数学杂志  2024, Vol. 44 Issue (1): 84-94   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
徐红梅
肖连慧
二维线性化Navier-Stokes-Poisson方程解的逐点估计
徐红梅, 肖连慧    
河海大学数学学院, 江苏 南京 211100
摘要:本文研究了二维空间线性化的等熵可压缩Navier-Stokes-Poisson方程柯西问题.通过把方程组转变成关于单个函数的方程, 求解出各个函数, 得到方程组的格林函数.利用对格林函数的详细分析, 获得了方程组解的逐点估计.结果显示方程组中电流密度以热核的速度衰减, 动量密度衰减慢得多, 且其L2范数不衰减.
关键词Navier-Stokes-Poisson方程    二维空间    格林函数    逐点估计    
POINTWISE ESTIMATE OF SOLUTION TO LINEARIZED NAVIER-STOKES-POISSON SYSTEM IN TWO SPACE DIMENSION
XU Hong-mei, XIAO Lian-hui    
school of mathematics, Hohai university, Nanjing 211100, China
Abstract: Cauchy problem of linearized Navier-Stokes-Poisson system in two dimensional space is considered. Through changing the system into several equations for single function, we solved the function and got the Green function for the system. Using detailed analysis of the Green function, we got pointwise estimation of the solution. The result shows electron fluid density decays as fast as heat kernel, but momentum decays slower, even though its L2 norm does not decay.
Keywords: Navier-Stokes-Poisson system     two-dimensional space     Green function     pointwise estimate    
1 引言

本文考虑二维空间线性化的等熵可压缩Navier-Stokes-Poisson方程, 后面简称为N-S-P方程柯西问题解的逐点估计. 二维N-S-P方程形式为

$ \begin{equation} \begin{cases} \rho_t+divm=0, \\ m_{1t}+\partial_{x_1}\left(\frac{m_1^2}{\rho}\right)+\partial_{x_2}\left(\frac{m_1m_2}{\rho}\right)+\partial_{x_1}P\left(\rho\right)=\rho\partial_{x_1}\phi+\mu_1\Delta\frac{m_1}{\rho}+\mu_2\partial_{x_1}div\frac{m}{\rho}, \\ m_{2t}+\partial_{x_1}\left(\frac{m_1m_2}{\rho}\right)+\partial_{x_2}\left(\frac{m_2^2}{\rho}\right)+\partial_{x_2}P\left(\rho\right)=\rho\partial_{x_2}\phi+\mu_1\Delta\frac{m_2}{\rho}+\mu_2\partial_{x_2}div\frac{m}{\rho}, \\ \Delta\phi=\rho-\overline{\rho}, \phi\to\; 0 \;当 \sqrt{x_1^2+x_2^2}\to+\infty . \end{cases} \end{equation} $ (1.1)

此处$ x=\left(x_1, x_2\right)\in\mathfrak{R}^2 $是空间变量, $ t > 0 $是时间变量, $ div $是散度算子, $ \Delta $是通常的拉普拉斯算子, 即$ \Delta=\partial_ {x_1}^2+\partial_{x_2}^2 $. $ \rho\left(x, t\right) $, $ m\left(x, t\right)=\left(m_1, m_2\right) $, $ \phi\left(x, t\right) $$ P\left(\rho\right) $分别代表电子流体密度, 动量密度, 静电势和压力. 粘性系数$ \mu_1 $, $ \mu_2 $均大于零, $ \overline{\rho} > 0 $表示正电荷背景离子的规定密度. (1.1)是一个描述等离子体动力学行为的涉及耗散的简单模型, 它是在等熵Navier-Stokes方程基础上加上静电势$ \phi $的作用而得的方程.等熵Navier-Stokes方程是双曲-抛物混合方程. Kawashima[1]研究了一般的双曲-抛物系统, 得到了解的整体存在性和$ L^2 $衰减估计, Liu和Zeng[2]得到了一维一般双曲-抛物系统解的逐点估计, Holf和Zumbrun[3]得到高维等熵Navier-Stokes方程的解的$ L^p $估计, Liu和Wang[4], Wang和Yang[5]通过对格林函数的详细分析, 继续得到了此方程解的逐点估计. 对N-S-P方程, [6,7,8]研究了其局部解和整体弱解的存在性. [9]中用半群的方法得到了三维空间经典解的整体存在性, [10]通过对其线性系统格林函数的详细分析, 得到了解的逐点估计.相较于双曲抛物的等熵Navier-Stokes方程, 加了静电势的N-S-P方程是一个双曲-抛物-椭圆的耦合系统.方程结构越复杂, 格林函数越难计算且形式越复杂, 做逐点估计更难. 另外, 因为有了静电势, 格林函数中含了一个非局部项, 这一项在低频时是奇异的, 因而在估计时遇到与[4,5]不同的新的困难. 从[9,10]中可看出, 方程的衰减与空间维数有关, 维数越低, 衰减越慢, 因而处理更麻烦. 本论文考虑(1.1)在常状态$ \left(\overline{\rho}, \overline{m}_1, \overline{m}_2\right)=\left(1, 0, 0\right) $附近的线性化方程, 研究其格林函数的构造、衰减, 继而得到线性方程的衰减.希望这些工作能给非线性方程的研究提供一个基础和支撑.

本文中, $ \alpha $是多重指标$ \alpha=\left(\alpha_1, \alpha_2\right) $, $ \partial_x^{\alpha}f\left(x\right) $表示$ \partial_{x_1}^{\alpha_1}\partial_{x_2}^{\alpha_2}f $, $ \lvert\alpha\rvert $表示$ \alpha_1+\alpha_2 $. $ F\left(f\right) $$ \hat{f}\left(\xi\right) $表示函数$ f\left(x\right) $关于变量$ x $的傅立叶变换, 即$ F\left(f\right)\left(\xi, t\right)=\hat{f}\left(\xi, t\right)=\int _{\mathfrak{R}_n}{f}\left(x, t\right)e^{-ix\cdot\xi}dx $, 其中$ i $为虚数单位. $ F^{-1}\left(\hat{f}\right)\left(x, t\right) $$ f\left(x, t\right) $表示$ \hat{f}\left(\xi, t\right) $关于$ \xi $的逆傅立叶变换, 即$ F^{-1}\left(\hat{f}\right)=f\left(x, t\right)=\left(2\pi\right)^{-2n}\int\hat{f}\left(\xi, t\right)e^{ix\cdot\xi}d\xi $. $ W^{s, p}\left(\mathfrak{R}^n\right) $是通常的索伯列夫空间, 范数为$ \left\|f\right\|_{W^{s, p}\left(\mathfrak{R}^n\right)} $= $ \sum\limits_{\lvert\alpha\rvert=0}^{s}\left\|\partial_x^{\alpha}f\right\|_{L^P\left(\mathfrak{R}^n\right)} $. $ W^{s, 2}\left(\mathfrak{R}^n\right) $记为$ H^s\left(\mathfrak{R}^n\right) $.任意实数$ x $, 定义$ x_+=\begin{cases}x, 若\; x\geq0 , \\0, {若\; x< 0 }.\end{cases} $

2 格林函数的计算

首先把方程(1.1)在$ \left(\overline{\rho}, \overline{m}\right)=\left(1, 0, 0\right) $附近做线性化.记$ \tilde{\rho}=\rho-\overline{\rho} $, $ \tilde{m}=m-\overline{m} $, 因为

