The weak type inequality for maximal operator of Fej$ \acute{\mbox{e}} $r means for trigonometric system can be found in Zygmund [1], in Schipp [2] for Walsh system and in P$ \acute{\mbox{a}} $l, Simon [3] for bounded Vilenkin system. Later, Schipp [2] showed that maximal operator $ \sigma^{\ast}f:=\sup\limits_{n}| \sigma_{n}f| $ is of weak type (1, 1), from which the a.e. convergence follows by standard argument. Schipp's result implies by interpolation also the boundedness of $ \sigma^{\ast}: L^{p}\rightarrow L^{p}(1<p\leqslant \infty) $. This fails to hold for $ p=1 $, but Fujii [4] proved that $ \sigma^{\ast} $ is bounded from the dyadic Hardy space $ H^{1} $ to $ L^{1} $ (see also Simon [5]). Fujii's results were extended by Wesiz [6], [7] to $ H^p $ spaces for $ 1/2<p\leqslant 1 $, in the two-dimensional case, too. Simon [8] gave a counterexample, which shows that boundedness of $ \sigma^* $ does not hold for $ 0< p <1/2 $. The counterexample for $ \sigma^* $ when $ p= 1/2 $ is due to Goginava [9]. Goginava [10] proved that the maximal operator $ \tilde{\sigma}^* $ defined by
is bounded from the Hardy space $ H^{1/2} $ to the space $ L^{1/2} $ for Walsh system. He also proved, that for any nondecreasing function $ \varphi:{\bf{N}}\rightarrow [1, \infty) $, satisfying the condition
the maximal operator
is not bounded from the Hardy space $ H^{1/2} $ to the space $ L^{1/2} $. Tephnadze [11] generalized this result and proved the boundedness of
is bounded from the martingale Hardy space $ H^p $ to the space $ L^p $, where $ \sigma_nf $ is $ n $-th Fejér mean with respect to bounded Vilenkin system for $ 0<p<1/2 $.
In this paper the two-dimensional case will be investigated with respect to Vilenkin-like system. We show that the boundedness of some maximal operators. Throughout this paper, we denote the set of integers and the set of non-negative integers by $ {\bf{Z}} $ and $ {\bf{N}} $, respectively. We use $ c, c_p, C_p $ to denote constants and may denote different constants at different occurrences.
Let $ m:=(m_0, m_1, \cdots, m_k, \cdots) $ be sequence of natural numbers such that $ m_k \geq 2 (k\in {\bf{N}} ) $. For all $ k\in {\bf{N}} $ we denote by $ Z_{m_k} $ the $ m_k $-th discrete cyclic group. Let $ Z_{m_k} $ be represented by $ \{0, 1, \cdots, m_k-1 \} $. Suppose that each (coordinate) set has the discrete topology and the measure $ \mu_k $ which maps every singleton of $ Z_{m_k} $ to $ 1/m_k\ (u_k(Z_{m_k})=1) $ for $ k\in {\bf{ N}} $. Let $ G_m $ denote the complete direct product of $ Z_{m_k} $'s equipped with product topology and product measure $ \mu $, then $ G_m $ forms a compact Abelian group with Haar measure 1. The elements of $ G_m $ are sequences of the form $ (x_0, x_1, \cdots, x_k, \cdots), $ where $ x_k\in Z_{m_k} $ for every $ k\in {\bf{N}} $ and the topology of the group $ G_m $ is completely determined by the sets
$ (I_0(0):=G_m). $ The Vilenkin space $ G_m $ is said to be bounded if the generating system $ m $ is bounded. We assume $ q=\sup_{i}\{m_i\}<\infty. $
Let $ M_0:=1 $ and $ M_{k+1}:=m_kM_k $ for $ k\in {\bf{N}} $, it is so-called the generalized powers. Then every $ n\in {\bf{N}} $ can be uniquely expressed as $ n=\sum\limits_{k=0}^{\infty} n_kM_k, 0\leq n_k<m_k, n_k\in {\bf{N}}. $ The sequence $ (n_0, n_1, \cdots) $ is called the expansion of $ n $ with respect to $ m $. We often use the following notations: $ |n|:=\max\{k\in {\bf{N}}:n_k\neq0\} $ (that is, $ M_{|n|}\leq n<M_{|n|+1}) $ and $ n^{(k)}=\sum\limits_{j=k}^\infty n_jM_j$.
