数学杂志  2023, Vol. 43 Issue (3): 189-201   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
DAI Zhi-min
CHEN Ying-tong
CACCIOPPOLI INEQUALITY AND HIGHER INTEGRABILITY FOR DIFFERENTIAL FORMS WITH NON-STANDARD GROWTH CONDITIONS
DAI Zhi-min1,2, CHEN Ying-tong1    
1. School of Science, Xi'an Technological University, Xi'an 710021, China;
2. School of Mathematical Sciences, Peking University, Beijing 100871, China
Abstract: In this paper, we mainly study the related inequalities for differential forms. By using the properties of A-harmonic equation, the weak inverse Holder inequality associated with the equation and the properties of a class of Young functions satisfying non-standard growth conditions, we obtain the Caccopoli inequality and its high-order integrability for a special differential form (i.e., the non-homogeneous A-harmonic tensor) under the action of this kind of Young functions. This conclusion extends the Caccopoli inequality for differential form from Lp space to Orlicz space composed of young functions of this kind, and verifies that the Caccopoli inequality can be used for quantitative estimation and qualitative analysis of differential forms.
Keywords: Caccioppoli inequality     higher integrability     differential forms     non-standard growth conditions     A-harmonic equation    
具有非标准增长条件的微分形式的Caccioppoli不等式及其高阶可积性
戴志敏1,2, 陈映瞳1    
1. 西安工业大学基础学院, 陕西 西安 710021;
2. 北京大学数学科学学院, 北京 100871
摘要:本文主要研究了微分形式中的相关不等式. 利用A-调和方程的性质及与该方程相关的弱逆Holder不等式和一类满足非标准增长条件的Young函数的性质, 获得了一类特殊的微分形式(即非齐次A-调和张量)在该类Young函数作用下的Caccoppoli不等式及其高阶可积性. 该结论将微分形式中Caccoppoli不等式由Lp空间推广到了由该类Young函数构成的Orlicz空间, 同时验证了该Caccoppoli不等式可以用于微分形式的定量估计和定性分析.
关键词Caccioppoli不等式    高阶可积性    微分形式    非标准增长条件    A-调和方程    
1 Introduction

As generalizations of functions, differential forms have been widely used in many fields including potential theory, partial differential equations(PDE), quasi-conformal mappings, and nonlinear analysis[1].In recent decades, the inequalities for differential forms equipped with the $ L^{p} $-norm have been very well studied, while that with Orlicz norms have not been fully developed [2, 3].

In 2004, Buckley and Koskela first introduced a kind of Young function $ G(p, q, C) $, since then some mathematicians devoted themselves to study the inequalities with $ L^{\varphi} $-norm for differential forms and operators, where $ \varphi\in G(p, q, C) $[4-9]. In 2013, Lu and Bao redefined a Young function $ \varphi $ satisfying the non-standard growth conditions, write $ \varphi\in NG(p, q) $ for short, which can be traced back to [10], and obtained the Poincaré inequalities and the sharp maximal inequalities for differential forms with $ L^{\varphi} $-norm[11-12]. However, it still remains unanswered on how to distinguish these two kinds of Young functions.

It is well known that Caccioppoli inequality and Poincaré inequality are two kinds of important inequalities in differential forms, which can be used in PDE and potential theory[13-14]. In recent years, some versions of Poincaré inequalities for differential forms with $ L^{p} $ and Orlicz norms have been established[1, 5-9, 15-17]. Although Caccioppoli inequalities for differential forms with $ L^{p} $-norm have been well obtained, that with Orlicz norm still needs further studies[1, 17-18]. In this paper, we devoted ourselves to developing Caccioppoli inequalities for differential forms satisfying the nonhomogeneous $ A $-harmonic equation with the Young function lies in $ NG(p, q) $ and proving the higher integrability of the exterior derivative of the nonhomogeneous $ A $-harmonic tensors.

Now we introduce some notations and definitions. Let $ \Theta $ be an open subset of $ \mathbb{R}^n(n\geq 2) $ and $ O $ be a ball with the center at the origin in $ \mathbb{R}^n $. Let $ \rho O $ denote the ball with the same center as $ O $ and $ diam(\rho O) =\rho diam(O)(\rho>0) $. $ |\Theta| $ is used to denote the Lebesgue measure of a set $ \Theta\subset\mathbb{R}^n $. Let $ \wedge^{\ell}= \wedge^{\ell}(\mathbb{R}^n), \ell = 0, 1, \ldots, n $, be the linear space of all $ \ell $-forms $ u(x)=\sum_{I}u_{I}(x)\mathrm{d}x_{I}=\sum_{I}u_{i_{1}i_{2}\cdots i_{\ell}}(x) \mathrm{d}x_{i_{1}}\wedge \mathrm{d}x_{i_{2}}\cdots\wedge \mathrm{d}x_{i_{\ell}} $ in $ \mathbb{R}^n $, where $ I= (i_{1}, i_{2}, \ldots , i_{\ell}), 1\leq i_{1}< i_{2}<\cdots<i_{\ell}\leq n $, are the ordered $ \ell $-tuples and the wedge outer product satisfies the relationship that

$ \begin{equation} \mathrm{d}x_i\wedge\mathrm{d}x_j=\left\{ \begin{array}{ll} -\mathrm{d}x_j\wedge \mathrm{d}x_i, & i\neq j; \\ 0, & i=j. \end{array} \right. \end{equation} $ (1.1)

Moreover, if each of the coefficient $ u_{I}(x) $ of $ u(x) $ is differential on $ \Theta $, then we call $ u(x) $ a differential $ \ell $-form on $ \Theta $ and use $ D^{'}(\Theta, \wedge^{\ell}) $ to denote the space of all differential $ \ell $-forms on $ \Theta $. $ C^{\infty}(\Theta, \wedge^{\ell}) $ denotes the space of smooth $ \ell $-forms on $ \Theta $. The exterior derivative $ d:D^{'}(\Theta, \wedge^{\ell})\rightarrow D^{'}(\Theta, \wedge^{\ell+1}) $, $ \ell=0, 1, \ldots, n-1 $, is given by

