数学杂志  2024, Vol. 44 Issue (3): 259-268   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
梁波
李彬
马永峰
一类双重退化四阶抛物型方程弱解的存在性
梁波1,2, 李彬2, 马永峰2    
1. 滁州学院数学与金融学院, 安徽 滁州 239000;
2. 大连交通大学理学院, 辽宁 大连 116028
摘要:本文主要研究了一类双重退化的四阶抛物方程弱解的存在性问题. 首先, 利用Galerkin理论与能量估计方法可以得到该问题在非退化边界情形下弱解的存在性. 在此基础上, 通过对正则化问题的解进行一致估计以及渐近极限的过程,获得边界退化情形下弱解的存在性.
关键词双重退化    非线性抛物型方程    边界退化    存在性    
EXISTENCE OF WEAK SOLUTIONS FOR A DOUBLY DEGENERATE FOURTH-ORDER PARABOLIC EQUATION
LIANG Bo1,2, LI Bin2, MA Yong-feng2    
1. School of Mathematics and Finance, Chuzhou University, Chuzhou 239000, China;
2. School of Science, Dalian Jiaotong University, Dalian 116028, China
Abstract: In this paper, the existence of weak solutions for a doubly degenerate fourth-order parabolic equation is studied. By Galerkin process and energy method, the existence of the weak solutions in the non-degenerate case is proved firstly. On this basis, the existence of weak solutions in the degenerate case is obtained by uniform estimates asymptotic limits for the regularization problem.
Keywords: doubly degeneracy     Non-linear parabolic equation     boundary degeneracy     existence    
1 引言

四阶偏微分方程在大气科学、应用科学、流体力学、数学物理、海洋环境流体动力学等一些学科领域均得到了广泛应用, 比较有代表性的方程包括Cahn-Hilliard方程、薄膜方程和半导体方程. 近年来, 国内外对于四阶偏微分方程的研究越来越多,特别是关于Cahn-Hilliard模型和薄膜方程的研究. 在文献[1]中, Liu研究了具有非退化流动性和零质量通量边界条件的Cahn-Hilliard方程:

$ \omega_{t}+\operatorname{div}\left(m(\omega) k \nabla \Delta \omega-|\nabla \omega|^{p-2} \nabla \omega\right)=0, \quad(x, t) \in \Omega \times(0, T), $

其中$ k>0 $, $ p>2 $, $ \Omega $是二维空间上的有界区域. 作者利用Schauder估计方法和Campanato空间理论, 给出了在小初始能量下经典解的全局存在性. Liang在文献[2] 中研究了一维空间中边界条件为正常数的四阶抛物方程:

$ \omega_{t}+\varepsilon\left(\omega^{n} \omega_{x x x}\right)_{x}-\delta \omega_{x x}=0, \quad(x, t) \in \Omega \times(0, T), $

其中$ \Omega=(0,1) $, $ \varepsilon>0 $, $ \delta>0 $. 通过将四阶方程转化为二阶椭圆抛物型方程组, 得到了初值函数接近边值时强正解的存在性和正则性. 此外, Liang在文献[3]中还研究了多维情形下的相关问题:

$ \omega_{t}+\nabla \cdot\left(\omega^{n} \nabla \Delta \omega\right)=0, \quad(x, t) \in \Omega \times(0, T), $

其中初始函数在拉普拉斯方程的正稳态解附近. 对于梯度退化问题, Xu和Zhou在文献[4]中研究了带有齐次边界条件的四阶偏微分方程:

$ \omega_{t}+\operatorname{div}\left(\left.\nabla \Delta \omega\right|^{p-2} \nabla \Delta \omega\right)=f-\operatorname{div} g, \quad(x, t) \in \Omega \times(0, T], $

得到了弱解的存在性与正则性. 在文献[5]中, Guo和Gao研究了相应的变指数问题:

$ \omega_{t}+\operatorname{div}\left(|\nabla \Delta \omega|^{p(x)-2} \nabla \Delta \omega\right)=f(x, u), \quad(x, t) \in \Omega \times(0, T), $

其中非线性源$ f(x, u) $满足$ |f(x, u)| \leq M|u|^{m(x)}+a(x) $, $ p(x)>2 $, $ m(x)>1 $. 在文献[6]中, Zhan研究了如下的对流扩散方程的初边值问题:

$ \omega_{t}=\operatorname{div}\left(\left|\nabla \omega^{n}\right|^{p-2} \nabla \omega^{n}\right)+\sum\limits_{i=1}^{N} \frac{\partial b_{i}\left(\omega^{n}\right)}{\partial x_{i}},\quad(x, t) \in \Omega \times(0, T). $

通过Moser迭代技巧得到了其正则化问题解的$ L^{\infty} $模与其梯度的$ L^{p} $模的局部有界性. 再通过紧致性定理得到了原问题解的存在性. 同时讨论了解的唯一性、正性以及熄灭性. 此外, Zhan在文献[7]中还研究了边界退化的对流扩散方程的初边值问题:

$ \omega_{t}=\operatorname{div}\left(d^{\alpha}|\nabla \omega|^{p-2} \nabla \omega\right)+\sum\limits_{i=1}^{N} \frac{\partial b_{i}(\omega)}{\partial x_{i}},(x, t) \in \Omega \times(0, T), $

其中对流项$ \sum_{i=1}^{N} \frac{\partial b_{i}(\omega)}{\partial x_{i}} $满足$ \left|b_{i}(w)\right| \leq C|w|^{1+\mu}, \left|b_{i}^{\prime}(w)\right| \leq C|w|^{\mu} $, 通过抛物方程正则化理论讨论了该方程初边值问题解的存在性, 并且在$ \frac{p-2}{2}>\alpha>1 $的条件下, 得到了该问题解的存在唯一性. 在此基础上,Zhan在[8]中还研究了上述边界退化方程解的稳定性. 当$ \alpha<p-1 $时, 弱解属于某个$ H^{k}(k>1) $空间, Dirichlet边界条件可以照常施加, 并证明了解的稳定性. 当$ \alpha \geq p-1 $时, 弱解缺乏在边界上定义迹的正则性, 但是仍然可以证明在不施加边界条件的情况下解的稳定性. 也就是说, 此时方程的解可以不受边界条件的任何限制.

