本文研究如下带有双阻尼和记忆项的$ \sigma $-发展方程的柯西问题
其中$ \sigma\geq1 $为整数, $ \gamma \in (0, 1), \; p>1 $, $ (-\Delta)^{\sigma}f=\mathcal{F}^{-1}(|\xi|^{2\sigma}\mathcal{F}(f)(\xi)), \; \xi\in\mathbb{R}^{n}, \; |\xi|=(\xi^{2}_{1}+\cdots+\xi^{2}_{n})^{\frac{1}{2}}, \; \mathcal{F} $为傅里叶变换.
近年来, 对于带有阻尼项的$ \sigma $-发展方程的柯西问题已有很多研究. 考虑单阻尼情形, 文[1–4] 对带有阻尼项$ u_{t} $的问题进行研究, 得到线性问题解的衰减估计, 解的整体存在性以及渐近形态等结论. 带有阻尼项$ (-\Delta)^{\delta} u_{t}(\delta>0) $的研究见文[5–7], 也得到了该问题下关于解的衰减估计以及整体存在性等结论.
对于带有双阻尼的$ \sigma $-发展方程, 当$ \sigma=1 $时, 文[8] 考虑如下情形
当初值属于加权$ L^{1} $空间时, 作者得到了问题(1.2) 的解在$ L^{2} $空间下的渐近形态, 当$ t\rightarrow \infty $时, 有$ u(t, x)\sim(P_{0}+P_{1})G_{t}(x) $, 其中$ P_{j}:=\int_{\mathbb{R}^{n}}u_{j}(x)dx(j=0, 1), \; G_{t}(x):=\frac{1}{(\sqrt{4\pi t})^{n}}e^{-\frac{|x|^{2}}{4t}} $为高斯核函数. 作者指出, 与只带某一单阻尼情形时解的渐近形态相比较, 此时阻尼项$ u_{t} $的影响更为显著.
对于如下带有双阻尼以及非线性项的半线性波动方程
其中$ F(u)=|\partial_{t}^{i}\partial_{x}^{j}u|^{p}(i, j=0, 1) $. 文[9] 中, 作者得到当空间维数$ n\geq1 $时, 问题(1.3) 线性问题解的衰减估计, 并利用不动点定理证明了问题(1.3) 带有上面三类非线性项时小初值问题解的整体存在性, 解整体存在时得到指数p的范围分别为:
当$ F(u)=|u|^{p} $时, 文[10] 证明了当空间维度$ n\leq4 $时小初值问题解的整体存在性以及爆破, 得到临界指数$ p_{crit}=1+\frac{2}{n} $, 这与Fujita指数一致. 此外, 文[11] 研究了问题(1.3) 初值的正则性和指数p容许范围之间的关系. 若$ n \geq 1, \; m\in [1, 2), \; s_{1}, \; s_{2} $为正实数, 当初值具有下述三种正则性:
作者分别得到相应情形下小初值问题解的整体存在性.
当$ \sigma\geq1 $时, 文[12] 研究了如下带有双阻尼的半线性$ \sigma $-发展方程
作者讨论了当$ F(u)=|u|^{p} $时的情形, 得到问题(1.4)对应线性问题解的衰减估计, 证明了小初值问题解的整体存在性以及爆破, 得到临界指数$ p_{crit}=1+\frac{2\sigma}{n}. $此外, 当$ F(u)=|u|^{p} $时, 问题(1.4) 解的衰减估计与其对应线性问题解的衰减估计一致, 并未出现衰减损失.
考虑方程带记忆项情形. 对于如下问题
其中$ \gamma \in (0, 1), \; p>1 $. 文[13] 研究了当空间维数$ n\leq5 $时, 小初值问题解的整体存在性. 文[14] 得到空间维数$ n\leq3 $时解的整体存在性以及任意空间维数下解的爆破, 得
对于如下问题
其中$ \mu>0, \gamma \in (0, 1), p>1, \sigma \in (0, 1) $. 当空间维数$ n\geq 1 $且初值满足$ \int_{\mathbb{R}^{n}}(u_{1}+\mu(-\Delta)^{\sigma}u_{0})dx>0 $时, 文[15] 得到问题(1.6) 的爆破结果. 文[16] 考虑空间维数$ n\geq 2, \; \sigma=\frac{1}{2} $情形, 得到问题(1.6) 小初值问题下的临界指数$ p_{crit}=\max\left\{1+\frac{3-\gamma}{n-2+\gamma}, \; \gamma^{-1}\right\}. $
在已知的关于方程同时带有阻尼项与记忆项的研究中, 大多考虑单阻尼情形, 而对于双阻尼情形得到的结论较少, 且就记忆项而言, 它的出现可能对解的一些性质产生影响. 受到这一启发, 本文在文[12] 工作的基础上, 考虑双阻尼情形下, 当问题(1.1) 带记忆项时对指数p的范围以及衰减估计的影响, 并得到解的爆破以及生命跨度上界的估计. 文章结构如下: 第二节给出相关引理. 主要结论将在第三节中给出, 第四节给出解的整体存在性, 爆破以及生命跨度估计的证明.