$ \begin{equation} \mathrm{d}u(x)=\sum\limits_{I}\sum^{n}_{j=1}\frac{\partial u_{i_{1}i_{2}\cdots i_{\ell}}(x)}{\partial x_{j}}\mathrm{d}x_{j}\wedge \mathrm{d}x_{i_{1}}\wedge \mathrm{d}x_{i_{2}}\wedge\cdots\wedge \mathrm{d}x_{i_{\ell}} \end{equation} $ (1.2)

for all $ u\in D^{'}(\Theta, \wedge^{\ell}) $. The Hodge star operator $ \star:\wedge^{\ell}\rightarrow \wedge^{n-\ell} $ is defined as follows. If $ u=u_{i_{1}i_{2}\cdots i_{\ell}}(x_{1}, x_{2}, \ldots, x_{n})\mathrm{d}x_{i_{1}}\wedge \mathrm{d}x_{i_{2}}\wedge\cdots\wedge \mathrm{d}x_{i_{\ell}}= u_{I}\mathrm{d}x_{I} $, $ i_{1}<i_{2} <\cdots<i_{\ell} $, is a differential $ \ell $-form, then $ \star u=\star(u_{i_{1}i_{2}\cdots i_{\ell}}\mathrm{d}x_{i_{1}}\wedge \mathrm{d}x_{i_{2}} \wedge\cdots\wedge \mathrm{d}x_{i_{\ell}})=(-1)^{\sum(I)}\omega_{I}\mathrm{d}x_{J} $, where $ I = (i_{1}, i_{2}, \cdots, i_{\ell}) $, $ J = \{1, 2, \ldots, n\}-I $, and $ \sum(I) = \frac{\ell(\ell+1)}{2}+\sum^{\ell}_{j=1}i_{j} $. The Hodge codifferential operator $ d^{*}:D^{'}(\Theta, \wedge^{l+1})\rightarrow D^{'}(\Theta, \wedge^{\ell}) $is defined by $ d^{*}=(-1)^{n\ell+1}\star d\star $ on $ D'(\Theta, \wedge^{\ell+1}) $, $ \ell= 0, 1, \ldots , n-1 $. For all $ u\in D^{'}(\Theta, \wedge^{\ell}) $, we have $ d(\mathrm{d}u)=d^{*}(d^{*}u)=0 $. $ L^{p}(\Theta, \wedge^{\ell})(1\leq p<\infty) $ is a Banach space with the norm $ \|u\|_{p, \Theta}=(\int_{\Theta}|u(x)|^{p}\mathrm{d}x)^{1/p}=(\int_{\Theta}(\sum_{I}|u_{I}(x)|^{2})^{p/2}\mathrm{d}x)^{1/p}<\infty $. Similarly, the notations $ L^{p}_{loc}(\Theta, \wedge^{\ell}) $ and $ W^{1, p}_{loc}(\Theta, \wedge^{\ell}) $ are self-explanatory[19-20].

From [19-20], $ u $ is a differential form in a bounded convex domain $ \Theta $, then there is a decomposition

$ \begin{equation} u=\mathrm{d}(Tu)+T(\mathrm{d}u), \end{equation} $ (1.3)

where $ T $ is called a homotopy operator, and exists

$ \begin{equation} \|Tu\|_{p, O}\leq C|O|diam(O)\|u\|_{p, O} \end{equation} $ (1.4)

for any differential form $ u\in L^{p}_{loc}(\Theta, \bigwedge^{\ell}), \ell=1, 2, \ldots, n, 1<p<\infty $. Furthermore, we can define the $ \ell $-form $ u_{\Theta} \in D^{'} (\Theta, \bigwedge^{\ell}) $ by

$ \begin{equation} u_{\Theta}=\left\{ \begin{array}{ll} |\Theta|^{-1}\int_{\Theta}u(x)\mathrm{d}x, & \ell=0 \\ \mathrm{d}T(u), & \ell=1, 2, \ldots, n \end{array} \right. \end{equation} $ (1.5)

for all $ u \in L^{p}(\Theta, \bigwedge^{\ell}), 1\leq p<\infty $.

The nonhomogeneous $ A $-harmonic equation for differential forms is defined as follows

$ \begin{equation} \mathrm{d}^{\star}A(x, \mathrm{d}u) =B(x, \mathrm{d}u), \end{equation} $ (1.6)

where $ A:\Theta\times \wedge^{\ell}(\mathbb{R}^n)\rightarrow \wedge^{\ell}(\mathbb{R}^n) $ and $ B:\Theta\times \wedge^{\ell}(\mathbb{R}^n)\rightarrow \wedge^{\ell-1}(\mathbb{R}^n) $ satisfy the conditions:

$ \begin{equation} |A(x, \xi)|\leq a|\xi|^{p-1}, \quad A(x, \xi)\cdot\xi\geq|\xi|^{p}, \quad |B(x, \xi)|\leq b|\xi|^{p-1} \end{equation} $ (1.7)

for almost every $ x\in \Theta $ and all $ \xi\in \wedge^{\ell}(\mathbb{R}^n) $. Here $ a, b>0 $ are constants and $ 1<p<\infty $ is a fixed exponent associated with (1.6). The solutions of the nonhomogeneous $ A $-harmonic equation for differential forms are called as the nonhomogeneous A-harmonic tensor, see [1] for more details about these kinds of equations.

2 Caccioppoli Inequality for Differential Forms with Non-Standard Growth Conditions

It is precisely because Caccioppoli inequality plays an important role in the theoretical research of PDE. The purpose of this section is to prove the following Caccioppoli estimates for the solutions to the nonhomogeneous $ A $-harmonic equation with the non-standard growth conditions, which are more general than the well-known $ p(x)- $ growth[21]. First, we introduce some existing definitions and lemmas.

A continuously increasing function $ \varphi:[0, \infty)\rightarrow [0, \infty) $ with $ \varphi(0)=0 $ is so-called as an Orlicz function. The Orlicz space $ L^{\varphi}(\Theta) $ consists of all measurable functions $ u $ on $ \Theta $ such that $ \int_{\Theta}\varphi(\frac{|u|}{\chi})\mathrm{d}x<\infty $ for some $ \chi=\chi(u)>0 $. $ L^{\varphi}(\Theta) $ is equipped with the nonlinear Luxemburg functional

$ \begin{equation} \|u\|_{\varphi, \Theta}=\inf\left\{\chi>0:\mathop {{\rlap{-} \smallint }}\nolimits_{\Theta}\varphi\left(\frac{|u|}{\chi}\right)\mathrm{d}x\leq1\right\}, \end{equation} $ (2.1)

where $ \mathop {{\rlap{-} \smallint }}\nolimits_{\Theta} $ denotes the integral mean over $ \Theta $, that is, $ \mathop {{\rlap{-} \smallint }}\nolimits_{\Theta}\mathrm{d}x=\frac{1}{|\Theta|}\int_{\Theta}\mathrm{d}x $. A convex Orlicz function $ \varphi $ is often called a Young function. If $ \varphi $ is a Young function, then $ \|\cdot\|_{\varphi, \Theta} $ defines a norm in $ L^{\varphi}(\Theta) $, which is called the Orlicz norm or Luxemburg norm, see [17].

The Young function $ \varphi:[0, \infty)\rightarrow [0, \infty) $ belongs to $ NG(p, q) $, if $ \varphi $ satisfies the following non-standard growth conditions[4, 6]:

$ \begin{equation} p\varphi(s)\leq s\varphi'(s)\leq q\varphi(s), \quad 1<p\leq q<\infty. \end{equation} $ (2.2)

For $ \varphi\in NG(p, q) $, we note that the first inequality in (2.2) is equivalent to that $ \frac{\varphi(s)}{s^{p}} $ is increasing, and the second inequality in that is equivalent to $ \Delta_{2} $-condition, i.e., $ \varphi(2s)\leq C\varphi(s) $ for all $ s>0 $, where $ C>1 $, and $ \frac{\varphi(s)}{s^{q}} $ is decreasing with $ s $. As examples of the Young function of the class $ NG(p, q) $, one can take $ \varphi(s)=s^{p}, s^{p}\log(1+s)(q\geq p+1) $, see [10-12] for more details about this kind of Young funciton.