受上述文献启发, 本文考虑如下的四阶抛物型$ p- $Laplace方程的初边值问题:

$ \begin{align} & \omega_{t}+\Delta\left(\rho^{\alpha}|\Delta \omega|^{p-2} \Delta \omega\right)=\sum\limits_{i=1}^{N} \frac{\partial g_{i}(\omega)}{\partial x_{i}}, \quad(x, t) \in Q_{T}=\Omega \times(0, T), \end{align} $ (1.1)
$ \begin{align} & \omega=\Delta \omega=0, \quad(x, t) \in \Gamma=\partial \Omega \times(0, T), \end{align} $ (1.2)
$ \begin{align} & \omega(x, 0)=\omega_{0}(x), \quad x \in \Omega. \end{align} $ (1.3)

这里假设$ \Omega $$ R^{N}(N \leq 2) $上的有界开区域, 维数的要求主要是确保相应嵌入定理成立,以及强收敛的极限的进行. 由于几何问题不是研究重点, 要求边界$ \partial \Omega $是充分光滑的, 且具有足够好的拓扑性质. $ \alpha>0 $, $ p>1 $, $ T>0 $都是常数. $ \rho=\operatorname{dist}(x, \partial \Omega) $表示$ x $到边界的距离, 这意味着$ \rho $在边界$ \partial \Omega $上是退化的. 并且, 限制$ g_{i}(\omega) $及其导数的增长阶条件满足: 对于任意的$ i \in\{1,2,3 \cdots N\} $, $ g_{i}(\omega) $$ C^{1} $函数, 且存在$ C $, 使得$ \left|g_{i}(\omega)\right| \leq C\omega, \left|g_{i}^{\prime}(\omega)\right| \leq C. $

定义1.1   称$ \omega=\omega(x, t) $是问题(1.1)-(1.3)的一个弱解, 如果其满足:

$ {\rm(i)} $ $ \omega \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap C\left([0, T]; L^{2}(\Omega)\right) $, $ \rho^{\alpha}|\Delta \omega|^{p} \in L^{1}\left(Q_{T}\right) $, $ \Delta \omega \in L^{p}\left(0, T ; L_{\text {loc }}^{p}(\Omega)\right) $, $ \omega_{t} \in L^{2}\left(Q_{T}\right) $;

$ {\rm(ii)} $对于任意的$ \varphi \in C_{0}^{\infty}\left(Q_{T}\right) $, 有

$ \iint_{Q_{T}} \omega_{t} \varphi \mathrm{d}x \mathrm{d} t+\iint_{Q_{T}} \rho^{\alpha}|\Delta \omega|^{p-2} \Delta \omega \Delta \varphi \mathrm{d}x \mathrm{d} t+\iint_{Q_{T}} \sum\limits_{i=1}^{N} g_{i}(\omega) \varphi_{x_{i}} \mathrm{d}x \mathrm{d} t=0. $

下面的定理为本文主要结论.

定理1.1   令$ p>2 $, $ \alpha<\frac{p-2}{2} $, 若$ \omega_{0} \in W_{0}^{2}(\Omega) $, 则问题(1.1)-(1.3)存在弱解$ \omega $, 其中$ W_{0}^{2}(\Omega)=W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega). $

本文结构分为两个部分. 第一部分考虑非退化情形下的抛物问题, 将利用Galerkin理论证明相应弱解的存在性. 第二部分考虑退化边界情形下的抛物方程, 给出弱解的存在性. 文中约定$ C $表示一般常数, 不同位置值可能不同.

2 正则化问题

为研究边界退化问题(1.1)-(1.3), 先考虑其正则化问题:

$ \begin{align} & \omega_{\eta t}+\Delta\left(\rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta}\right)=\sum\limits_{i=1}^{N} \frac{\partial g_{i}\left(\omega_{\eta}\right)}{\partial x_{i}},(x, t) \in Q_{T}=\Omega \times(0, T), \end{align} $ (2.1)
$ \begin{align} & \omega_{\eta}=\Delta \omega_{\eta}=0,(x, t) \in \Gamma=\partial \Omega \times(0, T), \end{align} $ (2.2)
$ \begin{align} & \omega_{\eta}(x, 0)=\omega_{0 \eta}(x), \quad x \in \Omega, \end{align} $ (2.3)

其中$ \rho_{\eta}=\rho+\eta, \eta>0 $. 并假设当$ \eta \rightarrow 0 $时, $ \omega_{0 \eta} \rightarrow \omega_{0} $$ W^{2, p}(\Omega) $. 若初边值问题(2.1)-(2.3)是可解的, 那么边界退化问题(1.1)-(1.3)的解的存在性可以由$ \eta $的渐近极限过程得到.

问题(2.1)-(2.3)的存在性由下面的命题给出.

命题2.1   假定$ \omega_{0 \eta} \in W_{0}^{2}(\Omega) $, 则(2.1)-(2.3)在$ Q_{T}=\Omega \times(0, T) $上存在弱解$ \omega_{\eta}=\omega_{\eta}(x, t) $, 且$ \omega_{\eta} $满足下列条件:

$ {\rm(i)} $ $ \omega_{\eta} \in L^{\infty}\left(0, T ; W_{0}^{2}(\Omega)\right) \cap C\left([0, T] ; W^{1, p}(\Omega)\right) $, 且$ \omega_{\eta t} \in L^{2}\left(Q_{T}\right) $;

$ {\rm(ii)} $对于任意的$ \varphi \in C_{0}^{\infty}\left(Q_{T}\right) $, 有

$ \iint_{Q_{T}} \omega_{\eta} \varphi \mathrm{d} x \mathrm{d} t+\iint_{Q_{T}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta} \Delta \varphi \mathrm{d} x \mathrm{d} t+\iint_{Q_{T}} \sum\limits_{i=1}^{N} g_{i}\left(\omega_{\eta}\right) \varphi_{x_{i}} \mathrm{d} x \mathrm{d} t=0. $