本文有如下记号:
(1) $ f\lesssim g $表示存在一个常数$ c>0 $使得$ f\leq cg $;
(2) $ L^{p}(0<p<\infty) $表示Lebesgue空间;
(3) $ H^{s, p}(\mathbb{R}^{n}) $表示非齐次Sobolev空间, 即
$ \qquad H^{s, p}(\mathbb{R}^{n}):=\left\{f \in L^{p}(\mathbb{R}^{n}):\| f\|_{H^{s, p}(\mathbb{R}^{n})}=\|\mathcal{F}^{-1}[(1+|\xi|^{2})^{\frac{s}{2}}\hat{f}]\|_{L^{p}(\mathbb{R}^{n})}<\infty, \; s\geq 0 \right\} $;
(4) $ f\in AC[0, T] $表示f在$ [0, T] $内绝对连续.
首先给出分数阶积分和分数阶导数的一些性质, 见 [17, 18]. 若$ f\in L^{1}(0, T), \; T>0, \; \alpha\in(0, 1) $, 则$ \alpha $阶Riemann-Liouville分数阶积分定义如下
其中$ \Gamma(s) $为Gamma函数.
若$ f\in AC[0, T], \; T>0, \; \alpha\in(0, 1) $, 则$ \alpha $阶Riemann-Liouville型分数阶导数定义如下
若对于$ t \in [0, T], \alpha \in (0, 1), f, g \in C[0, T] $有$ D^{\alpha}_{0|t}f(t), D^{\alpha}_{t|T}g(t) $存在且连续, 则由分部积分公式可得
且对于任意的$ f\in AC^{n+1}[0, T] $, 以及整数$ n\geq 0, $有$ (-1)^{n}\partial^{n}_{t}D^{\alpha}_{t|T}f=D^{n+\alpha}_{t|T}f, $其中$ AC^{n+1}[0, T]:=\left\{f:[0, T] \rightarrow \mathbb{R}, \; \partial^{n}_{t}f\in AC[0, T]\right\} $, $ \partial^{n}_{t} $是关于t的n阶导数. 此外, 对于所有的$ 1 \leq q \leq \infty $, 有$ D^{\alpha}_{0|t}J^{\alpha}_{0|t}=Id_{L^{q}(0, T)} $在$ [0, T] $上几乎处处成立.
下面给出线性问题解的衰减估计.
引理2.1 [12] 问题(1.1) 对应线性问题的解满足如下$ (L^{1} \cap L^{2}-L^{2}) $估计:
其中$ a\geq 0, \; n\geq 1, \; [\cdot]^{+}=\max\left\{0, \cdot\right\}, \; j=0, 1 $.
下面给出一些需要用到的引理.
引理2.2 [19] 若$ 1<q < \infty, \; \sigma > 0.\ $则对于任意的$ y \in H^{\sigma}(\mathbb{R}^{n}), $有如下分数阶G-N不等式
其中$ \theta_{q}=\frac{n}{\sigma}(\frac{1}{2}-\frac{1}{q})\in [0, 1]. $
引理2.3 [14] 若$ \alpha \in \mathbb{R}, \; \beta>1, \; \gamma \in (0, 1), $则
引理2.4 [17] 令$ T>0, $函数$ \omega:[0, T]\rightarrow \mathbb{R} $定义如下
若$ 0<\alpha<1, \; \beta\gg 1, \; m\geq0, $则对所有的$ t\in [0, T] $, 有
下面给出弱解的定义.