Lemma 2.1   (see [10])   Suppose $ \varphi $ is a continuous function in the class $ NG(p, q) $ with $ p>\frac{nq}{n+q}=q^{\ast} $, $ 1<p\leq q<\infty $. For any $ s>0 $, let

$ \begin{equation} E(s)=\int^{s}_{0}\left(\frac{\varphi(\tau^{\frac{1}{q}})}{\tau}\right)^{\frac{n+q}{q}}d\tau, \quad F(s)=\frac{\left(\varphi(s^{\frac{1}{q}})\right)^{\frac{n+q}{q}}}{s^{\frac{n}{q}}} \end{equation} $ (2.3)

Then $ E(s) $ is a concave function, and there exists a constant $ C>1 $, such that

$ \begin{equation} F(s)\leq E(s)\leq C F(s), \quad \forall s >0. \end{equation} $ (2.4)

The following inequalities (2.5) and (2.6) are called respectively Hölder inequality and Jensen inequality, which appeared in [22].

Lemma 2.2    Let $ 0<p, q<\infty $ and $ 1=p^{-1} +q^{-1} $. If $ f $ and $ g $ are measurable functions on $ \mathbb{R}^n $, then

$ \begin{equation} \mathop {{\rlap{-} \smallint }}\nolimits_{\Theta}|fg|\mathrm{d}x \leq \left(\mathop {{\rlap{-} \smallint }}\nolimits_{\Theta}|f|^{p}\mathrm{d}x\right)^{\frac{1}{p}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\Theta}|g|^{q}\mathrm{d}x\right)^{\frac{1}{q}} \end{equation} $ (2.5)

for any $ \Theta\subset \mathbb{R}^n $.

Lemma 2.3   Let $ \mu $ be positive measurable on a $ \sigma $-algebra $ M $ in a set $ \Omega $, so that $ \mu(\Omega)=1 $. If $ f $ is a real function in $ L^1(\mu) $, $ a<f(x)<b $ for all $ x\in\Omega $ and $ \phi $ is convex on $ (a, b) $, then

$ \begin{equation} \phi\left(\int_{\Omega}|f|d\mu\right)\leq \int_{\Omega}\phi(|f|)d\mu. \end{equation} $ (2.6)

Remark   If the function $ \phi $ is a concave function, the inequality is inverse.

The following inequalities (2.7) and (2.8) are called respectively the Sobolev-Poincaré inequality and the weak reverse Hölder inequality, which appeared in [20, 23].

Lemma 2.4   Let $ u\in D'(O, \wedge^{\ell}) $ be a differential form and $ \mathrm{d}u\in L^{p}(O, \wedge^{\ell+1}) $, then $ u-u_{O} $ is in $ L^{\frac{np}{(n-p)}}(O, \wedge^{\ell}) $ and

$ \begin{equation} \left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|u-u_{O}|^{\frac{np}{n-p}}\mathrm{d}x\right)^{\frac{(n-p)}{np}}\leq C_{p}(n)|O|^{\frac{1}{n}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{p}\mathrm{d}x\right)^{\frac{1}{p}} \end{equation} $ (2.7)

for a cube or a ball $ O $ in $ \mathbb{R}^n $, $ \ell=0, 1, \ldots, n-1 $ and $ 1<p<n $.

Lemma 2.5   Let $ u $ be a solution to the nonhomogeneous $ A $-equation (1.6) in $ \Theta $, $ \sigma>1 $ be some constant, and $ 0 <r, s<\infty $ be any constants. Then there exists a constant $ C $, independent of $ u $, such that

$ \begin{equation} \left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|u|^{s}\mathrm{d}x\right)^{\frac{1}{s}}\leq C \left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|u|^{r}\mathrm{d}x\right)^{\frac{1}{r}} \end{equation} $ (2.8)

for all cubes or balls $ O $ with $ \sigma O\subset \Theta $.

Remark   (ⅰ)when $ u $ is the solution of the $ A $-harmonic equation (1.6), $ \mathrm{d}u $ is also the solution of Equation (1.6), then by (2.8), we have

$ \begin{equation} \|\mathrm{d}u\|_{s, O}\leq C|O|^{\frac{r-s}{rs}}\|\mathrm{d}u\|_{r, \sigma O}. \end{equation} $ (2.9)

(ⅱ)For $ u $ is the solution of Equation (1.6) and $ c $ is a closed form, i.e., $ dc=0 $, $ u-c $ is also the solution of Equation (1.6), similarly, we have

$ \begin{equation} \|u-c\|_{s, O}\leq C|O|^{\frac{r-s}{rs}}\|u-c\|_{r, \sigma O}. \end{equation} $ (2.10)

Lemma 2.6   (see [18]) Let $ u\in D'(\Theta, \wedge^{\ell}), \ell = 0, 1, \ldots, n $, be a solution of the nonhomogeneous $ A $-harmonic equation (1.6) in a bounded domain $ \Theta\subset \mathbb{R}^n $, and assume that $ 1< p<\infty $ is a fixed exponent associated with the equation $ (1.6) $ and $ \sigma >1 $ is a constant. Then there exists a constant $ C $, independent of $ u $ and $ \mathrm{d}u $, such that

$ \begin{equation} \|\mathrm{d}u\|_{p, O}\leq C diam(O)^{-1}\|u-c\|_{p, \sigma O} \end{equation} $ (2.11)

for all balls or cubes $ O $ with $ \sigma O\subset\Theta $ and any closed form $ c $.

Remark   From Lemma 2.6, we know that $ p $ is related with the condition of the nonhomogeneous $ A $-harmonic equation (1.6). Combining (2.9)-(2.11), we can get the generalized version of Caccioppoli inequality (2.12), i.e., Theorem 2.1.

Theorem 2.1   Let $ u\in D'(\Theta, \wedge^{\ell}), \ell =0, 1, \ldots, n $, be a solution of the nonhomogeneous $ A $-harmonic equation (1.6) in a bounded domain $ \Theta\subset \mathbb{R}^n $, and assume that $ 0<s<\infty $. Then there exists a constant $ C $, independent of $ u $ and $ \mathrm{d}u $, such that

$ \begin{equation} \|\mathrm{d}u\|_{s, O}\leq C diam(O)^{-1}\|u-c\|_{s, \sigma O} \end{equation} $ (2.12)

for all balls or cubes $ O $ with $ \sigma O\subset\Theta(\sigma>1) $ and any closed form $ c $.