$ \partial_{x_1}\left(\frac{m_1}{\rho}\right)=\partial_{x_1}\left(\frac{\tilde{m}_1}{\tilde{\rho}+1}\right)=\frac{\partial_{x_1}\tilde{m}_1\cdot\left(\tilde{\rho}+1\right)-\tilde{m}_1\cdot\partial_{x_1}\tilde{\rho}}{\left(\tilde{\rho}+1\right)^2}, $
$ \partial_{x_1}\left(\frac{m_1^2}{\rho}\right)=\partial_{x_1}\left(\frac{\tilde{m}_1^2}{\tilde{\rho}+1}\right)=\frac{2\tilde{m}_1\cdot\partial_{x_1}\tilde{m}_1\cdot\left(\tilde{\rho}+1\right)-\tilde{m}_1^2\cdot\partial_{x_1}\tilde{\rho}}{\left(\tilde{\rho}+1\right)^2}, $
$ \partial_{x_2}\left(\frac{m_1 \cdot m_2}{\rho}\right)=\partial_{x_2}\frac{\tilde{m}_1\cdot\tilde{m}_2}{\tilde{\rho}+1}=\frac{\partial_{x_2}\tilde{m}_1\cdot\tilde{m}_2\left(\tilde{\rho}+1\right)+\tilde{m}_1\cdot\partial_{x_2}\tilde{m}_2\cdot\left(\tilde{\rho}+1\right)-\tilde{m}_1\cdot\tilde{m}_2\partial_{x_2}\tilde{\rho}}{\left(\tilde{\rho}+1\right)^2}, $
$ \partial_{x_1}P\left(\rho\right)=P^{\prime}\left(\overline{\rho}\right)\partial_{x_1}\tilde{\rho}+\partial_{x_1}\left(P\left(\rho\right)-P\left(\overline{\rho}\right)-P^{\prime}\left(\overline{\rho}\right)\tilde{\rho}\right), $

所以方程(1.1)在$ \left(1, 0, 0\right) $附近的线性化方程为

$ \begin{equation} \begin{cases} \tilde{\rho}_t+div\tilde{m}=0, \\ \tilde{m}_{1t}+P^{\prime}\left(1\right)\partial_{x_1}\tilde{\rho}=\partial_{x_1}\phi+\mu_1\Delta\tilde{m}_1+\mu_2\partial_{x_1}\left(\partial_{x_1}\tilde{m}_1+\partial_{x_2}\tilde{m}_2\right), \\ \tilde{m}_{2t}+P^{\prime}\left(1\right)\partial_{x_2}\tilde{\rho}=\partial_{x_2}\phi+\mu_1\Delta\tilde{m}_2+\mu_2\partial_{x_2}\left(\partial_{x_1}\tilde{m}_1+\partial_{x_2}\tilde{m}_2\right). \end{cases} \end{equation} $ (2.1)

为减少记号, 不妨还是记$ \rho=\tilde{\rho} $, $ m=\tilde{m} $, $ P^{\prime}\left(1\right)=c^2 > 0 $, 则(2.1)为

$ \begin{equation} \begin{cases} \rho_t+divm=0, \\ m_t+c^2\nabla\rho=\nabla\phi+\mu_1\Delta m+\mu_2\nabla divm, \\ \Delta\phi=\rho, { \phi\to0 , 当 \;\sqrt{x_1^2+x_2^2}\to +\infty }. \end{cases} \end{equation} $ (2.2)

下面考虑(2.2)的格林函数$ G $, 即若(2.2)的初值为$ \left(\rho, m\right)\mid_{t=0}=\left(\rho_0, m_0\right) $, 我们要找出矩阵$ G $满足$ \dbinom{\rho}{m}=G\ast\dbinom{\rho_0}{m_0} $.此处及后面的$ \ast $是表示对空间变量的卷积.

$ \gamma=\mu_1+\mu_2 $, 由(2.2)得

$ \begin{equation} \begin{aligned} \rho_{tt}&=-\left(divm\right)_t=-divm_t=-div\left(-c^2\nabla\rho+\nabla\phi+\mu_1\Delta m+\mu_2\nabla divm\right)\\ &=c^2\Delta\rho-\Delta\phi-\mu_1\Delta\left(divm\right)-\mu_2\Delta\left(divm\right)\\ &=c^2\Delta\rho-\rho-\mu_1\Delta\left(-\rho_t\right)-\mu_2\Delta\left(-\rho_t\right)=c^2\Delta\rho-\rho+\gamma\Delta\rho_t. \end{aligned} \end{equation} $ (2.3)

对空间变量$ x $作傅立叶变换, 得$ \hat{\rho}_{tt}=c^2\left(-\lvert\xi\rvert^2\right)\hat{\rho}-\hat{\rho}+\gamma\left(-\lvert\xi\rvert^2\right)\hat{\rho}_t $.

解二阶常微分方程初值问题

$ \begin{equation} \begin{cases} \notag \hat{\rho}_{tt}+\left(c^2\lvert\xi\rvert^2+1\right)\hat{\rho}+\gamma\lvert\xi\rvert^2\hat{\rho_t}=0, \\ \hat{\rho}\left(\xi, 0\right)=\hat{\rho}_0\left(\xi\right), \\ \hat{\rho}_t\left(\xi, 0\right)=-i\xi^{\tau}\hat{m}_0\left(\xi\right). \end{cases} \end{equation} $

得到

$ \begin{equation} \hat{\rho}\left(\xi, t\right)=\frac{\lambda_+e^{\lambda_-t}-\lambda_-e^{\lambda_+t}}{\lambda_+-\lambda_-}\hat{\rho}_0\left(\xi\right)+\frac{\left(e^{\lambda_-t}-e^{\lambda_+t}\right)i\xi^\tau}{\lambda_+-\lambda_-}\hat{m}_0\left(\xi\right), \end{equation} $ (2.4)

其中

$ \begin{equation} \begin{aligned} \lambda_+=\frac{-\gamma\lvert\xi\rvert^2+\sqrt{\gamma ^2\left| \xi\right|^4-4\left(c^2\left|\xi\right|^2 +1\right)}}{2}, \lambda_-=\frac{-\gamma\lvert\xi\rvert^2-\sqrt{\gamma ^2\left| \xi\right|^4-4\left(c^2\left|\xi\right|^2 +1\right)}}{2}. \end{aligned} \end{equation} $ (2.5)

由(2.5)易得

$ \begin{equation} \begin{aligned} \lambda_+-\lambda_-=\sqrt{\gamma^2\left|\xi\right|^4-4\left(c^2\left|\xi\right|^2+1\right)}, \\ \lambda_++\gamma\left |\xi\right |^2=-\lambda_-, \lambda_-+\gamma\left |\xi\right |^2=-\lambda_+, \lambda_+\cdot\lambda_-=c^2\left|\xi \right|^2+1. \end{aligned} \end{equation} $ (2.6)

为求解$ \hat{m} $, 将$ \hat{m}\left(\xi, t\right) $分解成与$ \xi $平行和垂直的两个向量,即

$ \begin{equation} \hat{m}\left(\xi, t\right)=a\left(\xi, t\right)\frac{\xi}{\left |\xi\right |}+b\left(\xi, t\right), \end{equation} $ (2.7)