For $ k\in{\bf{N}} $ and $ x\in G_m $ denote $ r_k $ the $ k $-th generalized Rademacher function:
It is known that for $ x\in G_m , n\in {\bf{N}} $
Now we define the $ \psi_n $ by
Then $ \{ \psi_n: n\in {\bf{N}}\} $ is a complete orthonormal system with respect to $ \mu$.
We introduce the so-called Vilenkin-like $ ( $or $ \psi\alpha) $ system (see [12]). Let functions $ \alpha_n, \alpha_j^k : G_m\rightarrow \mathcal{C} $$ (n, j, k\in {\bf{N}}) $ satisfy for all $ x, y\in G_m $:
(1) $\alpha_j^k$ is measurable with respect t $\Sigma_j$ and $\alpha_j^k(x+y)=\alpha_j^k(x)\alpha_j^k(y)$;
(2) $|\alpha_j^k|=\alpha_j^k(0)=\alpha_0^k=\alpha_j^0=1\ \ (j, k\in {\bf{N}})$;
(3) $\alpha_n:=\prod\limits_{j=0}^\infty \alpha_j^{n^{(j)}}\ \ (n\in {\bf{N}})$.
Let $ \chi_n:=\psi_n\alpha_n\ (n\in {\bf{N}}) $. The system $ \chi:=\{\chi_n:n\in{\bf{N}}\} $ is called a Vilenkin-like $ ( $or $ \psi\alpha) $ system.
Define Dirichlet kernels and Fejér kernels with respect to Vilenkin-like system and Vilenkin system as follows.
It's well known that
Moreover for $ y, x\in G_m $,
Since $ \alpha_j^k(x+y)=\alpha_j^k(x)\alpha_j^k(y) $ and $ r_j(x+y)=r_j(x)r_j(y) $, we have
Thus we obtain
Now we define $ \chi_{n, m}(x, y):=\chi_{n}(x)\chi_{m}(y), (x, y\in G_m) $. If $ f\in L^1 $ then the number $ \hat{f}(n, m):=E(f\chi_{n, m}) $ is said to be the $ (n, m) $-th coefficient of $ f $ with respect to system $ \chi. $ Denote by $ S_{n, m}f $ the $ (n, m) $-th partial sum of the Fourier series of a martingale $ f $ with respect to character system $ \chi $, namely,
It is easy to see that
Let $ \mathcal{F}_{n, m}(n, m\in{\bf{N}}) $ be the $ \sigma $-algebra generated by the rectangles $ I_{n, m}(x, y):=I_n(x)\times I_m(y), $$ (x, y\in G_m). $ A sequence of integrable functions $ f=(f_{n, m};n, m\in{\bf{N}}) $ is said to be a martingale if $ f_{n, m} $ is $ \mathcal{F}_{n, m} $ measurable for all $ n, m\in{\bf{N}} $ and $ S_{M_{n}, M_{m}}f_{k, l}=f_{n, m} $ for all $ n, m, k, l\in{\bf{N}} $ such that $ n\leqslant k $ and $ m\leqslant l $.
We say that a martingale $ f=(f_{n, m};n, m\in{\bf{N}}) $ is $ L^{p} $-bounded if $ \|f\|_p:=\sup_{n, m}\parallel f_{n, m}\|_{p}<\infty $. The set of the $ L^{p} $-bounded martingales will be denoted by $ L^{p}(G_m^{2}) $.
The diagonal maximal function of a martingale $ f=(f_{n, m};n, m\in{\bf{N}}) $ is defined by
It is easy to see that in case when $ f $ is an integrable real valued function given on $ G_m^{2} $, the above maximal functions can be computed for all $ x, y\in G_m $ by
Define the spaces $ H^{p}(G_m^{2}) $ of Hardy type as the set of martingales $ f $ such that
The martingale Hardy spaces $ H^p(G^2_m) (0<p\leqslant 1) $ have atomic characterizations. A bounded measurable function $ a $ defined on $ G_m^{2} $ is a $ p $-atom if $ a\equiv1 $ or there exists a dyadic square $ I $ such that
We shall say also that $ a $ is supported on $ I $. Then a martingale $ f=(f_{n, m};n, m\in{\bf{N}}) $ is in $ H^{p}(G_m^{2}) $ if there exists a sequence $ (a_{k}, k\in{\bf{N}}) $ of $ p $-atoms and a sequence $ (\lambda_{k}, k\in{\bf{N}}) $ of real numbers such that $ \sum\limits_{k=0}^{\infty}| \lambda_{k}|^{p}<\infty $ and
Moreover, $ c_{p}\inf(\sum\limits_{k=0}^{\infty}|\lambda_{k}|^{p})^{1/p}\leqslant\| f\|_{H^{p}}\leqslant C_{p}\inf(\sum\limits_{k=0}^{\infty}|\lambda_{k}|^{p})^{1/p} $, where the infimum is taken over all decompositions of $ f $ of the form (2.6).