  下面将采用Galerkin方法给出弱解的存在性. 令$ \left\{\phi_{i}(x)\right\}_{i=1}^{\infty} $$ W_{0}^{2}(\Omega) $中的标准正交基底, 构造问题(2.1)–(2.3)的近似解为

$ \omega_{\eta}^{n}(x, t)=\sum\limits_{i=1}^{n} c_{i}^{n}(t) \phi_{i}(x), n=1,2, \cdots $

使其满足如下问题:

$ \begin{align} & \left(\omega_{\eta t}^{n}, \phi_{i}\right)+\left(\rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}^{n}\right|^{p-2} \Delta \omega_{\eta}^{n}, \Delta \phi_{i}\right)+\left(\sum\limits_{i=1}^{N} g_{i}\left(\omega_{\eta}^{n}\right),\left(\phi_{i}\right)_{x_{i}}\right)=0, \end{align} $ (2.4)
$ \begin{align} & \omega_{\eta}^{n}(x, 0)=\sum\limits_{i=1}^{n} d_{i}^{n}(t) \phi_{i}(x) \rightarrow \omega_{0 \eta} \text { 于 } W_{0}^{2}(\Omega),\text { 当 } n \rightarrow +\infty \text { 时. } \end{align} $ (2.5)

问题(2.4)-(2.5)解的局部存在性可以由常微分方程理论中的Peano定理来保证, 为证明解的整体性, 需要对近似解做相应的能量估计. 为此, 将(2.4)的左右两端同时乘以$ c_{i}^{n}(t) $, 对$ i $从1到$ n $求和得

$ \begin{aligned} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d} t}\left\|\omega_{\eta}^{n}\right\|_{L^{2}(\Omega)}^{2}+\int_{\Omega} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}^{n}\right|^{p} \mathrm{ d} x = & -\int_{\Omega} \sum\limits_{i=1}^{N} g_{i}\left(\omega_{\eta}^{n}\right) \omega_{\eta x_{i}}^{n} \mathrm{ d} x \\ = & -\sum\limits_{i=1}^{N} \int_{\Omega} \frac{\partial}{\partial x_{i}}\left(\int_{0}^{\omega_{\eta}^{n}} g_{i}(s) \mathrm{d} s\right) \mathrm{d} x \\ = & 0. \end{aligned} $

对其在$ (0, T) $上积分, 得

$ \left\|\omega_{\eta}^{n}(\cdot, T)\right\|_{L^{2}(\Omega)}^{2}+2 \iint_{Q_{T}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}^{n}\right|^{p} \mathrm{d} x \mathrm{d} t \leq\left\|\omega_{0 \eta}^{n}(x)\right\|_{L^{2}(\Omega)}^{2}. $

由此可知

$ \begin{align} \iint_{Q_{T}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}^{n}\right|^{p} \mathrm{d} x \mathrm{d} t \leq C . \end{align} $ (2.6)

接下来, 将(2.4)的左右两端同时乘以$ \frac{\mathrm{d}}{\mathrm{d} t} c_{i}^{n}(t) $, 对$ i $从1到$ n $求和, 然后对其在$ (0, t) $上积分, 得

$ \begin{align} \iint_{Q_{t}}\left(\omega_{\eta \tau}^{n}\right)^{2} \mathrm{d} x \mathrm{d} \tau+\iint_{Q_{t}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}^{n}\right|^{p-2} \Delta \omega_{\eta}^{n} \Delta \omega_{\eta \tau}^{n} \mathrm{d} x \mathrm{d} \tau +\iint_{Q_{t}} \sum\limits_{i=1}^{N} \frac{\partial g_{i}\left(\omega_{\eta}^{n}\right)}{\partial x_{i}} \omega_{\eta \tau}^{n} \mathrm{d} x \mathrm{d} \tau=0, \end{align} $ (2.7)

其中

$ \begin{align} \iint_{Q_{t}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}^{n}\right|^{p-2} \Delta \omega_{\eta}^{n} \Delta \omega_{\eta \tau}^{n} \mathrm{d} x \mathrm{d} \tau =& \frac{1}{2} \iint_{Q_{t}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}^{n}\right|^{p-2} \frac{\mathrm{d}}{\mathrm{d} \tau}\left(\Delta \omega_{\eta}^{n}\right)^{2} \mathrm{d} x \mathrm{d} \tau \\ =& \frac{1}{2} \iint_{Q_{t}} \rho_{\eta}^{\alpha} \frac{\mathrm{d}}{\mathrm{d} \tau}\left(\int_{0}^{\left|\Delta \omega_{\eta}^{n}\right|^{2}} s^{\frac{p-2}{2}} \mathrm{d} s\right) \mathrm{d} x \mathrm{d} \tau \\ =& \frac{1}{p} \int_{0}^{t} \frac{\mathrm{d}}{\mathrm{d} \tau} \int_{\Omega} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}^{n}\right|^{p} \mathrm{d} x \mathrm{d} \tau \\ =&\frac{1}{p}\left\|\rho_{\eta}^{\frac{\alpha}{p}} \Delta \omega_{\eta}^{n}(\cdot, t)\right\|_{L^{p}(\Omega)}^{p}-\frac{1}{p}\left\|\rho_{\eta}^{\frac{\alpha}{p}} \Delta \omega_{\eta}^{n}(\cdot, 0)\right\|_{L^{p}(\Omega)}^{p}. \end{align} $ (2.8)