其中$ a\left(\xi, t\right)\in \mathfrak{R}^1 $, $ b\left(\xi, t\right)\in \mathfrak{R}^2 $, 且$ \xi^\tau b=0 $.对(2.2)的第二个方程关于空间向量作傅立叶变换,得

$ \hat{m}_t+c^2i\xi\hat{\rho}=i\xi\hat{\phi}-\mu_1\left|\xi\right|^2\hat{m}-\mu_2\xi\xi^\tau\hat{m}. $

于是

$ \begin{equation} \begin{aligned} \notag a_t\left(\xi, t\right)\frac{\xi}{\left|\xi\right|}+b_t+ic^2\xi\hat{\rho}&=i\xi\hat{\phi}-\mu_1\left|\xi\right|^2\left(a\left(\xi, t\right) \frac{\xi}{\left|\xi\right|}+b\left(\xi, t\right)\right)-\mu_2\xi\xi^\tau a\left(\xi, t\right)\frac{\xi}{\left|\xi\right|}-\mu_2\xi\xi^\tau b\\ &=i\xi\hat{\phi}-\mu_1\left|\xi\right|a\left(\xi, t\right)\xi-\mu_1\left|\xi\right|^2b\left(\xi, t\right)-\mu_2\left|\xi\right|\xi a\left(\xi, t\right). \end{aligned} \end{equation} $

所以得

$ b_t=-\mu_1\left|\xi\right|^2b\left(\xi, t\right), $
$ a_t\left(\xi, t\right)=-ic^2\left|\xi\right|\hat{\rho}+i\left|\xi\right|\hat{\phi}-\mu_1\left|\xi\right|^2a\left(\xi, t\right)-\mu_2a\left(\xi, t\right)\left|\xi\right|^2=-i\frac{c^2\left|\xi\right|^2+1}{\left|\xi\right|}\hat{\rho}-\gamma a\left(\xi, t\right)\left|\xi\right|^2. $

解常微分方程得

$ \begin{equation} b\left(\xi, t\right)=b\left(\xi, 0\right)e^{-\mu_1\left|\xi\right|^2t}, \end{equation} $ (2.8)
$ \begin{equation} a\left(\xi, t\right)=-i\frac{1+c^2\left|\xi\right|^2}{\left|\xi\right|}e^{-\gamma\left|\xi\right|^2t}\int_{0}^{t}\hat{\rho}\left(\xi, s \right)e^{\gamma\left|\xi\right|^2s}ds+a\left(\xi, 0\right)e^{-\gamma\left|\xi\right|^2t}. \end{equation} $ (2.9)

由(2.5), (2.6)得

$ \begin{equation} \begin{aligned} &\int_{0}^{t}\left [\frac{-\lambda_-}{\lambda_+-\lambda_-}e^{\left(\lambda_++\gamma\left|\xi\right|^2\right)s}+\frac{\lambda_+}{\lambda_+-\lambda_-}e^{\left( \lambda_-+\gamma\left|\xi\right|^2\right)s}\right]ds\\ =&\frac{-\lambda_-}{\lambda_+-\lambda_-}\cdot\frac{1}{\lambda_++\gamma\left|\xi\right|^2} \left(e^{\left(\lambda_++\gamma\left|\xi\right|^2\right)t}-1\right)+\frac{\lambda_+}{\lambda_+-\lambda_-}\cdot\frac{1}{\lambda_-+\gamma\left|\xi\right|^2}\left(e^{\left(\lambda_-+\gamma\left|\xi\right|^2\right)t}-1\right)\\ =&\frac{1}{\lambda_+-\lambda_-}\cdot e^{-\lambda_-t}-\frac{1}{\lambda_+-\lambda_-}\cdot e^{-\lambda_+t}\quad, \end{aligned} \end{equation} $ (2.10)
$ \begin{equation} \begin{aligned} &\int_{0}^{t}\left [\frac{-e^{\left(\lambda_++\gamma\left|\xi\right|^2\right)s}}{\lambda_+-\lambda_-}+\frac{e^{\left(\lambda_-+\gamma\left|\xi\right|^2\right)s}}{\lambda_+-\lambda_-}\right]ds\\ =&\frac{-1}{\lambda_+-\lambda_-}\cdot\frac{1}{\lambda_++\gamma\left|\xi\right|^2}\cdot\left(e^{\left(\lambda_++\gamma\left|\xi\right|^2\right)t}-1\right)+\frac{1}{\lambda_+-\lambda_-}\cdot\frac{1}{\lambda_-+\gamma\left|\xi\right|^2} \cdot\left(e^{\left(\lambda_-+\gamma\left|\xi\right|^2\right)t}-1\right)\\ =&\frac{1}{\left(\lambda_+-\lambda_-\right)\lambda_-}\cdot e^{-\lambda_-t}-\frac{1}{\left(\lambda_+-\lambda_-\right)\lambda_+}\cdot e^{-\lambda_+t}-\frac{1}{\lambda_+\lambda_-} \quad . \end{aligned} \end{equation} $ (2.11)

由(2.4), (2.6), (2.9), (2.10), (2.11)得

$ \begin{equation} \begin{aligned} a\left(\xi, t\right)&=-i\frac{\left(1+c^2\left|\xi\right|^2\right)}{\left|\xi\right|}e^{-\gamma\left|\xi\right|^2t}\cdot\hat\rho_0\cdot\left (\frac{e^{-\lambda _-t}-e^{-\lambda_+t}}{\lambda_+-\lambda_-}\right) -\frac{i\xi^\tau\hat m_0}{\lambda_+\lambda_-}\left (-i\right ) \frac{1+c^2\left|\xi\right|^2}{\left|\xi\right|} e^{-\gamma\left|\xi\right|^2t}\\ &+a\left(\xi, 0\right)e^{-\gamma\left|\xi\right|^2t} +\frac{1+c^2\left|\xi\right|^2}{\left|\xi\right|} e^{-\gamma\left|\xi\right|^2t }\xi^{\tau}\hat m_0\left(\frac{e^{-\lambda _-t}}{\left( \lambda_+-\lambda_-\right)\lambda_-}-\frac{e^{-\lambda_+t}}{\left(\lambda_+-\lambda_- \right )\lambda_+} \right) \\ =&-i\frac{\left(1+c^2\left|\xi\right|^2\right)}{\left|\xi\right|}\hat\rho_0\cdot\frac{e^{\lambda_+t}-e^{\lambda_-t}}{\lambda_+-\lambda_-}+\frac{1}{\left|\xi\right|}\xi^\tau\hat m_0\left(\frac{\lambda_+e^{\lambda _+t}-\lambda_-e^{\lambda_-t}}{\lambda_+-\lambda_-}\right)\\ &-\frac{\xi^\tau}{\left|\xi\right|}\left(a\left(\xi, 0\right)\frac{\xi}{\left|\xi\right|}+b\left(\xi, 0\right)\right) e^{-\gamma\left|\xi\right |^2t}+a\left(\xi, 0\right) e^{-\gamma\left|\xi \right|^2t}\\ =&-i\frac{\left(1+c^2\left|\xi\right|^2\right)}{\left|\xi\right|}\cdot\left (\frac{e^{\lambda_+t}-e^{\lambda_-t}}{\lambda_+-\lambda_-}\right) \cdot\hat\rho_0+\frac{1}{\left|\xi\right|}\left (\frac{\lambda_+e^{\lambda _+t}-\lambda_-e^{\lambda_-t}}{\lambda_+-\lambda_-}\right)\xi^\tau\hat m_0 . \end{aligned} \end{equation} $ (2.12)