Proof   For any $ s>0 $, we have

$ \begin{equation} \begin{split} \|\mathrm{d}u\|_{s, O}&\leq C_{1}|O|^{\frac{p-s}{ps}}\|\mathrm{d}u\|_{p, \sigma_{1}O}\\ &\leq C_{2}|O|^{\frac{p-s}{ps}}diam(O)^{-1}\|u-c\|_{p, \sigma_{2}O}\\ &\leq C_{3}|O|^{\frac{p-s}{ps}}diam(O)^{-1}|O|^{\frac{s-p}{sp}}\|u-c\|_{s, \sigma_{3}O}\\ &=C_{3}diam(O)^{-1}\|u-c\|_{s, \sigma_{3}O}, \end{split} \end{equation} $ (2.13)

where $ \sigma_{3}>\sigma_{2}>\sigma_{1}>1 $. Write (2.13) as the form of integral mean, we get

$ \begin{equation} \left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{s}\mathrm{d}x\right)^{\frac{1}{s}}\leq C diam(O)^{-1}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|u-c|^{s}\mathrm{d}x\right)^{\frac{1}{s}}. \end{equation} $ (2.14)

Theorem 2.2   Let $ \varphi $ be a Young function in the class $ NG(p, q) $ with $ p>\frac{nq}{n+q}=q^{\ast} $ and $ \Theta $ be a bounded domain in $ \mathbb{R}^{n} $. Assume that $ \varphi(|u|)\in L^{1}_{loc}(\Theta) $ and $ u $ is a solution of the nonhomogeneous $ A $-harmonic equation (1.6) in $ \Theta $, Then there exists a constant C, independent of $ u $, such that

$ \begin{equation} \int_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x\leq C\int_{\sigma O}\varphi\left(diam(O)^{-1}|u-c|\right)\mathrm{d}x \end{equation} $ (2.15)

for all balls $ O $ with $ \sigma O\subset\Theta $ and $ c $ is any closed form, where $ \sigma>1 $ is a constant.

Proof   Applying Hölder inequality (2.5), we have

$ \begin{equation} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x=\mathop {{\rlap{-} \smallint }}\nolimits_{O}\frac{\varphi(|\mathrm{d}u|)}{|\mathrm{d}u|^{\frac{nq}{n+q}}}|\mathrm{d}u|^{\frac{nq}{n+q}}\mathrm{d}x \leq\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}\frac{\varphi^{\frac{n+q}{q}}(|\mathrm{d}u|)}{|\mathrm{d}u|^{n}}\mathrm{d}x\right)^{\frac{q}{n+q}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x\right)^{\frac{n}{n+q}} . \end{equation} $ (2.16)

Using the $ \Delta_{2} $-condition of $ \varphi $ and the concavity of $ E $, which appeared in Lemma 2.1, using(2.8)and(2.14), (2.16) becomes

$ \begin{equation} \begin{split} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x&\leq\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}F(|\mathrm{d}u|^{q})\mathrm{d}x\right)^{\frac{q}{n+q}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x\right)^{\frac{n}{n+q}} \leq\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}E(|\mathrm{d}u|^{q})\mathrm{d}x\right)^{\frac{q}{n+q}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x\right)^{\frac{n}{n+q}}\\ &\leq E^{\frac{q}{n+q}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x\right)\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x\right)^{\frac{n}{n+q}} \leq C_{1}F^{\frac{q}{n+q}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x\right)\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x\right)^{\frac{n}{n+q}}\\ &=C_{1}\frac{\varphi((\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x)^{\frac{1}{q}})}{(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x)^{\frac{n}{n+q}}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x\right)^{\frac{n}{n+q}} =C_{1}\varphi\left((\mathop {{\rlap{-} \smallint }}\nolimits_{O}|\mathrm{d}u|^{q}\mathrm{d}x)^{\frac{1}{q}}\right)\\ &\leq C_{1}\varphi\left(C_{2}(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma_{1} O}|\mathrm{d}u|^{p}\mathrm{d}x)^{\frac{1}{p}}\right) \leq C_{1}\varphi\left(C_{3}diam(O)^{-1}(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma_{2} O}|u-c|^{p}\mathrm{d}x)^{\frac{1}{p}}\right)\\ &\leq C_{4}\varphi\left(diam(O)^{-1}(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma_{2}O}|u-c|^{p}\mathrm{d}x)^{\frac{1}{p}}\right), \end{split} \end{equation} $ (2.17)

where $ \sigma_{2}>\sigma_{1}>1 $. Let $ \Phi(s)=\int^{s}_{0}\frac{\varphi(\tau)}{\tau}d\tau $ and that $ \frac{\varphi(s)}{s^{p}}, \frac{\varphi(s)}{s^{q}} $ are increasing and decreasing respectively with $ s $ in $ [0, +\infty) $, so

$ \begin{equation} \Phi(s)=\int^{s}_{0}\frac{\varphi(\tau)}{\tau^p}\tau^{p-1}d\tau\leq \frac{\varphi(s)}{s^{p}} \int^{s}_{0}\tau^{p-1}d\tau=\frac{\varphi(s)}{p}. \end{equation} $ (2.18)

Similarly, we have $ \Phi(s)\geq \frac{\varphi(s)}{q} $. Therefore we have

$ \begin{equation} \frac{\varphi(s)}{q}\leq\Phi(s)\leq \frac{\varphi(s)}{p}. \end{equation} $ (2.19)

Let $ \Psi(s)=\Phi(s^{\frac{1}{p}}), \Psi'(s)=\frac{1}{p}\frac{\varphi(s^{\frac{1}{p}})}{s} $ is increasing, so $ \Psi $ is a convex function. For all $ \vartheta\in L^{1}(\Theta) $, by Jensen inequality (2.6), we obtain

$ \begin{equation} \Phi\left(\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\Theta}\vartheta \mathrm{d}x\right)^{\frac{1}{p}}\right)= \Psi\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\Theta}\vartheta \mathrm{d}x\right)\leq\mathop {{\rlap{-} \smallint }}\nolimits_{\Theta}\Psi(\vartheta)\mathrm{d}x= \mathop {{\rlap{-} \smallint }}\nolimits_{\Theta} \Phi(\vartheta^{\frac{1}{p}})\mathrm{d}x. \end{equation} $ (2.20)

Replacing $ \vartheta $ with $ (\text{diam}(O)^{-1}|u-c|)^{p} $ in (2.20), we get

$ \begin{equation} \Phi\left(\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma_{2}O}\text{diam}(O)^{-p}|u-c|^{p}\mathrm{d}x\right)^{\frac{1}{p}}\right)\leq \mathop {{\rlap{-} \smallint }}\nolimits_{\sigma_{2}O} \Phi\left(\text{diam}(O)^{-1}|u-c|\right)\mathrm{d}x. \end{equation} $ (2.21)

Combining (2.19) and (2.21), (2.17) becomes

$ \begin{equation} \begin{split} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x&\leq C_5\Phi\left(\text{diam}(O)^{-1}(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma_{2} O}|u-c|^{p}\mathrm{d}x)^{\frac{1}{p}}\right)\\ &\leq C_5\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma_{2} O} \Phi\left(\text{diam}(O)^{-1}|u-c|\right)\mathrm{d}x\\ &\leq C_6\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma_{2} O} \varphi\left(\text{diam}(O)^{-1}|u-c|\right)\mathrm{d}x, \end{split} \end{equation} $ (2.22)

which gives

$ \begin{equation} \int_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x\leq C_{7}\int_{\sigma O}\varphi\left(\text{diam}(O)^{-1}|u-c|\right)\mathrm{d}x. \end{equation} $ (2.23)

The proof of Theorem 2.2 has been completed.