定义2.1 令$ p>1, \; T>0 $. 若$ (u_{0}, u_{1})\in L^{2}\times L^{2}, \; u\in L^{p}([0, T], L^{2p})\cap L^{1}([0, T], L^{2}) $且对于任意的测试函数$ \phi(t, x)\in C^{2}([0, T], L^{2})\cap C^{1}([0, T], H^{2\sigma} \cap L^{2})\cap C([0, T], H^{2\sigma}), \; \phi(T, \cdot)=0, \; \phi_{t}(T, \cdot)=0, $有如下等式成立
则称u是$ (1.1) $的局部弱解. 若$ T=\infty $, 则称u是问题$ (1.1) $的整体弱解.
下面给出本文的主要结论.
定理3.1 当$ \sigma \geq \frac{n}{2} $时, 若$ \gamma \in (1-\frac{n}{4\sigma}, 1) $,
则存在常数$ \varepsilon>0 $使得对任意的小初值$ (u_{0}, u_{1})\in\mathcal{A}:=(L^{1}\cap H^{\sigma})\times(L^{1}\cap L^{2}) $, $ \|(u_{0}, u_{1})\|_{\mathcal{A}}\leq \varepsilon, $问题(1.1) 都存在一个唯一的整体解$ u \in C([0, \infty), H^{\sigma})\cap C^{1}([0, \infty), L^{2}) $且满足如下估计
定理3.2 假设初值$ u_{0}=0, \; u_{1}\in L^{1}\cap L^{2} $且满足
若$ \sigma \geq \frac{n}{2}, \; \gamma \in (1-\frac{n}{4\sigma}, 1) $,
则问题(1.1) 不存在整体解. 且对于任意小的常数$ \varepsilon>0 $, 当初值$ u_{0}=0, \; u_{1} $变为$ \varepsilon u_{1} $时, 可得到生命跨度的估计
其中$ C>0 $,
注3.1 事实上, $ F(t, u):=\Gamma(1-\gamma)J_{0|t}^{1-\gamma}(|u|^{p}), \; \lim_{\gamma\rightarrow 1}\Gamma(1-\gamma)F(t, u)=|u|^{p} $, 即当$ \gamma\rightarrow 1 $时, 可以得到非线性记忆项与幂次非线性项之间的关系. 综合定理3.1和定理3.2, 可得当$ \sigma \geq \frac{n}{2}, \; \gamma \in (1-\frac{n}{4\sigma}, 1) $时
令$ \gamma \rightarrow 1 $有$ p_{crit} \rightarrow 1+\frac{2\sigma}{n} $, 这与文[12] 中非线性项为幂次项时得到的临界指数一致.
定理3.3 当$ \sigma \in [\frac{n}{4}, \frac{n}{2}) $时, 若$ \sigma \in (\frac{n}{4}, \frac{n}{2}) $,
若$ \sigma=\frac{n}{4}, \; \gamma=\frac{1}{2}, \; p=2 $, 则存在常数$ \varepsilon>0 $使得对任意的小初值$ (u_{0}, u_{1})\in\mathcal{A}:=(L^{1}\cap H^{\sigma})\times(L^{1}\cap L^{2}) $, $ \|(u_{0}, u_{1})\|_{\mathcal{A}}\leq \varepsilon, $问题(1.1) 都存在一个唯一的整体解$ u \in C([0, \infty), H^{\sigma})\cap C^{1}([0, \infty), L^{2}) $且满足如下估计
本节在证明定理之前, 首先给出解的表达式以及在证明解的整体存在性过程中所需要的解空间的定义.
利用Duhamel原理, 可得问题(1.1) 的解, 形式如下
其中
$ K_{i}(i=0, 1) $的定义与 [12]中一致. 为了证明定理3.1和定理3.3, 引入解空间$ X(t) $. 对任意的$ t>0 $, 以及$ \eta>0 $, 空间$ X(t) $定义如下
定义算子$ N:u\in X(t) \rightarrow Nu , $其中
问题(1.1) 的整体解即为算子N的不动点. 因此, 为了得到$ X(t) $中解的全局存在性和唯一性, 对于任意的$ u, \; v\in X(t) $需要证明以下两项估计
再应用Banach不动点定理, 可得小初值问题解的全局存在性结果.
证明定理3.1 当$ \sigma=\frac{n}{2} $时, 定义空间范数为
当$ \sigma>\frac{n}{2} $时, 定义空间范数为
下面只证明$ \sigma>\frac{n}{2} $时情形, $ \sigma=\frac{n}{2} $时证明与之类似.