由(2.7), (2.12)得

$ \begin{equation} \begin{aligned} b\left(\xi, 0\right)=\hat m_0\left(\xi\right)-a\left(\xi, 0\right)\frac{\xi}{\left|\xi\right|} &=\hat m_0\left(\xi\right)-\frac{1}{\left|\xi\right|^2 }\left(\frac{\lambda_+}{\lambda_+-\lambda_-} - \frac{\lambda_-}{\lambda_+-\lambda_-}\right)\xi^\tau\hat m_0\xi\\ &=\hat m_0\left(\xi \right)-\frac{\xi\xi^\tau}{\left|\xi\right|^2}\hat m_0. \end{aligned} \end{equation} $ (2.13)

由(2.8), (2.13)得

$ \begin{equation} b\left(\xi, t\right)=e^{-\mu_1\left|\xi\right|^2t }\left(I-\frac{\xi\xi^\tau}{\left|\xi\right|^2}\right)\hat m_0, \end{equation} $ (2.14)

其中$ I $为单位矩阵.

由(2.7), (2.12), (2.14) 得

$ \begin{equation} \begin{aligned} \hat m\left(\xi, t\right)=&-i\frac{\left(1+c^2\left|\xi\right|^2 \right)\xi}{\left|\xi\right|^2}\hat\rho_0\left(\frac{e^{\lambda _+t}}{\lambda_+-\lambda_-}-\frac{e^{\lambda _-t}}{\lambda_+-\lambda_-}\right)\\ &+\frac{1}{\left|\xi\right|^2}\left(\frac{\lambda_+e^{\lambda _+t}}{\lambda_+-\lambda_-}-\frac{\lambda_-e^{\lambda _-t}}{\lambda_+-\lambda_-}\right)\xi\xi^\tau\hat m_0+e^{-\mu_1\left|\xi\right|^2t}\left(I-\frac{\xi\xi^\tau}{\left|\xi\right|^2}\right) . \end{aligned} \end{equation} $ (2.15)

若记

$ \begin{equation} \begin{pmatrix} \hat\rho\left ( \xi, t \right ) \\ \hat m\left ( \xi, t \right ) \end{pmatrix} =\hat G\left ( \xi, t \right ) \begin{pmatrix} \hat\rho_0\\ \hat m_0 \end{pmatrix}, \end{equation} $ (2.16)

则由(2.4), (2.15) 得

$ \begin{equation} \hat G\left(\xi, t\right)=\begin{pmatrix} \frac{-\lambda_-e^{\lambda_+t}}{\lambda_+-\lambda_-}+\frac{\lambda_+e^{\lambda_-t}}{\lambda_+-\lambda_-} & \frac{e^{\lambda_+t}-e^{\lambda_-t}}{\lambda_+-\lambda_-}\left(-i\xi^\tau\right) \\ -i\frac{\left(1+c^2\left|\xi\right|^2\right)\xi}{\left|\xi\right|^2}\left(\frac{e^{\lambda_+t}-e^{\lambda_-t}}{\lambda_+-\lambda_-}\right) & \frac{\lambda_+e^{\lambda_+t}-\lambda_-e^{\lambda_-t}}{\lambda_+-\lambda_-}\frac{\xi\xi^\tau}{\left|\xi\right|^2} +e^{-\mu_1\left|\xi\right|^2t}\left(I-\frac{\xi\xi^\tau}{\left|\xi\right|^2}\right) \end{pmatrix}. \end{equation} $ (2.17)

我们称$ G\left(x, t\right) $为方程(2.2)的格林函数.

3 解的逐点估计

由(2.16)可得

$ \begin{equation} \begin{pmatrix} \rho \\ m \end{pmatrix}=G\ast \begin{pmatrix} \rho_0 \\ m_0 \end{pmatrix}. \end{equation} $ (3.1)

我们希望通过对$ G $的估计及(3.1)式来得到方程(2.2)的解的逐点估计.

为方便,我们记

$ \begin{equation} \hat G\left ( \xi, t \right ) =\begin{pmatrix} \hat G_{11} &\hat G_{12} \\\hat G_{21} &\hat G_{22} \end{pmatrix}. \end{equation} $ (3.2)

因为$ \lambda_+ $, $ \lambda_- $在高、低, 中频时,有不同的表现形式,所以我们定义光滑截断函数

$ \chi _1\left(\xi\right)=\begin{cases}1, \left | \xi \right | \le \varepsilon, \\0, \left | \xi \right |> 2\varepsilon.\end{cases}, \quad \chi _3\left(\xi\right)=\begin{cases}1, \left | \xi \right | \ge R, \\0, \left | \xi \right |< R-1.\end{cases} $

其中$ \varepsilon $充分小, $ R $充分大, $ 2\varepsilon< R $.记$ \chi_2\left(\xi\right)=1-\chi _1\left(\xi\right)-\chi _3\left(\xi\right) $. $ \chi _i\left(D\right)\left(i=1, 2, 3\right) $表示象征为$ \chi _i\left( \xi\right)\left(i=1, 2, 3\right) $的算子.符号$ B_N\left(x, t\right) $表示$ B_N\left(x, t \right)=\left(1+\frac{\left|x\right|^2}{1+t}\right)^{-N} $.

定理3.1   对任意正常数$ N $, 多重指标$ \alpha $, 存在仅依赖于$ N $, $ \alpha $的常数$ C_{N, \alpha} $, 有

$ \begin{equation} \left|\partial _x^\alpha\chi _1\left(D\right)G_{11}\right|\le C_{N, \alpha}\left(1+t\right)^{-\frac{2+\left|\alpha\right|}{2}}B_N\left ( x, t\right), \end{equation} $ (3.3)
$ \begin{equation} \left|\partial _x^\alpha\chi _1\left(D\right)G_{12}\right|\le C_{N, \alpha}\left(1+t\right)^{-\frac{3+\left|\alpha\right|}{2}}B_N\left ( x, t\right), \end{equation} $ (3.4)
$ \begin{equation} \left|\partial _x^\alpha F^{-1}\left(\chi _1\left(\xi\right)\cdot\frac{e^{\lambda_+t}-e^{\lambda_-t}}{\lambda_+-\lambda_-}\right)\right|\le C_{N, \alpha}\left(1+t\right)^{-\frac{2+\left|\alpha\right|}{2}}B_N\left(x, t\right), \end{equation} $ (3.5)
$ \begin{equation} \left|\partial _x^\alpha F^{-1}\left(\chi _1\left(\xi\right)\cdot\frac{\lambda_+e^{\lambda_+t}-\lambda_-e^{\lambda_-t}}{\lambda_+-\lambda_-}\right)\right|\le C_{N, \alpha}\left(1+t\right)^{-\frac{2+\left|\alpha\right|}{2}}B_N\left(x, t\right) . \end{equation} $ (3.6)