Since $ \varphi\in NG(p, q) $ satisfies the $ \Delta_{2} $-condition, from the proof of Theorem 2.2 or directly from (2.23), we have

$ \begin{equation} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\varphi(\frac{|\mathrm{d}u|}{\chi})\mathrm{d}x\leq C_{7}\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}\varphi\left(\text{diam}(O)^{-1}\frac{|u-c|}{\chi}\right)\mathrm{d}x \end{equation} $ (2.24)

for all balls $ O $ with $ \sigma O\subset \Theta $ and any constant $ \chi> 0 $. From the definition of the Orlicz norm and (2.23), the following inequality with the Orlicz norm

$ \begin{equation} \|\mathrm{d}u\|_{\varphi, O}\leq C \|\text{diam}(O)^{-1}(u-c)\|_{\varphi, \sigma O} \end{equation} $ (2.25)

holds if the conditions described in Theorem 2.2 are satisfied.

Noticing that in Theorem $ 2.2 $, $ c $ is any closed form. Hence, we may choose $ c=u_{\sigma O} $ in Theorem $ 2.2 $ and obtain the following version of $ L^{\varphi} $-integral inequality which may be convenient to be used later.

Corollary 2.1   Let $ \varphi $ be a Young function in the class $ NG(p, q) $ with $ p>\frac{nq}{n+q}=q^{\ast} $ and $ \Theta $ be a bounded domain in $ \mathbb{R}^{n} $. Assume that $ \varphi(|u|)\in L^{1}_{loc}(\Theta) $ and $ u $ is a solution of the nonhomogeneous $ A $-harmonic equation $ (1.6) $ in $ \Theta $. Then, there exists a constant C, independent of $ u $, such that

$ \begin{equation} \int_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x\leq C\int_{\sigma O}\varphi\left(\text{diam}(O)^{-1}|u-u_{\sigma O}|\right)\mathrm{d}x \end{equation} $ (2.26)

for all balls $ O $ with $ \sigma O\subset\Theta $, where $ \sigma>1 $ is a constant.

3 Higher Integrability for Differential Forms with Non-Standard Growth Conditions

In [24], Bogelein, Duzaar, Korte and Scheve established that the gradient of weak solutions to porous medium-type systems admits the self-improving property of higher integrability. In recent years, the higher integrability of integrals with operators acting on differential forms is becoming a research hotspot [25-27]. Therefore for the self-improving property, we will prove the higher integrability of the external differential of the nonhomogeneous $ A $-harmonic tensors $ u $, which are also essentially differential forms. So the title of this section is named as above.

Now we first introduce the extension of Gehring lemma for functions $ \varphi $ be in the class $ NG(p, q) $, then we will prove the higher integrability of the exterior differential of differential forms satisfying the nonhomogeneous $ A $-harmonic equation under non-standard growth conditions with the Caccioppoli inequality.

Lemma 3.1   (see [10])    If $ \varphi $ be in the class $ NG(p, q) $ and $ f $ is an $ L^{1}_{loc}(\Theta) $ function, $ f\geq 0 $, such that, for any cube $ Q\subset\Theta $ for which $ 2Q \subset\subset \Theta $,

$ \begin{equation} \mathop {{\rlap{-} \smallint }}\nolimits_{Q}\varphi(f)\mathrm{d}x\leq b_{1}\varphi\left(\mathop {{\rlap{-} \smallint }}\nolimits_{2Q}f\mathrm{d}x\right)+b_{2}, \end{equation} $ (3.1)

then there exist $ c_{l} $, $ c_{2}> 0 $, $ r > 1 $, depending only on $ b_{1}, b_{2}, n, k, p $ such that, for any $ 2Q\subset\subset\Theta $,

$ \begin{equation} \mathop {{\rlap{-} \smallint }}\nolimits_{Q}\varphi^{r}(f)\mathrm{d}x\leq c_{1}\varphi^{r}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{2Q}f\mathrm{d}x\right)+c_{2}, \end{equation} $ (3.2)

Remark   Noticing that in Lemma 3.1, cubes in inequalities (3.1) and (3.2) may easily be replaced by balls and $ 2Q $ can be replaced with $ \sigma Q $, $ \sigma>1 $. Moreover, it is clear from the proof that if $ b_{2}=0 $, then also $ c_{2} = 0 $.

Theorem 3.1   Let $ \varphi $ be a Young function in the class $ NG(p, q) $ with $ 1<\frac{nq}{n+q}=q^{\ast}<p $ and $ \Theta $ be a bounded domain in $ \mathbb{R}^{n} $. Assume that $ \varphi(|u|)\in L^{1}_{loc}(\Theta) $ and $ u $ is a solution of the nonhomogeneous $ A $-harmonic equation (1.6) in $ \Theta $, then there exist $ r > 1, C > 0 $ such that

$ \begin{equation} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\varphi^{r}(|\mathrm{d}u|)\mathrm{d}x\leq C\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}\varphi(|\mathrm{d}u|)\mathrm{d}x\right)^{r} \end{equation} $ (3.3)

for all balls $ O $ with $ \sigma O\subset \Theta $, where $ \sigma>1 $ is a constant.

Proof   Let $ t=\left|\frac {u-u_{\sigma O}}{\text{diam}(O)}\right| $, from Theorem 2.2 or Corollary 2.1, and Hölder inequality (2.5), we deduce that

$ \begin{equation} \begin{split} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x&\leq C_{1}\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}\frac{\varphi(t)}{t^{\frac{nq}{n+q}}}t^{\frac{nq}{n+q}}\mathrm{d}x \leq C_{1}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}\frac{\varphi^{\frac{n+q}{q}}\left(t\right)}{t^{n}}\mathrm{d}x\right)^{\frac{q}{n+q}}\cdot \left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}t^{q}\mathrm{d}x\right)^{\frac{n}{n+q}}. \end{split} \end{equation} $ (3.4)

Noticing that $ q=\frac{nq^{\ast}}{n-q^{\ast}} $ and using the Sobolev-Poincaré inequality (2.7), we have

