:10.1016/j.laa.2010.03.036
[19] Cvetković-Ilić D S. The point, residual and continuous spectrum of an upper triangular operator matrix[J]. Linear Algebra and its Applications, 2014, 459: 357–367. DOI:10.1016/j.laa.2014.07.010
[20] Cvetković-Ilić D S. Invertible and regular completions of operator matrices[J]. Electronic Journal Linear Algebra, 2015, 30: 530–549. DOI:10.13001/1081-3810.3126
[21] Li Y, Sun X H, Du H K. The intersection of left (right) spectra of $2\times2$ operator matrices[J]. Linear Algebra and its Applications, 2006, 418(1): 112–121. DOI:10.1016/j.laa.2006.01.020
[22] Li Y, Du H K. The intersection of essential approximate point spectra of operator matrices[J]. Journal of Mathematical Analysis and Applications, 2007, 323(2): 1171–1183.
[23] Cvetković-Ilić D S. Completion problems on operator matrices[M]. Rhode Island: American Mathematical Society, 2022.
[24] Shen R S, Hou G L, Chen A. On the pseudo-spectra and the related properties of infinite-dimensional Hamiltonian operators[J]. Linear and Multilinear Algebra, 2021, 70(22): 7728–7739.
[25] 申润拴, 侯国林. $2\times2$分块对角算子矩阵拟谱的精细刻画[J]. 数学物理学报, 2023, 43A(6): 1–14.
[26] Ji Y Q. Quasitriangular + small compact = strongly irreducible[J]. Transactions of The American Mathematical Society, 1999, 351(11): 4657–4673. DOI:10.1090/S0002-9947-99-02307-7