   当$ \left|\xi\right| $充分小时,由$ Taylor $展开有

$ \begin{equation} \begin{split} \sqrt{\gamma^2\left|\xi\right|^4-4\left(c^2\left|\xi\right|^2+1\right)}=2i+ic^2\left|\xi\right|^2+o\left(\left|\xi\right|^2\right), \\ \frac{1}{\sqrt{\gamma^2\left|\xi\right|^4-4\left(c^2\left|\xi\right|^2+1\right)}}=\frac{1}{2i}+\frac{i}{4}c^2\left|\xi\right|^2+o\left( \left|\xi\right|^2\right) . \end{split} \end{equation} $ (3.7)

所以

$ \begin{equation} \lambda _+=i+\frac{i}{2} c^2\left | \xi \right | ^2-\frac{\gamma }{2} \left | \xi \right | ^2+o\left ( \left | \xi \right | ^2 \right ), \end{equation} $ (3.8)
$ \begin{equation} \lambda _-=-i-\frac{i}{2} c^2\left | \xi \right | ^2-\frac{\gamma }{2} \left | \xi \right | ^2+o\left ( \left | \xi \right | ^2 \right ), \end{equation} $ (3.9)
$ \begin{equation} \frac{\lambda _+}{\lambda _+-\lambda _-} =\frac{1}{2} +\frac{i}{4} \gamma \left | \xi \right |^2+o\left ( \left | \xi \right | ^2 \right ), \end{equation} $ (3.10)
$ \begin{equation} \frac{\lambda _-}{\lambda _+-\lambda _-} =-\frac{1}{2} +\frac{i}{4} \gamma \left | \xi \right |^2+o\left ( \left | \xi \right | ^2 \right ) . \end{equation} $ (3.11)

于是对任意多重指标$ \alpha $, $ \beta $, 存在正常数$ b $, $ C $, 有

$ \left | \partial _\xi^\beta\left ( \xi^\alpha e^{\lambda_+t}\right ) \right | \le C\left ( \left | \xi \right |^{\left(\left | \alpha \right |-\left | \beta \right | \right) _+} +\left | \xi \right | ^{\left | \alpha \right | } t^{\frac{\left | \beta \right | }{2} }\right ) \left ( 1+\left | \xi \right | ^2t \right )^{\left | \beta \right | +1} e^{-b\left | \xi \right |^2t }, $
$ \left | \partial _\xi^\beta\left ( \xi^\alpha e^{\lambda_-t}\right ) \right | \le C\left ( \left | \xi \right |^{\left(\left | \alpha \right |-\left | \beta \right | \right)_+} +\left | \xi \right | ^{\left | \alpha \right | } t^{\frac{\left | \beta \right | }{2} }\right ) \left ( 1+\left | \xi \right | ^2t \right )^{\left | \beta \right | +1} e^{-b\left | \xi \right |^2t }, $

所以

$ \left | \partial_\xi^\beta\left ( \xi^\alpha\left ( \frac{\lambda_+e^{\lambda_-t}-\lambda_-e^{\lambda_+t}}{\lambda_+-\lambda_-} \right ) \right ) \right | \le C\left ( \left | \xi \right | ^{\left ( \left | \alpha \right |+\left | \beta \right | \right )_+ }+\left | \xi \right | ^{\left | \alpha \right |} t^{\frac{\left | \beta \right | }{2}}\right )\left ( 1+\left | \xi \right | ^2t \right )^{\left | \beta\right |+1 } e^{-b\left | \xi \right | ^2t} , $
$ \left | \partial_\xi^\beta\left ( \xi^\alpha\left ( \frac{e^{\lambda_+t}-e^{\lambda_-t}}{\lambda_+-\lambda_-} \right ) \right ) \right | \le C\left ( \left | \xi \right |^{\left(\left | \alpha \right | -\left | \beta \right |\right) _+} +\left | \xi \right |^{\left | \alpha \right |}t^{\frac{\left | \beta \right | }{2} } \right )\left ( 1+\left | \xi \right |^2t \right ) ^{\left | \beta \right | +1}e^{-b\left | \xi \right |^2t }, $
$ \left | \partial_\xi^\beta\left ( \xi^\alpha\left ( \frac{\lambda_+e^{\lambda_+t}-\lambda_-e^{\lambda_-t}}{\lambda_+-\lambda_-} \right ) \right ) \right | \le C\left ( \left | \xi \right |^{\left(\left | \alpha \right | -\left | \beta \right |\right) _+} +\left | \xi \right |^{\left | \alpha \right |}t^{\frac{\left | \beta \right | }{2} } \right )\left ( 1+\left | \xi \right |^2t \right ) ^{\left | \beta \right | +1}e^{-b\left | \xi \right |^2t }. $

由[11]的引理3.1, (2.17), 本定理得证.

因为$ \hat{G}_{21} $, $ \hat{G}_{22} $中有非局部算子$ \frac{1}{\left|\xi\right|^2} $, 所以我们需要用新的技巧来估计它们.

定理3.2   存在正常数$ C $, 有

$ \begin{equation} \left | \partial _x^\alpha\chi _1\left ( D \right ) G_{21}\right|\le C\left ( 1+t \right ) ^{-\frac{1+\left | \alpha \right | }{2} }B_\frac{1}{2}\left ( x, t \right ), \end{equation} $ (3.12)
$ \begin{equation} \left | \partial _x^\alpha\chi _1\left ( D \right ) G_{22}\right|\le C\left ( 1+t \right ) ^{-\frac{2+\left | \alpha \right | }{2} }B_\frac{1}{2}\left ( x, t \right ) . \end{equation} $ (3.13)

  把$ \left|\partial_x^\alpha\chi_1\left(D\right)G_{21}\right| $估计分成两部分,

$ \left|\partial _x^\alpha\chi_1\left(D\right)G_{21}\right|\le\left| \partial_x^\alpha\chi_1\left(D\right)G_{21}\right|_{\left\{x\mid\left|x\right|^2\le 1+t\right\}}+\left|\partial _x^\alpha\chi_1\left(D\right) G_{21}\right|_{\left\{x\mid\left |x\right|^2>1+t\right\}}:=I_1+I_2. $

由(2.17), (2.17), (3.2) (3.7), (3.8), (3.9)得

$ \begin{equation} \begin{aligned} \notag I_1\le \int \left | \xi^\alpha\chi _1\left ( \xi \right ) \hat G_{21} \right | d\xi&\le C\int \left | \xi \right |^{\left | \alpha \right | -1} e^{-\frac{\gamma \left | \xi \right |^2t }{4}}d\xi\le C_\alpha\left ( 1+t \right ) ^{-\frac{\left | \alpha \right |+1 }{2} }\\&\le C_{N, \alpha}\left ( 1+t \right ) ^{-\frac{\left | \alpha \right | +1}{2} }B_N\left ( x, t \right ). \end{aligned} \end{equation} $

$ N > 1 $时,

$ \begin{equation} \begin{aligned} \int\left(1+\frac{\left|x-y\right|^2}{1+t}\right)^{-N}dy &=\int_{0}^{2\pi }d\theta \int_{0}^{+\infty}\left(1+\frac{r^2}{1+t}\right)^{-N}rdr\\ &=\int_{0}^{2\pi}d\theta\int_{0}^{+\infty}\left(1+r^2\right)^{-N}\sqrt{1+tr}\cdot\sqrt{1+t}dr\le C\left(1+t\right). \end{aligned} \end{equation} $ (3.14)