$ \begin{equation} \begin{split} \left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}t^{q}\mathrm{d}x\right)^{\frac{1}{q}} &\leq \text{diam}(O)^{-1}C_{2}|\sigma O|^{\frac{1}{n}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\right)^{\frac{1}{q^{\ast}}}\\ &\leq C_{2}\text{diam}(O)^{-1}\sigma C_{3}\text{diam}(O)\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\right)^{\frac{1}{q^{\ast}}}\\ &\leq C_{4}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\right)^{\frac{1}{q^{\ast}}}. \end{split} \end{equation} $ (3.5)

Therefore we obtain

$ \begin{equation} \left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}t^{q}\mathrm{d}x\right)^{\frac{n}{n+q}} \leq \left(C_{4}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\right)^{\frac{1}{q^{\ast}}}\right)^{\frac{nq}{n+q}} \leq C_{5}\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x. \end{equation} $ (3.6)

Combining (3.4)and (3.6), using the concavity of $ E $ and the $ \Delta_{2} $-condition of $ \varphi $, we get

$ \begin{equation} \begin{split} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x&\leq C_{6}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}F\left(t^{q}\right)\mathrm{d}x\right)^{\frac{q}{n+q}}\cdot \mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x \leq C_{6}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}E\left(t^{q}\right)\mathrm{d}x\right)^{\frac{q}{n+q}}\cdot \mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\\ &\leq C_{6} E^{\frac{q}{n+q}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}t^{q}\mathrm{d}x\right)\cdot \mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x \leq C_{6} F^{\frac{q}{n+q}}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}t^{q}\mathrm{d}x\right)\cdot \mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\\ &\leq C_{7} F^{\frac{q}{n+q}}\left(\left[\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\right]^{\frac{q}{q^{\ast}}}\right)\cdot \mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\\ &= C_{8}\frac{\varphi\left(\left[\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\right]^{\frac{1}{q^{\ast}}}\right)}{\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x}\cdot \mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\\ &=C_{8}\varphi\left(\left[\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\right]^{\frac{1}{q^{\ast}}}\right). \end{split} \end{equation} $ (3.7)

If we set $ \phi(s)=\varphi(s^{\frac{1}{q^{\ast}}}) $, then $ \phi'(s)=\frac{1}{q^{\ast}}s^{\frac{1}{q^{\ast}}-1}\varphi'(s^{\frac{1}{q^{\ast}}}) $. Considering that $ \varphi \in NG(p, q) $, we have

$ \begin{equation} \frac{p}{q^{\ast}}\varphi(s^{\frac{1}{q^{\ast}}})\leq s\left(\frac{1}{q^{\ast}}s^{\frac{1}{q^{\ast}}-1}\varphi'(s^{\frac{1}{q^{\ast}}})\right) \leq\frac{q}{q^{\ast}}\varphi(s^{\frac{1}{q^{\ast}}}). \end{equation} $ (3.8)

That is

$ \begin{equation} p'\phi(s)\leq s\phi'(s)\leq q'\phi(s). \end{equation} $ (3.9)

Since $ p>q^{\ast} $, we obtain that $ \phi(s)\in NG(p', q') $, where $ p'=\frac{p}{q^{\ast}} $, $ q'=\frac{q}{q^{\ast}}>1 $. By (3.7) with $ f=|\mathrm{d}u|^{q^{\ast}} $, we obtain that

$ \begin{equation} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\phi(f)\mathrm{d}x\leq C_{8}\phi\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}f\mathrm{d}x\right), \end{equation} $ (3.10)

from which it follows that $ \phi $ and $ f $ satisfy the assumptions of Lemma 3.1. Thus there exists $ r>1 $ such that

$ \begin{equation} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\phi^{r}(f)\mathrm{d}x\leq C_{9}\phi^{r}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}f\mathrm{d}x\right), \end{equation} $ (3.11)

i.e., for any $ \sigma O\subset \Theta $,

$ \begin{equation} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\varphi^{r}(|\mathrm{d}u|)\mathrm{d}x\leq C_{9}\varphi^{r}\left(\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\right)^{\frac{1}{q^{\ast}}}\right). \end{equation} $ (3.12)

Replacing $ \vartheta $ with $ |\mathrm{d}u|^{p} $ in (2.20) and using (2.19), we have

$ \begin{equation} \Phi\left(\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{p}\mathrm{d}x\right)^{\frac{1}{p}}\right)\leq \mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}\Phi(|\mathrm{d}u|)\mathrm{d}x\leq \frac{1}{p}\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}\varphi(|\mathrm{d}u|)\mathrm{d}x. \end{equation} $ (3.13)

Noticing that $ p >q^{\ast} $, we obtain from (2.19) and (3.13) that

$ \begin{equation} \begin{split} \frac{1}{q}\varphi\left(\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{q^{\ast}}\mathrm{d}x\right)^{\frac{1}{q^{\ast}}}\right) \leq \frac{1}{q}\varphi\left(\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{p}\mathrm{d}x\right)^{\frac{1}{p}}\right) \leq \Phi\left(\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}|\mathrm{d}u|^{p}\mathrm{d}x\right)^{\frac{1}{p}}\right) \leq\frac{1}{p} \mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}\varphi(|\mathrm{d}u|)\mathrm{d}x. \end{split} \end{equation} $ (3.14)

From (3.12) and (3.14), we get

$ \begin{equation} \mathop {{\rlap{-} \smallint }}\nolimits_{O}\varphi^{r}(|\mathrm{d}u|)\mathrm{d}x\leq C_{10}\left(\mathop {{\rlap{-} \smallint }}\nolimits_{\sigma O}\varphi(|\mathrm{d}u|)\mathrm{d}x\right)^{r}. \end{equation} $ (3.15)

The proof of Theorem 3.1 has been completed.

4 Applications

In [28], Skrzypczak derived Hardy inequalities in weighted Sobolev spaces via anticoercive partial differential inequalities of elliptic type involving $ \varphi $-Laplacian $ -\Delta_{\varphi}u=-div\varphi(\nabla u)\geq\Phi $, where $ \Phi $ is a given locally integrable function and $ u $ is defined on an open subset $ \Theta\subset\mathbb{R}^n $. By knowing solutions, he derived Caccioppoli inequalities for $ u $. As a consequence, he obtained Hardy inequalities for compactly supported Lipschitz functions involving certain measures, having the form

$ \begin{equation} \int_{\Theta} F_{\overline{\varphi}}(|\zeta|)\mu_{1}(\mathrm{d}x)\leq \int_{\Theta} \overline{\varphi}(|\nabla\zeta|)\mu_{2}(\mathrm{d}x), \end{equation} $ (4.1)

where $ \overline{\varphi}(t) =t^p\ln^{\alpha}(2+t)(p>1, \alpha\geq 0) $ is a Young function related to $ \varphi $ and $ F_{\overline{\varphi}}(t)=\frac{1}{\overline{\varphi}(\frac{1}{t})} $. If let $ \alpha=q-p>0 $, we can get the following theorem.

Theorem 4.1   The Young function $ \varphi:[0, \infty)\rightarrow [0, \infty) $ belongs to $ NG(p, q) $, if $ \varphi(t)=t^p\ln^{\alpha}(2+t), \alpha=q-p>0 , 1<p<q<\infty $.