$ g_i $的假定条件可得

$ \begin{align} \iint_{Q_{t}} \sum\limits_{i=1}^{N} \frac{\partial g_{i}\left(\omega_{\eta}^{n}\right)}{\partial x_{i}} \omega_{\eta t}^{n} \mathrm{d} x \mathrm{d} \tau \leq & \sum\limits_{i=1}^{N} \iint_{Q_{t}}\left|g^{\prime}\left(\omega_{\eta}^{n}\right)\right| \omega_{\eta x_{i}}^{n}|| \omega_{\eta t}^{n} \mid \mathrm{d} x \mathrm{d} \tau \\ \leq & \frac{1}{2} \iint_{Q_{t}}\left(\omega_{\eta \tau}^{n}\right)^{2} \mathrm{d} x \mathrm{d} \tau+C \iint_{Q_{t}}\left|\nabla \omega_{\eta}^{n}\right|^{2} \mathrm{d} x \mathrm{d} \tau. \end{align} $ (2.9)

由Sobolev嵌入定理(见文献[9])可得$ \left\|\omega_{\eta}^{n}\right\|_{W^{1, p}(\Omega)} \leq C\left\|\omega_{\eta}^{n}\right\|_{W^{2, p}(\Omega)}. $因此, 结合(2.6)可以得到

$ \begin{align} \iint_{Q_{t}}\left|\nabla \omega_{\eta}^{n}\right|^{2} \mathrm{d} x \mathrm{d} \tau \leq C. \end{align} $ (2.10)

结合(2.7)–(2.10)可以得到

$ \frac{1}{2} \iint_{Q_{t}}\left(\omega_{\eta \tau}^{n}\right)^{2} \mathrm{d} x \mathrm{d} \tau+\frac{1}{p}\left\|\rho_{\eta}^{\frac{\alpha}{p}} \Delta \omega_{\eta}^{n}(\cdot, t)\right\|_{L^{p}(\Omega)}^{p} \leq \frac{1}{p}\left\|\rho_{\eta}^{\frac{\alpha}{p}} \Delta \omega_{\eta}^{n}(\cdot, 0)\right\|_{L^{p}(\Omega)}^{p}+C, $

然后可以得到

$ \begin{align} \frac{1}{2} \iint_{Q_{T}}\left(\omega_{\eta t}^{n}\right)^{2} \mathrm{ d} x \mathrm{d} t+\sup _{t \in[0, T]} \frac{1}{p}\left\|\rho_{\eta}^{\frac{\alpha}{p}} \Delta \omega_{\eta}^{n}(\cdot, t)\right\|_{L^{p}(\Omega)}^{p} \leq C. \end{align} $ (2.11)

进而有

$ \begin{align} & \left\|\omega_{\eta t}^{n}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq C, \end{align} $ (2.12)
$ \begin{align} & \left\|\omega_{\eta}^{n}\right\|_{L^{\infty}\left(0, T ; W_{0}^{2}(\Omega)\right)} \leq C. \end{align} $ (2.13)

此外, 结合假定条件和(2.13)可以得到

$ \begin{align} \left\|g_{i}\left(\omega_{\eta}^{n}\right)\right\|_{L^{\infty}\left(0, T ; L^{p}(\Omega)\right)} \leq C. \end{align} $ (2.14)

利用(2.12)-(2.13), Aubin-Lions紧致性定理(见[10]), 以及经典的单调算子理论(见[11], 这里不再阐述细节)可知存在函数$ \omega_{\eta} $$ \left\{\omega_{\eta}^{n}\right\}_{n=1}^{\infty} $的一个子列(仍记为其本身)使得

$ \begin{align} & \omega_{\eta t}^{n} \rightharpoonup \omega_{\eta t} \text { 于 } L^{2}\left(0, T ; L^{2}(\Omega)\right), \end{align} $ (2.15)
$ \begin{align} & \omega_{\eta}^{n} \stackrel{*}{\rightharpoonup} \omega_{\eta} \text { 于 } L^{\infty}\left(0, T ; W_{0}^{2}(\Omega)\right), \end{align} $ (2.16)
$ \begin{align} & \omega_{\eta}^{n} \rightarrow \omega_{\eta} \text { 于 } L^{2}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \end{align} $ (2.17)
$ \begin{align} & \omega_{\eta}^{n} \rightarrow \omega_{\eta} \text { 几乎处处于 } \Omega \times(0, T), \end{align} $ (2.18)
$ \begin{align} & \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}^{n}\right|^{p-2} \Delta \omega_{\eta}^{n}\rightharpoonup \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta} \text { 于 } L^{\frac{p}{p-1}}(Q_T), \end{align} $ (2.19)
$ \begin{align} & g_{i}\left(\omega_{\eta}^{n}\right) \rightarrow g_{i}\left(\omega_{\eta}\right) \text { 几乎处处于 } \Omega \times(0, T), \end{align} $ (2.20)
$ \begin{align} & g_{i}\left(\omega_{\eta}^{n}\right) \stackrel{*}{\rightharpoonup} g_{i}\left(\omega_{\eta}\right) \text { 于 } L^{\infty}\left(0, T ; L^{p}(\Omega)\right), \end{align} $ (2.21)

其中(2.17)成立意味着(2.18)成立, 结合$ g_{i}(\omega)\in C^{1}\left(Q_{T}\right) $和(2.18)可以得到(2.20), 结合(2.14) 和(2.20)可以得到(2.21). (2.4)两侧关于$ t $$ (0, T) $上积分可得

$ \begin{align} \iint_{Q_{T}} \omega_{\eta t}^{n} \varphi \mathrm{d} x \mathrm{d} t +\iint_{Q_{T}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}^{n}\right|^{p-2} \Delta \omega_{\eta}^{n} \Delta \varphi \mathrm{d} x \mathrm{d} t + \iint_{Q_{T}} \sum\limits_{i=1}^{N} g_{i}\left(\omega_{\eta}^{n}\right) \varphi_{x_{i}} \mathrm{d} x \mathrm{d} t=0. \end{align} $ (2.22)

结合(2.15)–(2.21), 在(2.22)中令$ n \rightarrow +\infty $可得

$ \iint_{Q_{T}} \omega_{\eta t} \varphi \mathrm{d} x \mathrm{d} t +\iint_{Q_{T}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta} \Delta \varphi \mathrm{d} x \mathrm{d} t +\iint_{Q_{T}} \sum\limits_{i=1}^{N} g_{i}\left(\omega_{\eta}\right) \varphi_{x_{i}} \mathrm{d} x \mathrm{d} t=0, $

其中$ \varphi \in C_{0}^{\infty}\left(Q_{T}\right) $. 此时则得出弱解的存在性. 此外, 结合$ \omega_{\eta} \in L^{\infty}\left(0, T ; W_{0}^{2}(\Omega)\right) $$ \omega_{\eta t} \in L^{2}\left(0, T ; L^{2}(\Omega)\right) $, 应用Aubin-Lions紧致性定理(见[10])可得$ \omega_{\eta} \in C\left([0, T] ; W^{1, p}(\Omega)\right) $.