由线性估计, 有
为了证明式(4.4), 接下来证明
由引理2.1可得如下估计
由引理2.2中G-N不等式可以估计如下范数
其中$ s=1, 2.\; \theta\in [0, 1] $且
从而得
令$ \beta_{\gamma}(n, \sigma, p):=\frac{n}{2\sigma}(p-1)+(\gamma-1)p, \; \beta^{'}_{\gamma}(n, \sigma, p):=\frac{n}{2\sigma}(p-\frac{1}{2})+(\gamma-1)p $, 将式(4.11) 代入式(4.8) (4.9) 和(4.10) 有
因此, 当$ \beta_{\gamma}(n, \sigma, p)>1, \; \beta^{'}_{\gamma}(n, \sigma, p)>1, \; \gamma\in (1-\frac{n}{4\sigma}, 1) $时, 可得$ p>1+\frac{2\sigma(2-\gamma)}{n-2\sigma(1-\gamma)} $, 此时运用引理2.3可得
从而
即得到
结合式(4.6) (4.15) 得
下面证明式(4.5). 对于任意的$ u, \; v \in X(t), $有
由引理2.1有
由Hölder不等式, 当$ r\geq1 $时有
由引理2.2中G-N不等式得
将(4.20) 带入(4.17), (4.18) 以及(4.19) 中, 令$ \beta_{\gamma}(n, \sigma, p)>1, \; \beta^{'}_{\gamma}(n, \sigma, p)>1, \; \gamma\in (1-\frac{n}{4\sigma}, 1) $, 利用引理2.3可得
综上, 即证得(4.4)与(4.5), 再运用不动点定理则可得到在$ \sigma>\frac{n}{2} $情形下问题(1.1) 整体解的存在唯一性, 且有如下衰减估计
与上述证明类似, 也可得$ \sigma=\frac{n}{2} $时整体解的存在唯一性和衰减估计
下面证明$ \sigma\geq \frac{n}{2} $时解的爆破.
证明定理3.2 首先假设u是问题(1.1) 的整体解. 令$ \Psi\in C^{\infty}_{c}(\mathbb{R}^{n}) $为球对称函数, 满足:
(1) supp$ \Psi=B_{1} $,
(2) $ 0\leq \Psi \leq 1 $, 且对于任意的$ x\in B_{\frac{1}{2}}, \; \Psi(x)=1 $,
(3) 若$ |x_{1}|\leq|x_{2}| $, 则$ \Psi(x_{1})\geq \Psi(x_{2}) $, 其中$ B_{R}=\left\{x\in \mathbb{R}^{n}:|x|\leq R\right\} $.
$ \omega(t) $定义如下
其中supp$ \omega=[0, T] $, 对于任意的$ \beta>k\geq 0, \; \omega^{\beta}(t)\in C^{k}_{c}([0, \infty)) $.
对任意的$ R\geq 1 $, 令$ \Psi_{R}(x):=\Psi(\frac{x}{R}), \; \Phi_{R}(t, x)=\omega^{\beta}(t)\Psi_{R}(x), $引入函数$ \phi(t, x):=D^{\alpha}_{t|T}\Phi_{R}(t, x)=D^{\alpha}_{t|T}\omega^{\beta}(t)\Psi_{R}(x) $, 则supp$ \phi\subset [0, T]\times B_{R} $.
令$ \alpha:=1-\gamma, \; \beta>(\alpha+2)p^{\prime} $, 其中$ p^{\prime} $是p的共轭指数. 由引理2.4得
其中C为常数. 由于$ \sigma $是整数, 有$ (-\Delta)^{\sigma}\Psi_{R}(x)=R^{-2\sigma}(-\Delta)^{\sigma}\Psi(\frac{x}{R}) $.
由弱解的定义(2.4) 有
令$ I_{R}:=\Gamma(\alpha)\int_{0}^{T}\int_{B_{R}}J^{\alpha}_{0|t}(|u|^{p})\phi(t, x)dxdt=\Gamma(\alpha)\int_{0}^{T}\int_{B_{R}}|u|^{p}\Phi_{R}dxdt $. 下面进行估计.