Proof   According to the equivalent definition of $ NG(p, q) $, we only need to prove the following facts:

(1) $ \frac{\varphi(t)}{t^p} $ is increasing: Let $ f(t)=\frac{\varphi(t)}{t^p}=\ln^{q-p}(2+t) $, then $ f'(t)=(q-p)\ln^{q-p-1}(2+t)/(2+t)>0 $. So the result is clear;

(2) $ \varphi(t) $ satisfies the $ \Delta_2 $-condition:

$ \begin{equation} \begin{split} \varphi(2t)&=(2t)^p\ln^{q-p}(2+2t) =2^pt^p(\ln2+\ln(1+t))^{q-p} \leq2^qt^p\ln^{q-p}(2+t)=2^q\varphi(t), \end{split} \end{equation} $ (4.2)

Thus the conclusion is obvious;

(3) $ \frac{\varphi(t)}{t^q} $ is decreasing: Let $ g(t)=\frac{\varphi(t)}{t^q}=(\frac{\ln(2+t)}{t})^{q-p} $, and $ g(t) $ can be seen as a a compound function by the increasing function $ f(u)=u^{q-p} $ and the decreasing function $ u=\frac{\ln(2+t)}{t} $, thus the assertion is established.

In the nonhomogeneous $ A $-harmonic equation (1.6), if we take $ A, B $ to be different operators, we will obtain different examples of A-harmonic equations. For example, assume $ B=0 $, then the nonhomogeneous $ A $-harmonic equation changes to the following homogeneous $ A $-harmonic equation

$ \begin{equation} \mathrm{d}^{\star}A(x, \mathrm{d}u)=0. \end{equation} $ (4.3)

Moreover, if we take $ A(x, \zeta) = \zeta|\zeta|^{p-2} $ in formula (4.3), then the homogeneous $ A $-harmonic equation becomes the following $ p $-harmonic equation

$ \begin{equation} \mathrm{d}^{\star}(\mathrm{d}u|\mathrm{d}u|^{p-2})=0. \end{equation} $ (4.4)

Particulary, let $ p=2 $ in formula (4.4), then it reduces to

$ \begin{equation} \mathrm{d}^{\star}(\mathrm{d}u)=0. \end{equation} $ (4.5)

In addition, if $ u $ is a function ($ 0 $-form), then (4.5) is equivalent to the classic Laplace equation $ \Delta u=0 $. The function $ u $ satisfying Laplace equation is called the harmonic function. Obviously, the related conclusions in Sections 2 and 3 still hold for differential forms satisfying Equation $ (4.5) $. It is easy to see that $ u $ is a trivial solution of (1.6) if $ \mathrm{d}u = 0 $. But the expression of $ \mathrm{d}u\neq 0 $ sometimes may be quite complicated, and it would be very hard to evaluate the norm of $ \mathrm{d}u $ directly. In this case, we may consider to use the Caccioppli inequality to obtain the upper bound for the $ \int_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x $ instead of calculating the integral directly. Let us see the following simple example in $ \mathbb{R}^2 $.

Example 4.1   Let $ u(x, y) $ be a function defined in $ \mathbb{R}^2 $ by

$ \begin{equation} u(x, y)=x^3-6x^2y-3xy^2+2y^3. \end{equation} $ (4.6)

It is easy to check that $ u(x, y) $ is a harmonic function in the upper half plane. Let $ r > 0 $ be a constant, and $ O = {(x, y) : x^2+y^2\leq r^2} $. To obtain the upper bound for the $ \int_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x $ with $ \varphi(t)=t^p\ln^{q-p}(2+t) $, we can use Caccioppoli inequality $ (2.15) $ with $ c=0 $, and $ n=2 $ as follows. First, we know that $ \text{diam}(O)=2r, |\sigma O|=\pi\sigma^2r^2 $, and

$ \begin{equation} |u(x, y)|\leq |x|^3+6|x|^2|y|+3|x||y|^2+2|y|^3\leq 12r^3. \end{equation} $ (4.7)

Applying (2.15), we have

$ \begin{equation} \begin{split} \int_{O}|\mathrm{d}u|^p\ln^{q-p}(2+|\mathrm{d}u|)\mathrm{d}x&\leq C\int_{\sigma O}(\text{diam}(O)^{-1}|u|)^p\ln^{q-p}(2+\text{diam}(O)^{-1}|u|)\mathrm{d}x\\ &\leq C \int_{\sigma O}\left(\frac{12r^3}{2r}\right)^p\ln^{q-p}\left(2+\frac{12r^3}{2r}\right)\mathrm{d}x\\ &=C6^pr^{2p}\ln^{q-p}(2+6r^2)\int_{\sigma O}\mathrm{d}x\\ &=C6^p\pi\sigma^2r^{2p+2}(1+6r^2)^{q-p}. \end{split} \end{equation} $ (4.8)

As to the solution of Equation (4.5), until now we can not get the whole solution space, but we can give a kind of solutions with some character in $ \mathbb{R}^3 $. A special kind of solutions of $ 1 $-form with 3-independent variables satisfying Equation (4.5) is constructed by simple calculation. Since $ d^{\star}d=((-1)^{3*1+1}\star d \star)d=(\star d )^2 $, let $ u=a\mathrm{d}x_1+b\mathrm{d}x_2+c\mathrm{d}x_3 $, where $ a, b, c $ are functions with second-order continuous partial derivatives about three independent variables $ x_1, x_2, x_3 $.

$ \begin{equation} \mathrm{d}u=(b_{x_1}-a_{x_2})\mathrm{d}x_1\wedge \mathrm{d}x_2+(c_{x_1}-a_{x_3})\mathrm{d}x_1\wedge \mathrm{d}x_3+(c_{x_2}-b_{x_3})\mathrm{d}x_2\wedge \mathrm{d}x_3; \end{equation} $ (4.9)
$ \begin{equation} \star \mathrm{d}u=(b_{x_1}-a_{x_2})\mathrm{d}x_3+(a_{x_3}-c_{x_1})\mathrm{d}x_2+(c_{x_2}-b_{x_3})\mathrm{d}x_1; \end{equation} $ (4.10)
$ \begin{equation} \begin{split} \mathrm{d}\star \mathrm{d}u&=(a_{x_1x_3}+b_{x_2x_3}-c_{x_1x_1}-c_{x_2x_2})\mathrm{d}x_1\wedge \mathrm{d}x_2+(b_{x_1x_1}+b_{x_3x_3}-a_{x_1x_2}-c_{x_2x_3})\mathrm{d}x_1\wedge \mathrm{d}x_3\\ &+(b_{x_1x_2}+c_{x_1x_3}-a_{x_2x_2}-a_{x_3x_3})\mathrm{d}x_2\wedge \mathrm{d}x_3; \end{split} \end{equation} $ (4.11)
$ \begin{equation} \begin{split} \star \mathrm{d}\star \mathrm{d}u&=(a_{x_1x_3}+b_{x_2x_3}-c_{x_1x_1}-c_{x_2x_2})\mathrm{d}x_3+(a_{x_1x_2}+c_{x_2x_3}-b_{x_1x_1}-b_{x_3x_3})\mathrm{d}x_2\\ &+(b_{x_1x_2}+c_{x_1x_3}-a_{x_2x_2}-a_{x_3x_3})\mathrm{d}x_1; \end{split} \end{equation} $ (4.12)