3 边界退化情形

在本节中, 用$ \omega_{\eta} $来表示初边值问题(2.1)-(2.3)的解. 本节的主要内容是建立不依赖于$ \eta $的一致估计以及讨论$ \eta \rightarrow 0 $的极限. 一致估计的结果由下面的引理给出.

引理3.1   逼近解$ \omega_{\eta} $具有如下估计:

$ \begin{align} & \left\|\rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p}\right\|_{L^{1}\left(Q_{T}\right)} \leq C, \end{align} $ (3.1)
$ \begin{align} & \left\|\rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta}\right\|_{L^{\frac{p}{p-1}}\left(Q_{T}\right)} \leq C, \end{align} $ (3.2)
$ \begin{align} & \left\|\omega_{\eta}\right\|_{L^{\infty}\left(0, T ; W^{2,\beta}(\Omega)\right)} \leq C, \end{align} $ (3.3)
$ \begin{align} & \left\|\omega_{\eta t}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq C, \end{align} $ (3.4)
$ \begin{align} & \left\|g_{i}\left(\omega_{\eta}\right)\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} \leq C, \end{align} $ (3.5)

其中$ \beta>2 $是一个常数, $ C $不依赖于$ \eta $.

  令$ \xi_{[0, t]}(t) $为区间$ [0, t] $上的特征函数, 对于任意的$ t \in(0, T] $, 在命题2.1-(ii)中取$ \varphi=\omega_{\eta} \xi_{[0, t]}(t) $. 于是有

$ \begin{aligned} & \frac{1}{2}\left\|\omega_{\eta}(\cdot, t)\right\|_{L^{2}(\Omega)}^{2}-\frac{1}{2}\left\|\omega_{\eta}(\cdot, 0)\right\|_{L^{2}(\Omega)}^{2}+\iint_{Q_{t}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p} \mathrm{d} x \mathrm{d} \tau \\ = & -\iint_{Q_{t}} \sum\limits_{i=1}^{N} g_{i}\left(\omega_{\eta}^{n}\right) \omega_{\eta x_{i}}^{n} \mathrm{d} x \mathrm{d} t \\ = & -\sum\limits_{i=1}^{N} \iint_{Q_{t}} \frac{\partial}{\partial x_{i}}\left(\int_{0}^{\omega_{\eta}^{n}} g_{i}(s) \mathrm{d} s\right) \mathrm{d} x \mathrm{d} t \\ = & 0. \end{aligned} $

进而可得

$ \begin{align} \sup _{t \in[0, T]}\left\|\omega_{\eta}(\cdot, t)\right\|_{L^{2}(\Omega)}^{2}+2 \iint_{Q_{T}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p} \mathrm{d} x \mathrm{d} t \leq\left\|\omega_{0 \eta}(x)\right\|_{L^{2}(\Omega)}^{2}. \end{align} $ (3.6)

由(3.6)可得估计(3.1)成立. 然后再由$ \rho_{\eta} $的有界性, 可以得到估计(3.2)也成立. 此外, 结合$ g_i $的条件和(3.6)可得$ \int_{\Omega}\left|g_{i}(\omega_{\eta})\right|^{2} \mathrm{d} x \leq C \int_{\Omega}\left| \omega_{\eta}\right|^{2} \mathrm{d} x \leq C $, 即可得到估计(3.5). 为得到(3.3)和(3.4), 不妨设命题2.1-(ii)中的检验函数为$ \varphi=\omega_{\eta t}\xi_{[0, t]}(t) $, 再对等式右侧进行放大可得

$ \begin{align} & \frac{1}{2} \iint_{Q_{T}}\left(\omega_{\eta t}\right)^{2} \mathrm{d} x \mathrm{d} t+\sup _{t \in[0, T]}\frac{1}{p}\left\|\rho_{\eta}^{\frac{\alpha}{p}} \Delta \omega_{\eta}(\cdot, t)\right\|_{L^{p}(\Omega)}^{p} \\ \leq& \frac{1}{p}\left\|\rho_{\eta}^{\frac{\alpha}{p}} \Delta \omega_{0 \eta}(x)\right\|_{L^{p}(\Omega)}^{p}+C \iint_{Q_{T}}\left|\nabla \omega_{\eta}\right|^{2} \mathrm{d} x \mathrm{d} t . \end{align} $ (3.7)

此外, 由$ p>2 $, $ \alpha<\frac{p-2}{2} $, 可得$ \frac{\alpha}{p-2}<\frac{1}{2} $. 因此, 存在一个常数$ \alpha_{0} \in\left(\frac{\alpha}{p-2}, \frac{1}{2}\right) $, 这意味着$ p-\frac{\alpha}{\alpha_{0}}>2 $. 由此可得, 存在一个常数$ \beta $满足$ 2<\beta<\min \left\{p-\frac{\alpha}{\alpha_{0}}, \frac{1}{\alpha_{0}}\right\} $. 所以有$ \alpha_{0} \beta<1, \frac{\alpha}{\alpha_{0}}+\beta<p $. 利用上述这些指标关系, 可得