$ N > \frac{1}{2} $时,

$ \begin{equation} \begin{aligned} \int \left | y \right | ^{-1}\left ( 1+\frac{\left | y \right |^2 }{1+t} \right )^{-N}dy&=\int_{0}^{2\pi}d\theta \int_{0}^{+\infty} \left ( 1+\frac{r^2}{1+t}\right ) ^{-N} \frac{1}{r}\cdot rdr\\ &=2\pi\int_{0}^{+\infty}\left ( 1+r^2 \right ) ^{-N}\sqrt{1+t}dr\le C\left ( 1+t \right ) ^\frac{1}{2} . \end{aligned} \end{equation} $ (3.15)

$ \left | y \right | \le \frac{\left | x \right | }{2} $时,有

$ \begin{equation} \left | y-x \right | \ge \left | x \right | -\left | y \right | \ge \frac{\left | x \right | }{2} \ge \left | y \right | . \end{equation} $ (3.16)

$ \begin{equation} F^{-1}\left ( \frac{i\xi_j}{\left | \xi \right | ^2} \right ) =-\partial_{x_j}\Delta^{-1}\delta \left ( x \right )=C\partial_{x_j}ln\left | x \right |=C\frac{x_j}{\left | x \right | ^2}, \end{equation} $ (3.17)

取(3.5)中$ N > 2 $, 则由(3.5), (3.14), (3.15), (3.16), (3.17) 得

$ \begin{equation} \begin{aligned} I_2\le&\int_{\mathfrak{R} ^2}C\frac{\left|y_j\right|}{\left|y\right|^2}\cdot\left(1+t\right)^{-\frac{2+\left|\alpha\right|}{2}}B_N\left(x-y, t\right)dy\\ \le& C\int _{\mathfrak{R} ^2\cap\left\{y\mid\left|y\right|\ge\frac{\left|x\right|}{2}\right\}}\frac{1}{\left|y\right|}\left(1+t\right)^{-\frac{2+\left| \alpha\right|}{2}}B_N\left(x-y, t\right)dy\\ &+C\int_{\mathfrak{R} ^2\cap\left\{y\mid\left|y\right|\le\frac{\left|x\right|}{2}\right\}}\frac{1}{\left|y\right|}\left(1+t\right)^{-\frac{2+\left|\alpha \right|}{2}}B_N\left(x-y, t\right )dy\\ \le& C\left ( \left | x \right | ^2 \right ) ^{-\frac{1}{2} }\left ( 1+t \right ) ^{-\frac{2+\left | \alpha \right | }{2} }\cdot\left ( 1+t \right ) +C\left ( 1+t \right ) ^{-\frac{2+\left | \alpha \right | }{2} }\left ( 1+t \right )^{\frac{1}{2}} B_{\frac{1}{2} }\left ( x, t \right ) \\ \le& C\left ( 1+t \right ) ^{-\frac{\left | \alpha \right | }{2} } \left ( 1+t \right ) ^{-\frac{1}{2} } B_\frac{1}{2} \left ( x, t \right ) +C\left ( 1+t \right ) ^{-\frac{1+\left | \alpha \right | }{2} }B_\frac{1}{2} \left ( x, t \right )\\ =&C\left ( 1+t \right ) ^{-\frac{1+\left | \alpha \right | }{2} }B_\frac{1}{2} \left ( x, t \right ). \end{aligned} \end{equation} $ (3.18)

$ I_1 $, $ I_2 $的估计, 得到(3.12).用同样的方法可得到(3.13).

对中频的部分,我们有下面定理.

定理3.3   对任意正整数$ N $, 存在正常数$ C $, $ b $, 有$ \left | \partial _x^\alpha \chi _2\left ( D \right ) G\left ( x, t \right ) \right | \le Ce^{-bt}B_N\left ( x, t \right ) $.

  因为

$ \frac{e^{\lambda_+t}-e^{\lambda_-t}}{\lambda _+-\lambda_-} =e^{\lambda_-t}\cdot\frac{e^{\left ( \lambda _+-\lambda_- \right )t }-1}{\lambda _+-\lambda_-}, $
$ \begin{equation} \begin{aligned} \notag \frac{\lambda_+e^{\lambda_-t}-\lambda _-e^{\lambda_+t}}{\lambda _+-\lambda_-} =&\frac{\lambda _+e^{\lambda_+t}\left ( e^{\left ( \lambda _–\lambda_+\right )t }-1 \right )-\lambda _-e^{\lambda_-t}\left ( e^{\left ( \lambda _+-\lambda_-\right )t }-1 \right ) }{\lambda _+-\lambda_-} \\ &-\frac{\lambda _+e^{\lambda_-t}\left ( e^{\left(\lambda_+-\lambda_-\right)t} -1\right )}{\lambda _+-\lambda_-} +e^{\lambda_-t}, \end{aligned} \end{equation} $

所以当$ \varepsilon \le\left|\xi \right | \le R $时, $ \hat G $无奇点, 无需考虑对$ \xi $的可积性问题, 又$ \left|Re\lambda_{\pm}\right|\le -b $, 所以$ \left | \partial_x^\alpha\chi _2\left (D\right ) G\left ( x, t \right ) \right | \le \int \xi^\alpha\chi _2\left ( \xi \right )\hat G\left ( \xi, t \right ) d\xi\le Ce^{-bt}B_N\left ( x, t \right ) $.

定理3.3得证.

$ \left|\xi\right| $充分大时, 由泰勒展开有

$ \lambda_+-\lambda_-=\gamma \left | \xi \right | ^2\cdot\sqrt{1-4\frac{c^2}{\gamma ^2} \frac{1}{\left | \xi \right | ^2} -\frac{4}{\gamma ^2\left | \xi \right |^4 } } = \gamma \left | \xi \right | ^2-\frac{2c^2}{\gamma } -\frac{2}{\left | \xi \right |^2 } -\frac{2c^4}{\gamma ^3} \frac{1}{\left | \xi \right | ^2} +o\left ( \frac{1}{\left | \xi \right |^2 } \right ), $
$ \frac{1}{\lambda _+-\lambda_-} =\frac{1}{\gamma \left | \xi \right |^2 } +\frac{2}{\gamma ^3\left | \xi \right |^4 } +o\left ( \frac{1}{\left | \xi \right |^4 } \right ), $