Next we will consider the boudedness of operator $ \tilde{\sigma}^*f $ and $ \hat{\sigma}^*f $ in the two-dimensional Vilenkin-like system, where $ \tilde{\sigma}^*f=\sup\limits_{2^{-\alpha}\leqslant\frac{n}{m}\leqslant 2^{\alpha}}\frac{|\sigma_{n, m}f|}{[(n+1)(m+1)]^{1/p-2}} $, $ \hat{\sigma}^*f=\sup\limits_{n, m\in {\bf{N}}}\frac{|\sigma_{n, m}f|}{[(n+1)(m+1)]^{1/2p-1}}. $
Lemma 3.1 ([13]) Suppose that the operator $ T $ is sublinear and for $ 0<p\leq 1 $, there exists a constant $ C_p>0 $ such that
for every $ p $-atom $ a\in H^{p} $ supported on the dyadic interval $ I $. If $ T $ is bounded from $ L^{s} $ into $ L^{s} $ for some $ 1\leqslant s\leqslant\infty $, then
If (3.1) is true, $ T $ is called $ p $-quasi-local.
Lemma 3.2 ([13]) Let $ 0<p<1, 1<s\leq\infty $ and assume that the sublinear operator $ T $ is $ p $-quasi-local and $ (L^{s}, L^{s}) $-bounded. Then $ T:H^{u, v}\rightarrow L^{u, v} $ is bounded for all $ p<u<s $ and $ 0<v\leqslant\infty. $ Especially, $ T $ is of weak type (1, 1).
Further we assume that for all $ n\in{\bf{N}} $ the kernel $ P_{n}\in L^{\infty} $ is given such that $ \sup\limits_{n}\| P_{n}\|_{1}<\infty $. If we consider the maximal operator
then $ T:L^{\infty}\rightarrow L^{\infty} $ is evidently bounded. Therefore, if $ T $ is $ p $-quasi-local for some $ 0<p<1 $, then Lemma 3.2 can be applied to $ T $.
Lemma 3.3 If $ P_{n} $ is a $ summation $ $ kernel $, i.e. with suitable real coefficients $ \lambda_{n, k}(n, k\in{\bf{N}}) $
then the assumption
implies the $ p $-quasi-locality of $ T $.
Proof Indeed, to prove (3.1) let $ a $ be a $ p $-atom supported on the interval $ I $. Without loss of generality we can assume that $ I=I_{N} $ for some $ N\in{\bf{N}} $. Then $ a\ast P_{n}=0 $ holds for all $ n=0, \ldots, M_{N}-1 $, since the functions $ \chi_{k}(k=0, \ldots, M_{N}-1) $ are constant on $ I $. Therefore, $ Ta=\sup\limits_{n\geqslant M_{N}}| a\ast P_{n}| $ and thus
Hence, (3.1) follows from (3.2) and (3.3).
Lemma 3.4 ([14]) Let $ z\in I_{N}^{k, l}, k=0, \cdots, N-2, l=k+1, \cdots, N-1 $ and $ n\geqslant M_N. $ Then
Let $ z\in I_{N}^{k, N}, k=0, \cdots, N-1 $ and $ n\geq M_N. $ Then
where $ c $ is an absolute constant and
.
Lemma 3.5 ([14]) Let $ 2< A\in \mathbb{N}_+, k\leq s < A $, $ n^*_A:=M_{2A}+M_{2A-2}+\cdots+M_2+M_0. $ Then we have
for $ z\in I^{2k, 2s}_{2A}, k= 0, 1, \cdots, A-3, s=k+ 2, k+ 3, \cdots, A-1$.
If $ I:=I\times J $ is a dyadic square and let $ I^{r}:=I^{r}\times J^{r}. $ Then it is not hard to see that the definition of the $ p $-quasi-locality of $ T $ can be modified as follows: there exists $ r=0, 1\ldots $ such that
holds for every $ p $-atom $ a $ supported on the dyadic square $ I $.