$ \begin{align} \iint_{Q_{T}}\left|\Delta \omega_{\eta}\right|^{\beta} \mathrm{d} x \mathrm{d} t \leq &\notag \iint_{\left\{\rho_{n}^{\alpha_{0}}\left|\Delta \omega_{\eta}\right| \leq 1\right\}}\left|\Delta \omega_{\eta}\right|^{\beta} \mathrm{d} x \mathrm{d} t+\iint_{\left\{\rho_{\eta}^{\alpha_{0}}\left|\Delta \omega_{\eta}\right|>1\right\}}\left|\Delta \omega_{\eta}\right|^{\beta} \mathrm{d} x \mathrm{d} t \\ \leq & \iint_{Q_{T}} \rho_{\eta}^{-\alpha_{0} \beta} \mathrm{d} x \mathrm{d} t+\iint_{Q_{T}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{\frac{\alpha}{\alpha_{0}}+\beta} \mathrm{d} x \mathrm{d} t \\ \leq & \iint_{Q_{T}} \rho_{\eta}^{-\alpha_{0} \beta} \mathrm{d} x \mathrm{d} t+C\iint_{Q_{T}} \rho_{\eta}^{\alpha}\left(1+\left|\Delta \omega_{\eta}\right|^{\mathrm{p}}\right) \mathrm{d} x \mathrm{d} t \\ \leq & C \text {, } \end{align} $ (3.8)

其中$ \alpha_{0} \beta<1 $确保了$ \rho^{-\alpha_{0} \beta} $$ \Omega $上的可积性, 即$ \int_{\Omega} \rho^{-d} \mathrm{ d} x<C $(对于$ d<1 $). 再结合(3.6), 即可得到(3.8)最后一个不等号成立. 由Sobolev嵌入定理(见文献[9])可得

$ \begin{align} \left\|\omega_{\eta}(\cdot, t)\right\|_{W^{1,p}(\Omega)} \leq C\left\|\omega_{\eta}(\cdot, t)\right\|_{W^{2, \beta}(\Omega)}. \end{align} $ (3.9)

结合(3.7)-(3.9)可以得到估计(3.4)和

$ \begin{align} \sup _{t \in[0, T]}\frac{1}{p}\left\|\rho_{\eta}^{\frac{\alpha}{p}} \Delta \omega_{\eta}(\cdot, t)\right\|_{L^{p}(\Omega)}^{p} \leq C. \end{align} $ (3.10)

再经过一个类似于(3.8)的过程, 结合(3.10)可得

$ \begin{align} \int_{\Omega}\left|\Delta \omega_{\eta}(\cdot, t) \right|^{\beta}\mathrm{d} x \leq &\notag \int_{\left\{\rho_{n}^{\alpha_{0}}\left|\Delta \omega_{\eta}(\cdot, t) \right| \leq 1\right\}}\left|\Delta \omega_{\eta}(\cdot, t) \right|^{\beta} \mathrm{d} x +\int_{\left\{\rho_{\eta}^{\alpha_{0}}\left|\Delta \omega_{\eta}(\cdot, t)\right|>1\right\}}\left|\Delta \omega_{\eta}(\cdot, t) \right|^{\beta} \mathrm{d} x \\ \leq & \int_{\Omega} \rho_{\eta}^{-\alpha_{0} \beta} \mathrm{d} x +\int_{\Omega} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}(\cdot, t)\right|^{\frac{\alpha}{\alpha_{0}}+\beta} \mathrm{d} x \\ \leq & \int_{\Omega} \rho_{\eta}^{-\alpha_{0} \beta} \mathrm{d} x +C\int_{\Omega} \rho_{\eta}^{\alpha}\left(1+\left|\Delta \omega_{\eta}(\cdot, t)\right|^{\mathrm{p}}\right) \mathrm{d} x \\ \leq & C , \end{align} $ (3.11)

由(3.11)可得估计(3.3)成立.

下面证明本文的定理, 即证明解在退化情形下的存在性.

  结合一致估计(3.1)–(3.5), 应用Sobolev空间的的弱紧性, Aubin-Lions紧致性定理(见[10])等结论可以知道存在函数$ \omega, \gamma $$ \left\{\omega_{\eta}\right\} $的一个子列(仍记为其本身)使得当$ \eta \rightarrow 0 $时有

$ \begin{align} & \omega_{\eta t}\rightharpoonup \omega_{t} \text { 于 } L^{2}\left(Q_{T}\right), \end{align} $ (3.12)
$ \begin{align} & \omega_{\eta} \stackrel{*}{\rightharpoonup} \omega \text { 于 } L^{\infty}\left(0, T ; W^{2,\beta}(\Omega)\right), \end{align} $ (3.13)
$ \begin{align} & \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta}\rightharpoonup \gamma \text { 于 } L^{\frac{p}{p-1}}\left(Q_{T}\right), \end{align} $ (3.14)
$ \begin{align} & \Delta\omega_{\eta} \rightharpoonup \Delta\omega \text { 于 } L^{p}\left(0, T ; L_{loc}^{p}(\Omega)\right), \end{align} $ (3.15)
$ \begin{align} & \omega_{\eta} \rightarrow \omega \text { 于 } L^{p}\left(0, T ; W^{1,p}(\Omega)\right), \end{align} $ (3.16)
$ \begin{align} & \omega_{\eta} \rightarrow \omega \text { 几乎处处于 } \Omega \times(0, T), \end{align} $ (3.17)
$ \begin{align} & g_{i}\left(\omega_{\eta}\right) \rightarrow g_{i}(\omega) \text { 几乎处处于 } \Omega \times(0, T), \end{align} $ (3.19)
$ \begin{align} & g_{i}\left(\omega_{\eta}\right) \stackrel{*}{\rightharpoonup} g_{i}(\omega) \text { 于 } L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \end{align} $ (3.20)

其中(3.16)成立意味着(3.17)成立, 结合$ g_{i}(\omega) \in C^{1}\left(Q_{T}\right) $和(3.17)可以得到(3.19), 结合(3.5)和(3.19)可以得到(3.20).