所以

$ \begin{equation} \begin{aligned} \frac{\lambda_+e^{\lambda_-t}-\lambda _-e^{\lambda_+t}}{\lambda _+-\lambda_-} &=\left ( -\frac{1}{\gamma ^2\left | \xi \right | ^2} +o\left ( \frac{1}{\left | \xi \right |^2 } \right ) \right )e^{\left ( {-\gamma \left | \xi \right | ^2+\frac{c^2}{\gamma }+o\left ( \frac{1}{\left | \xi \right | } \right ) } \right )t }\\ &+\left ( 1+\frac{1}{\gamma ^2\left | \xi \right | ^2} +o\left ( \frac{1}{\left | \xi \right |^2 } \right ) \right )e^{-\frac{c^2}{\gamma } t+o\left ( \frac{1}{\left | \xi \right | } \right )t }, \end{aligned} \end{equation} $ (3.19)
$ \begin{equation} \frac{e^{\lambda_-t}-e^{\lambda_+t}}{\lambda _+-\lambda_-} =\left ( \frac{1}{\gamma \left | \xi \right | ^2} +o\left ( \frac{1}{\left | \xi \right |^3 } \right ) \right ) \cdot \left ( e^{\left ( -\gamma \left | \xi \right |^2+\frac{c^2}{\gamma}+o\left ( \frac{1}{\left | \xi\right | } \right ) \right )t } -e^{\left ( -\frac{c^2}{\gamma} +o\left ( \frac{1}{\left | \xi \right | } \right )t \right ) }\right ), \end{equation} $ (3.20)
$ \begin{equation} \begin{aligned} \frac{\lambda_+e^{\lambda_+t}-\lambda_-e^{\lambda_-t}}{\lambda_+-\lambda_-}&=\left(-\frac{1}{\gamma^2\left|\xi\right|^2}+o\left(\frac{1}{\left|\xi\right|^2}\right)\right)e^{\left({-\frac{c^2}{\gamma}+o\left(\frac{1}{\left|\xi\right|}\right)}\right)t}\\ &+\left(1+\frac{1}{\gamma^2}\frac{1}{\left|\xi\right|^2}+o\left(\frac{1}{\left|\xi\right|^2}\right)\right)e^{\left(-\gamma\left|\xi\right|^2+\frac{c^2}{\gamma}+o\left(\frac{1}{\left|\xi\right|}\right)\right)t}. \end{aligned} \end{equation} $ (3.21)

所以高频时, 若$ \left |\alpha \right | $大, $ \xi ^\alpha\hat G $关于$ \xi $是不可积分的, 只有(2.2)的初值有光滑性时, 才能得到(2.2)解的光滑性.这就是下面的定理.

定理3.4   当$ \rho_0\in H^{l+s} $, $ m_0\in H^{l+s} $, $ s> 1 $, $ max\left \{ \left \| \rho_0 \right \|_{H^{l+s}}, \left \| m_0 \right \|_{H^{l+s}} \right \}=E $, 当$ \left | \alpha \right | \le l $时, 对任意正整数$ N $, 存在正常数$ C_N $, $ b $, 有$ \left | \partial _x^\alpha \chi _3\left ( D \right ) \rho \right |+\left | \partial _x^\alpha \chi _3\left ( D \right ) m \right | \le CEe^{-bt}B_N\left ( x, t \right ). $

  由(3.1), (3.19), (3.20), 当$ \left | \alpha \right | \le l $时, 有

$ \begin{equation} \begin{aligned} \notag &\left | x^\beta\partial_x^\alpha\chi _3\left ( D \right )\rho \right | \le\left | \int_{\left | \xi \right |\ge R } \partial_\xi^\beta\left ( \left | \xi \right |^{ \alpha } \hat\rho\right)d\xi\right|\le\int_{\left | \xi \right |\ge R }\left|\xi\right|^{\left | \alpha \right |-\left | \beta \right|}\left(\hat G_{11}\hat \rho_0 +\hat G_{12}\hat m_0\right) d\xi\\ \le& Ce^{-bt}\int_{\left | \xi \right |\ge R } \left|\xi\right|^{\left | \alpha \right |-\left | \beta \right|}\cdot\hat \rho_0+\left | \xi \right |^{\left | \alpha \right |-1-\left | \beta \right | }\hat m_0d\xi \le Ce^{-bt}\int_{\left | \xi \right |\ge R } \left | \xi \right | ^{\left | \alpha \right | }\cdot\hat \rho_0+\left | \xi \right | ^{\left | \alpha \right | -1}\hat m_0d\xi\\ \le& Ce^{-bt}\left ( \left \| \left | \xi \right | ^{-s} \right \| _{L^2\left ( \left | \xi \right |\ge R \right ) } \cdot\left \| \left | \xi \right |^{\left | \alpha \right |+s } \cdot\hat \rho_0 \right \|_{L^2}+\left \| \left | \xi \right | ^{-s} \right \|_{L^2\left ( \left | \xi \right |\ge R \right )} \cdot\left \| \left | \xi \right |^{\left | \alpha \right |+s } \cdot\hat m_0\right \|_{L^2} \right ) \\ \le& Ce^{-bt}\left(\left\|\rho_0\right\|_{H^{l+s}}+\left\| m_0\right\|_{H^{l+s}}\right) . \end{aligned} \end{equation} $

由(3.1), (3.19), (3.20), 当$ \left|\alpha\right|<l $, 有

$ \begin{equation} \begin{aligned} \notag &\left | x^\beta\partial _x^\alpha \chi _3\left ( D \right ) m \right | \le\int_{\left | \xi \right |\ge R } \partial _\xi ^\beta \left ( \xi^\alpha\hat m \right ) d\xi \le Ce ^{-bt}\int _{\left | \xi \right |\ge R }\left | \xi \right | ^{\left | \alpha \right |-\left | \beta \right | -3 }\cdot\hat \rho_0+\left | \xi \right | ^{\left | \alpha \right |-\left | \beta \right | }\hat m_0d\xi \\ \le& Ce^{-bt}\left ( \left \| \left | \xi \right |^{-2} \right \| _{L^2\left({\left | \xi \right |\ge R }\right)} \left \| \left | \xi \right | \cdot\hat \rho_0 \right \| _{L^2}+\left \| \left | \xi \right |^{-s} \right \|_{L^2\left({\left | \xi \right |\ge R }\right)} \left \| \left | \xi \right |^{\left | \alpha \right |+s }\cdot\hat m_0 \right \|_{L^2}\right )\\ \le& Ce^{-bt}E. \end{aligned} \end{equation} $

所以$ \left|\partial_x^\alpha\rho\right|\le CEe^{-bt}B_N\left(x, t\right ) $, $ \left|\partial_x^\alpha m\right|\le CEe^{-bt}B_N\left(x, t\right) $.

为得到解的逐点估计, 还需要下述两个引理.

引理3.1   当$ N $, $ s>1 $, 且$ N>s $, 有$ \int B_N\left(x-y, t\right)\left(1+\left|y\right|^2\right)^{-s}dy\le CB_s\left(x, t\right). $

  当$ \left | x \right | ^2\le 1+t $, 有

$ \int B_N\left ( x-y, t \right ) \left ( 1+\left | y \right | ^2 \right ) ^{-s}dy\le \int \left ( 1+\left | y \right | ^2 \right )^{-s}dy\le C\le CB_s\left ( x, t \right ). $

$ \left | x \right | ^2> 1+t $, $ \left | y \right | \le \frac{\left | x \right | }{2} $, 有$ \left | x-y \right | \ge \left | x \right | -\left | y \right | \ge \frac{\left | x \right | }{2}, $所以

$ \int B_N\left ( x-y, t \right ) \left ( 1+\left | y \right | ^2 \right ) ^{-s}dy\le B_N\left ( x, t \right ) \int \left ( 1+\left | y \right | ^2 \right )^{-s}dy\le CB_s\left ( x, t \right ). $

$ \left | x \right | ^2> 1+t $, $ \left | y \right | > \frac{\left | x \right | }{2} $, 由(3.14), 有

$ \begin{equation} \begin{aligned} \notag \int B_N\left ( x-y, t \right ) \left ( 1+\left | y \right |^2 \right ) ^{-s}dy&\le C\left ( 1+t \right ) \left ( 1+\left | x \right | ^2 \right )^{-s}\\ &\le C \frac{1}{\left ( \frac{1+\left | x \right |^2 }{1+t} \right )^s } \le C\frac{1}{\left ( \frac{\left | x \right |^2 }{1+t} \right )^s }\le CB_s\left ( x, t \right ) . \end{aligned} \end{equation} $

引理3.1得证.