综合(4.22), (4.23), (4.24), (4.25) 有
令$ \epsilon \in (0, \frac{1}{4}) $, 由(3.5) 以及$ 0\leq \Psi \leq 1 $, 得
取$ R=T^{\frac{1}{2\sigma}} $, 得
事实上, 当$ n>2\sigma\alpha $, 即$ \gamma>1-\frac{n}{2\sigma} $时, $ 1-(\alpha+1) p^{\prime}+\frac{n}{2\sigma}<0 $当且仅当$ p<1+\frac{2\sigma(2-\gamma)}{n-2\sigma(1-\gamma)} $. 由Beppo Levi单调收敛定理, 由于$ T\rightarrow \infty , \; \Phi_{T^{\frac{1}{2\sigma}}}\rightarrow 1 $, 可得
因此可得$ u\equiv 0 $, 这与(3.5) 矛盾.
考虑$ \bar{p}:=1+\frac{2\sigma(2-\gamma)}{n-2\sigma(1-\gamma)} $临界情形, 令$ R=T^{\frac{1}{2\sigma}}K^{-\frac{1}{2\sigma}}, \; K>1 $. 则由(4.26) 有
因此, 令$ T\rightarrow \infty $, 对于某些$ C(K)>0 $有
由于对于任意的正整数$ \theta $, 当$ |x|\leq \frac{R}{2} $时, $ (-\Delta)^{\theta}\Psi_{R}(x)=0.\ $与非临界情形证明类似, 当$ R=T^{\frac{1}{2\sigma}}K^{-\frac{1}{2\sigma}} $时, 有
以及
同理有
由(4.28), (4.20), (4.30), (4.31) 有
由(4.27) 有$ u\in L^{p} $, 从而对于任意固定的$ K>0 $, 有
从而当$ T\rightarrow \infty $, 由(4.32) 可得
当$ K\rightarrow \infty $时有$ u\equiv 0 $, 这与(3.5) 矛盾. 综上, 爆破结论得证.
当$ u_{1}\in L^{1}\cap L^{2} $, 初值给定为$ (0, \varepsilon u_{1}) $时, 重复上述爆破证明步骤, 对于$ (\alpha+1)p^{\prime}>1+\frac{n}{2\sigma} $, 令$ k=(\alpha+1)p^{\prime}-1-\frac{n}{2\sigma} $, 由于
则有
从而得到生命跨度估计
证明定理3.3 当$ \sigma=\frac{n}{4} $时, 定义空间范数为
当$ \sigma \in (\frac{n}{4}, \frac{n}{2}) $时, 定义空间范数为
由线性问题解的衰减估计, 显然$ u^{ln} $属于$ X(t) $. 式(4.7) 的证明方法步骤与定理3.1中的证明类似, 只是在使用引理2.2时有不同. 当$ \sigma \in (\frac{n}{4}, \frac{n}{2}) $时, 此时G-N不等式变为
此时令$ \beta_{\gamma}(n, \sigma, p):=\frac{n}{2\sigma}(p-1)+(\gamma-1)p-(\frac{n}{4\sigma}-\frac{1}{2})\frac{n}{\sigma}(\frac{p}{2}-1), \; \beta^{'}_{\gamma}(n, \sigma, p):=\frac{n}{2\sigma}(p-\frac{1}{2})+(\gamma-1)p-(\frac{n}{4\sigma}-\frac{1}{2})\frac{n}{\sigma}(\frac{p}{2}-\frac{1}{2}) $, 相应地, 由引理2.1可得如下估计
令$ \beta_{\gamma}(n, \sigma, p)>1, \; \beta^{'}_{\gamma}(n, \sigma, p)>1 $, 即得
由上述$ \theta $取值范围, 当$ \sigma \in (\frac{n}{4}, \frac{n}{2}) $时有
要让(4.38) 同时满足(4.39), 可得$ \gamma $范围为
此时将(4.34) 带入(4.35), (4.36) 和(4.37), 再利用引理2.3, 可得如下估计
从而可得
式(4.5) 的证明与定理3.1中证明类似, 得到(4.4) (4.5) 后再运用不动点定理可得解的整体存在唯一性. $ \sigma=\frac{n}{4} $时的证明也与定理3.1中证明类似. 得到$ \sigma\in [\frac{n}{4}, \frac{n}{2}) $时衰减估计如下
注4.1 定理$ 3.3 $中$ \gamma $范围为
通过计算可知, 在$ \sigma \in (\frac{n}{4}, \frac{n}{2}) $上$ \gamma $的范围非空.