在命题2.1–(ii)中令$ \eta \rightarrow 0^{+} $可得

$ \begin{align} \iint_{Q_{T}} \omega_{t} \varphi \mathrm{d} x \mathrm{d} t+\iint_{Q_{T}} \gamma \Delta \varphi \mathrm{d} x \mathrm{d} t+\iint_{Q_{T}} \sum\limits_{i=1}^{N} g_{i}(\omega) \varphi_{x_{i}} \mathrm{d} x \mathrm{d} t=0, \end{align} $ (3.21)

对于任意的$ \varphi \in C_{0}^{\infty}\left(Q_{T}\right) $都成立. 为了得到问题(1.1)-(1.3)弱解的存在性, 还需证明

$ \begin{align} \iint_{Q_{T}} \gamma \Delta \varphi \mathrm{d} x \mathrm{d} t=\iint_{Q_{T}} \rho^{\alpha}|\Delta \omega|^{p-2} \Delta \omega \Delta \varphi \mathrm{d} x \mathrm{d} t. \end{align} $ (3.22)

下面给出其证明. 对任意的$ \varphi \in C_{0}^{\infty}\left(Q_{T}\right) $, 存在一个足够小的正常数$ a $, 使得$ \operatorname{supp} \varphi $, $ \operatorname{supp} \Delta \varphi \subseteq \Omega_{a} \times(a, T-a) $, 其中$ \Omega_{a}=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>a\} $. 因此, 命题2.1-(ii)和(3.21)局部成立. 即

$ \begin{align} &\iint_{Q_{a T}} \omega_{\eta t} \varphi \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta} \Delta \varphi \mathrm{d} x \mathrm{d} t +\iint_{Q_{a T}} \sum\limits_{i=1}^{N} g_{i}\left(\omega_{\eta}\right) \varphi_{x_{i}} \mathrm{d} x \mathrm{d} t=0, \end{align} $ (3.23)
$ \begin{align} &\iint_{Q_{a T}} \omega_{t} \varphi \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \gamma \Delta \varphi \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \sum\limits_{i=1}^{N} g_{i}(\omega) \varphi_{x_{i}} \mathrm{d} x \mathrm{d} t=0, \end{align} $ (3.24)

其中$ Q_{a T}=\Omega_{a} \times(a, T-a) $.

$ 0 \leq \psi \in C_{0}^{\infty}\left(Q_{T}\right) $, 令$ \psi=1 $, 当$ (x, t) \in \operatorname{supp} \varphi $时. 首先, 选取$ \varphi=\psi \omega_{\eta} $作为(3.23) 中的检验函数. 可以得到

$ \begin{align} & -\frac{1}{2} \iint_{Q_{a T}} \omega_{\eta}^{2} \frac{\mathrm{d} \psi}{\mathrm{d} t} \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \psi \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p} \mathrm{d} x \mathrm{d} t +\notag\iint_{Q_{a T}} \omega_{\eta} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta} \Delta \psi \mathrm{d} x \mathrm{d} t \\ &+ \iint_{Q_{a T}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta}\left(\sum\limits_{i=1}^{N} \omega_{\eta x_{i}} \psi_{x_{i}}\right) \mathrm{d} x \mathrm{d} t +\notag\iint_{Q_{a T}} \sum\limits_{i=1}^{N} g_{i}\left(\omega_{\eta}\right)\left(\omega_{\eta x_{i}} \psi+\omega_{\eta} \psi_{x_{i}}\right) \mathrm{d} x \mathrm{d} t \\ =&0 . \end{align} $ (3.25)

同样地, 选取$ \varphi=\psi \omega $作为(3.24)中的检验函数. 可以得到

$ \begin{align} & -\frac{1}{2} \iint_{Q_{a T}} \omega^{2} \frac{\mathrm{d} \psi}{\mathrm{d} t} \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \gamma \psi \Delta \omega \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \gamma \omega \Delta \psi \mathrm{d} x \mathrm{d} t \\ & +\iint_{Q_{a T}} \gamma \sum\limits_{i=1}^{N} \omega_{x_{i}} \psi_{x_{i}} \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \sum\limits_{i=1}^{N} g_{i}(\omega)\left(\omega_{x_{i}} \psi+\omega \psi_{x_{i}}\right) \mathrm{d} x \mathrm{d} t \\ =&0 . \end{align} $ (3.26)

又因为当$ k>1 $时, 对于任意的$ m, n \in R^{N}(N \geq 1) $, 都有

$ \begin{align} \left(|m|^{k-2} m-|n|^{k-2} n\right)(m-n) \geq 0. \end{align} $ (3.27)

在(3.27)中, 不妨选取$ m=\Delta \omega_{\eta}, n=\Delta(\omega-\lambda \varphi) $, 其中$ \lambda>0 $. 然后(3.27)两端在$ Q_{a T} $上积分, 结合(3.25)可以得到

$ \begin{align} & -\frac{1}{2} \iint_{Q_{a T}} \omega_{\eta}^{2} \frac{\mathrm{d} \psi}{\mathrm{d} t} \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \omega_{\eta} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta} \Delta \psi \mathrm{d} x \mathrm{d} t \\ &+\iint_{Q_{a T}} \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta}\left(\sum\limits_{i=1}^{N} \omega_{\eta x_{i}} \psi_{x_{i}}\right) \mathrm{d} x \mathrm{d} t +\notag\iint_{Q_{a T}} \sum\limits_{i=1}^{N} g_{i}\left(\omega_{\eta}\right)\left(\omega_{\eta x_{i}} \psi+\omega_{\eta} \psi_{x_{i}}\right) \mathrm{d} x \mathrm{d} t \\ &-\iint_{Q_{a T}} \psi \rho_{\eta}^{\alpha}|\Delta(\omega-\lambda \varphi)|^{p} \mathrm{d} x \mathrm{d} t +\notag\iint_{Q_{a T}} \psi \rho_{\eta}^{\alpha}\left|\Delta \omega_{\eta}\right|^{p-2} \Delta \omega_{\eta} \Delta(\omega-\lambda \varphi) \mathrm{d} x \mathrm{d} t \\ &+\iint_{Q_{a T}} \psi \rho_{\eta}^{\alpha}|\Delta(\omega-\lambda \varphi)|^{p-2} \Delta(\omega-\lambda \varphi) \Delta \omega_{\eta} \mathrm{d} x \mathrm{d} t \\ \leq& 0. \end{align} $ (3.28)