Let $ P_{n, m}(n, m\in{\bf{N}}) $ be the Kronecker product of $ P_{n} $ and $ P_{m} $, i.e. $ P_{n, m}(x_1, 0, x_2, 0):=P_{n}(x_1, 0)P_{m}(x_2, 0) $ and for a fixed $ \alpha\geqslant0 $ define $ T_\alpha $ by
Theorem 4.1 Assume (3.2) for a given $ 0<p\leqslant 1 $. Then $ T_\alpha $ is $ p $-quasi-local.
Proof It is enough to prove (3.6) with a suitable $ r\in {\bf{N}} $. To this end let $ a\in L^{\infty}(G_m^{2}) $ be a $ p $-atom. We can assume that $ a $ is supported on the dyadic square $ I_{N}\times I_{N} $ for some $ N\in {\bf{N}} $. Furthermore, it follows that $ a\ast P_{n, m}=0 $ when $ n, m < M_{N}. $ Therefore, to compute $ T_\alpha a=\sup\limits_{ 2^{-\alpha}\leqslant\frac{n}{m}\leqslant 2^{\alpha}}| a\ast P_{n, m}| $ it can be assumed $ n\geqslant M_{N} $ or $ m \geqslant M_{N} $. In the first case $ m\geqslant M_{N-r} $, while in the second case $ n\geqslant M_{N-r} $ follows. In other words, we get the estimate
where $ r\in {\bf{N}} $ is determined by $ r-1\leqslant\alpha<r $. Here, $ \| a\|_{\infty} \leqslant M_{N}^{\frac{2}{p}} $ implies
Therefore, to verity (3.6) it is enough to show that
To this end let us decompose the double integral in question as follows:
Here $ A_{1} $ can be estimated in the following way:
Thus we get
The estimate $ A_{2}\leqslant \frac{C_{p}}{M_{N}^{2}} $ can be derived similarly. Finally, applying (3.2) twice the estimation
follows, which proves Theorem 4.1.
Theorem 4.2 Let $ \tilde{\sigma}^*f=\sup\limits_{2^{-\alpha}\leqslant\frac{n}{m}\leqslant 2^{\alpha}}\frac{|\sigma_{n, m}f|}{[(n+1)(m+1)]^{1/p-2}}. $ Then for all $ 0<p<1/2 $ we have
Proof Let $ P_{n}(x, 0)=\sum\limits_{k=0}^{n}\frac{1}{(n+1)^{1/p-2}}K_n(x, 0) $. By Theorem 4.1, it is enough to prove (3.2) for $ P_{n}(x, 0) $. Let $ z\in I_{N}^{k, l} $, $ 0\leqslant k<l\leqslant N $. From Lemma 3.4 and $ 1/p-2>0 $ we get
which complete the proof of Theorem 4.2.
By Lemma 3.2 and Theorem 4.2, we easily get Theorem 4.3, we omit the proof.
Theorem 4.3 Let $ 0<p<1/2 $. Then $ \tilde{\sigma}^*:H^{u, v}(G_m^2)\rightarrow L^{u, v}(G_m^2) $ is bounded for all $ p<u<\infty $ and $ 0<v\leqslant\infty. $ Especially, $ \tilde{\sigma}^* $ is of weak type (1, 1).
Theorem 4.4 Let $ 0<p< 1/2 $. Then the two dimensional maximal operator $ \hat{\sigma}^* $ defined by $ \hat{\sigma}^*f=\sup\limits_{n, m\in {\bf{N}}}\frac{|\sigma_{n, m}f|}{[(n+1)(m+1)]^{1/2p-1}} $ is not bounded from $ H^{p}(G_m^2) $ to $ L^{p}(G_m^2) $.
Proof Let $ A\in \mathbb{N} $ and
It is simple to calculate
and
We have
Since
we have
Let $ q=\sup_{i}\{m_i\} $. For every $ l=1, \cdots, [\frac{1}{4}\log_q(\sqrt{A^{1/2p}})]-1 $ ($ A $ is supposed to be large enough) let $ k_l $ be the smallest natural numbers, for which $ M_{2A}\sqrt{A^{1/2p}}\frac{1}{q^{2l/p}}\leq M^2_{2k_l}<M_{2A}\sqrt{A^{1/2p}}\frac{1}{q^{(2l-2)/p}} $ holds.
Suppose $ x, y \in I_{2A}^{k_l, k_l+1}:= I_{2A}(0, \cdots, 0, z_{2k_l}\neq 0, z_{2k_l+1}\neq 0, z_{2s+1}, \cdots, z_{2A-1}) $, then by Lemma 3.5 we have
Thus
Then
Thus the proof of Theorem 4.4 is complete.