引理3.2  当$ s> 1 $, 有$ \int B_\frac{1}{2}\left ( x-y, t \right ) \left ( 1+\left | y \right | ^2 \right ) ^{-s}dy\le CB_\frac{1}{2}\left ( x, t \right ) $.

  当$ \left | x \right | ^2\le 1+t $, 有$ \int B_\frac{1}{2}\left ( x-y, t \right ) \left ( 1+\left | y \right | ^2 \right ) ^{-s}dy\le C\le CB_\frac{1}{2}\left ( x, t \right ). $$ \left | x \right | ^2> 1+t $, $ \left | y \right | \le \frac{\left | x \right | }{2} $, 有$ \left | x-y \right | \ge \left | x \right | -\left | y \right | \ge \frac{\left | x \right | }{2} . $于是

$ \int B _\frac{1}{2} \left ( x-y, t \right )\left ( 1+\left | y \right | ^2 \right ) ^{-s}dy\le CB_\frac{1}{2}\left ( x, t \right ) \int \left ( 1+\left | y \right | ^2 \right ) ^{-s}dy \le CB_\frac{1}{2} \left ( x, t \right ) . $

$ \left | x \right | ^2> 1+t, \left | y \right | > \frac{\left | x \right | }{2} $, 有$ \left | x-y \right | \le \left | x \right | +\left | y \right | \le 3\left | y \right |, $于是

$ \begin{equation} \begin{aligned} \notag \int B_\frac{1}{2} \left ( x-y, t \right ) \left ( 1+\left | y \right | ^2 \right ) ^{-s}dy& \le \left ( 1+\left | x \right |^2 \right )^{-\frac{1}{2} } \int B_\frac{1}{2} \left ( x-y, t \right ) \left ( 1+\frac{\left | x-y \right |^2 }{3} \right )^{\frac{1}{2} -s} dy\\ &\le C\left ( \left | x \right | ^2 \right ) ^{-\frac{1}{2} }\int_{0}^{+\infty} \left ( 1+r^2 \right ) ^{-\frac{1}{2}}\left ( 1+t\right )^{\left ( \frac{1}{2} -s \right ) }r^{1-2s}\cdot r \left ( 1+t\right )^\frac{1}{2} dr \\ &\le C\left ( \left | x \right |^2 \right ) ^{-\frac{1}{2} }\left ( 1+t \right ) ^{\left ( 1-s \right )}\int_{0}^{+\infty} \left ( 1+r^2 \right ) ^{- \frac{1}{2} }r^{2-2s}dr\\ &\le C\left ( \left | x \right |^2 \right ) ^{-\frac{1}{2} }\le CB_\frac{1}{2} \left ( x, t \right ) . \end{aligned} \end{equation} $

引理3.2得证.

由定理3.1、定理3.2、定理3.3、引理3.1、引理3.2、式(3.1)得如下定理.

定理3.5   当初值$ \left | \rho _0 \right | +\left | m_0\right | \le C\left ( 1+\left | x \right | ^2 \right ) ^{-s} $, $ s> 1 $, 有

$ \left | \partial_x^\alpha\left ( 1-\chi _3\left ( D \right ) \right ) \rho \right | \le C_{N, \alpha }\left ( 1+t \right )^{-\frac{2+\left | \alpha \right | }{2} }B_s\left ( x, t \right), $
$ \left | \partial_x^\alpha\left ( 1-\chi _3\left ( D \right ) \right ) m \right | \le C_{N, \alpha }\left ( 1+t \right )^{-\frac{1+\left | \alpha \right | }{2} }B_\frac{1}{2} \left ( x, t \right). $

综合定理3.4、定理3.5、式(3.1), 得到本文主要结论.

定理3.6   当初值$ \left | \rho _0 \right | +\left | m_0\right | \le C\left ( 1+\left | x \right | ^2 \right ) ^{-s_1} $, $ s_1>1 $, 且$ \rho _0\in H^{l+s_2} $, $ m _0\in H^{l+s_2} $, max$ \left \{ \left \| \rho_0 \right \|_{H^{l+s_2} }, \quad\left \| m_0 \right \|_{H^{l+s_2} }\right \}\le E $, $ s_2>1 $, 当$ \left | \alpha \right | \le l $, 有

$ \left | \partial_x^\alpha\rho \right | \le C\left ( 1+t \right ) ^{-\frac{2+\left | \alpha \right | }{2} }B_{s_1}\left ( x, t \right )\quad, \quad \left | \partial_x^\alpha m \right | \le C\left ( 1+t \right ) ^{-\frac{1+\left | \alpha \right | }{2} }B_\frac{1}{2} \left ( x, t \right ). $

注:由(3.14)及定理3.6, 知$ \left \| m \right \| _{L^2} $关于时间$ t $不衰减, 这是非线性方程组(1.1)存在性做不下去的重要原因之一.

参考文献
[1] Kawashima S. System of a hyperbolic-parabolic composite type, with applications to the equations of manetohydrodynamics[D]. Kyoto: Kyoto University, 1983.
[2] Liu T P, Zeng Y N. Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of Conservation Laws[J]. Mcm. Amer. Math. Soc., 1997, 125(599): 120.
[3] Hoff D, Zumbrun K. Multi-dimensional diffusion wave for the Navier-Stokes aquations of compressible flow[J]. Indiana Univ. Math., 1995, 44(2): 603–676. DOI:10.1512/iumj.1995.44.2003
[4] Liu T P, Wang W K. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension, Comm[J]. Math. Phys, 1998, 196(1): 145–173. DOI:10.1007/s002200050418
[5] Wang W K, Yang X F. The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimensions[J]. Hyperbolic Differ. Equ., 2005, 2(3): 673–695. DOI:10.1142/S0219891605000580
[6] Ducomet B, Feireisl E, Petzeltova H, Skraba I S. Global in time weak solutions for compressible barotropic self-gravitating fluids, Discrete Contin[J]. Dyn. Syst., 2004, 11(1): 113–130.
[7] Solonnikov V A. Evolution free boundary problem for equations of motion of viscous compressible self-gravitating fluid[J]. SAACM, 1993, 3: 257–275.
[8] Zhang Y H, Tan Z. On the existence of solution to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow, Math[J]. Methods Appl. Sci., 2007, 30(3): 305–329. DOI:10.1002/mma.786
[9] Li H L, Matsumura A, Zhang G J. Optimal decay rate of the compressible Navier-Stokes-Poisson System in R-3[J]. Arch. Ration. Mech. Anal., 2010, 196(2): 681–713. DOI:10.1007/s00205-009-0255-4
[10] Wang W K, Wu Z G. Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions[J]. Journal of Diff. Equ., 2010, 248(7): 1617–1636. DOI:10.1016/j.jde.2010.01.003
[11] Wang W K, Yang T. The pointwise estimates of solutions for Euler equations with damping in multi-dimensions[J]. Differential Equations, 2001, 173(2): 410–450. DOI:10.1006/jdeq.2000.3937