在(3.28)中, 令$ \eta \rightarrow 0 $可以得到

$ \begin{aligned} & -\frac{1}{2} \iint_{Q_{a T}} \omega^{2} \frac{\mathrm{d} \psi}{\mathrm{d} t} \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \gamma \omega \Delta \psi \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \gamma \sum\limits_{i=1}^{N} \omega_{x_{i}} \psi_{x_{i}} \mathrm{d} x \mathrm{d} t \\ & +\iint_{Q_{a T}} \sum\limits_{i=1}^{N} g_{i}(\omega)(\omega_{x_{i}} \psi+\omega \psi_{x_{i}}) \mathrm{d} x \mathrm{d} t-\iint_{Q_{a T}} \psi \rho^{\alpha}|\Delta(\omega-\lambda \varphi)|^{p} \mathrm{d} x \mathrm{d} t \\ & +\iint_{Q_{a T}} \psi \gamma \Delta(\omega-\lambda \varphi) \mathrm{d} x \mathrm{d} t+\iint_{Q_{a T}} \psi \rho^{\alpha}|\Delta(\omega-\lambda \varphi)|^{p-2} \Delta(\omega-\lambda \varphi) \Delta \omega \mathrm{d} x \mathrm{d} t \\ \leq& 0. \end{aligned} $

结合(3.26)可得

$ \begin{align} \iint_{Q_{a T}} \psi\left(\rho^{\alpha}|\Delta(\omega-\lambda \varphi)|^{p-2} \Delta(\omega-\lambda \varphi)-\gamma\right) \Delta \varphi \mathrm{d} x \mathrm{d} t \leq 0. \end{align} $ (3.29)

在(3.29)中, 令$ \lambda \rightarrow 0 $可得

$ \begin{aligned} \iint_{Q_{T}} \psi\left(\rho^{\alpha}|\Delta \omega|^{p-2} \Delta \omega-\gamma\right) \Delta \varphi \mathrm{d} x \mathrm{d} t = \iint_{Q_{a T}} \psi\left(\rho^{\alpha}|\Delta \omega|^{p-2} \Delta \omega-\gamma\right) \Delta \varphi \mathrm{d} x \mathrm{d} t \leq 0. \end{aligned} $

如果取$ n=\Delta(\omega-\lambda \varphi) $中的$ \lambda<0 $, 通过类似的过程可以得到

$ \iint_{Q_{T}} \psi\left(\rho^{\alpha}|\Delta \omega|^{p-2} \Delta \omega-\gamma\right) \Delta \varphi \mathrm{d} x \mathrm{d} t \geq 0. $

从而$ \iint_{Q_{T}} \psi\left(\rho^{\alpha}|\Delta \omega|^{p-2} \Delta \omega-\gamma\right) \Delta \varphi \mathrm{d} x \mathrm{d} t=0. $$ \varphi $$ \psi $的任意性, 可得(3.22)成立. 从而有$ \iint_{Q_{T}} \omega_{t} \varphi \mathrm{d} x \mathrm{d} t+\iint_{Q_{T}} \rho^{\alpha}|\Delta \omega|^{p-2} \Delta \omega \Delta \varphi \mathrm{d} x \mathrm{d} t+\iint_{Q_{T}} \sum\limits_{i=1}^{N} g_{i}(\omega) \varphi_{x_{i}} \mathrm{d} x \mathrm{d} t=0, $对于任意的$ \varphi \in C_{0}^{\infty}\left(Q_{T}\right) $都成立. 此外, 由(3.6)可知$ \omega \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) $, 结合$ \omega \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) $$ \omega_{t} \in L^{2}\left(0, T ; L^{2}(\Omega)\right) $, 应用Aubin-Lions紧致性定理(见文献[10])可以得到$ \omega \in C\left(0, T ; L^{2}(\Omega)\right) $. 定理证明完毕.

参考文献
[1] Liu C. A fourth order parabolic equation with nonlinear principal part[J]. Nonlinear Anal: Theory Methods Appl., 2008, 68(2): 393–401. DOI:10.1016/j.na.2006.11.005
[2] Liang B. Existence and asymptotic behavior of solutions to a thin film equation with Dirichlet boundary[J]. Nonlinear Anal: Real World Appl., 2011, 12(3): 1828–1840. DOI:10.1016/j.nonrwa.2010.11.014
[3] Liang B, Ji R, Zhu Y. Positive solutions to a nonlinear fourth-order partial differential equation[J]. Nonlinear Anal: Real World Appl., 2012, 13(6): 2853–2862. DOI:10.1016/j.nonrwa.2012.04.013
[4] Xu M, Zhou S. Existence and uniqueness of weak solutions for a generalized thin film equation[J]. Nonlinear Anal: Theory, Methods Appl., 2005, 60(4): 755–774. DOI:10.1016/j.na.2004.01.013
[5] Guo B, Gao W. Study of weak solutions for a fourth-order parabolic equation with variable exponent of nonlinearity[J]. Ztschrift Fr Angewandte Mathematik Und Physik, 2011, 62(5): 909–926. DOI:10.1007/s00033-011-0148-x
[6] Zhan H. The solution of convection-diffusion equation[J]. Chin. Ann. Math, 2013, 34A(2): 235–256.
[7] Zhan H, Yuan H. Diffusion convection equation with boundary degeneracy[J]. Jilin Univ. Sci. Ed., 2015, 53(3): 353–358.
[8] Zhan H. The stability of the solutions of an equation related to the p-Laplacian with degeneracy on the boundary[J]. Bound. Value Probl., 2016, 178.
[9] Adams R A. Sobolev spaces[M]. New York: Academic Press, 1975.
[10] Simon J. Compact sets in the space Lp(0, T; B)[J]. Annali Di Matematica Pura Ed Applicata, 1986, 146(1): 65–96. DOI:10.1007/BF01762360
[11] Wang Y. Nonlinear partial differential equations[M]. Nanjing: Southeast University Press, 1992.