Example 4.2   Let

$ \begin{equation} \begin{split} &a_{x_1x_3}+b_{x_2x_3}-c_{x_1x_1}-c_{x_2x_2}=0, \\ &a_{x_1x_2}+c_{x_2x_3}-b_{x_1x_1}-b_{x_3x_3}=0, \\ &b_{x_1x_2}+c_{x_1x_3}-a_{x_2x_2}-a_{x_3x_3}=0, \end{split} \end{equation} $ (4.13)

then the $ u $ with coefficients $ a, b, c $ satisfying Equation $ (4.13) $ is the solution of Equation $ (4.5) $. Let $ a=x^4_{2}+x^4_{3}+4(x_2+x_3)x^3_1+(x^3_2+6x_1x_2x_3+x^3_3) $, $ b=x^4_{1}+x^4_{3}+4(x_1+x_3)x^3_2+(x^3_1+6x_1x_2x_3+x^3_3) $, $ c=x^4_{1}+x^4_{2}+4(x_1+x_2)x^3_3+(x^3_1+6x_1x_2x_3+x^3_2) $, and $ u=a\mathrm{d}x_1+b\mathrm{d}x_2+c\mathrm{d}x_3 $. Let $ r>0 $ be a constant, and $ \{x_1, x_2, x_3):x^2_1+x^2_2+x^2_3\leq r^2\} $. It is not hard to check that $ \mathrm{d}u\neq 0 $ and $ u $ satisfies Equation (4.13). To obtain the upper bound for the $ \int_{O}\varphi(|\mathrm{d}u|)\mathrm{d}x $, we calculate with Caccioppoli inequality (2.15) with $ c=0 $ as follows. First, we know that $ \text{diam}(O) = 2r $, $ |\sigma O|=4\pi\sigma^3r^3/3 $, and

$ \begin{equation} \begin{split} |u(x_1, x_2, x_3)|=(|a|^2+|b|^2+|c|^2)^{\frac{1}{2}}&\leq \sqrt{3}(2r^4+4*(2r)r^3+(r^3+6r^3+r^3))\\ &=\sqrt{3}r^3(10r+8). \end{split} \end{equation} $ (4.14)

By (2.15), it follows that

$ \begin{equation} \begin{split} \int_{O}|\mathrm{d}u|^p\ln^{q-p}(2+|\mathrm{d}u|)\mathrm{d}x&\leq C \int_{\sigma O}\left(\text{diam}(O)^{-1}|u|\right)^p\ln^{q-p}\left(2+\text{diam}(O)^{-1}|u|\right)\mathrm{d}x\\ &\leq C(\sqrt{3}r^2(10r+8)/2)^p\ln^{q-p}(2+\sqrt{3}r^2(10r+8)/2)\int_{\sigma O}\mathrm{d}x\\ &\leq 4C\pi\sigma^3(\sqrt{3}/2)^pr^{2p+3}(10r+8)^p(1+\sqrt{3}r^2(10r+8)/2)^{q-p}/3. \end{split} \end{equation} $ (4.15)
References
[1]
Agarwal R P, Ding Shusen, Craig A. Nolder. Inequalities for differential forms[M]. New York: Springer, 2009.
[2]
Dai Zhimin, Wang Yong, Bao Gejun. Some Orlicz norms inequalities for the composite operator $T \circ d \circ H $[J]. J. Inequal. Appl., 2011, 2011: 1-12. DOI:10.1186/1029-242X-2011-1
[3]
Dai Zhimin, Li Huacan, Li Qunfang. Inequalities for the fractional convolution operator on differential forms[J]. J. Inequal. Appl., 2018, 2018: 1-13. DOI:10.1186/s13660-017-1594-6
[4]
Buckley S, Koskela P. Orlicz-Hardy inequalities[J]. Ill. J. Math, 2004, 48(3): 787-802.
[5]
Ding Shusen. Lφ-Averaging domain and Poincare inequalities with Orlicz norm[J]. Nonlinear Anal., 2010, 73(1): 256-265. DOI:10.1016/j.na.2010.03.018
[6]
Xing Yuming. Poincaré inequalities with Luxemburg norms in Lφ-averaging domains[J]. J. Inequal. Appl., 2010, 2010: 1-11.
[7]
Ding Shusen, Zhu Jianmin. Poincaré-type inequalities for the homotopy operator with Lφ-norms[J]. Nonlinear Anal., 2011, 74(1): 3728-3735.
[8]
Agarwal R P, Ding Shusen. Inequalities for Green's operator applied to the minimizers[J]. J. Inequal. Appl., 2011, 2011: 1-10. DOI:10.1186/1029-242X-2011-1
[9]
Ling Yi, Bao Gejun. Some local Poincaré inequalities for the composition of the sharp maximal operator and the Green's operator[J]. Comput. Math. Appl., 2012, 63(3): 720-727. DOI:10.1016/j.camwa.2011.11.036
[10]
Fusco N, Sbordone C. Higher integrability of the gradient of minimizers of functionals with non-standrad growth conditions[J]. Commun. Pur. Appl. Math, 1990, 43(1): 673-683.
[11]
Lu Yueming, Bao Gejun. Poincaré inequalities and the sharp maximal inequalities with Lφ-norms for differential forms[J]. J. Inequal. Appl., 2013, 2013: 1-11. DOI:10.1186/1029-242X-2013-1
[12]
Niu Jinling, Ding Shusen, Xing Yuming. Embedding theorems for composition of homotopy and projection operators[J]. J. Inequal. Appl., 2015, 2015: 1-14. DOI:10.1186/1029-242X-2015-1
[13]
Bum J J, Kyungkeun K. Caccioppoli type inequality for non-newtonian stokes system and a local energy inequality of non-newtonian navier-stokes equations without pressure[J]. Discrete. Cont. Dyn-A, 2017, 37(9): 4815-4834. DOI:10.3934/dcds.2017207
[14]
Kim J W, Mehta P G, Mern S. The conditional poincaré inequality for filter stability[C]. Texas: Austin, 2021: 1629–1636.
[15]
Ding Shusen, Liu Bing. Generalized poincaré inequalities for solutions to the A-harmonic equation in certain domains[J]. J. Math. Anal. Appl., 2000, 252(2): 538-548. DOI:10.1006/jmaa.2000.6951
[16]
Wang Yong, Wu Congxin. Sobolev imbedding theorems and Poincaré inequalities for Green's operator on solutions of the non-homogeneous A-harmonic equation[J]. Comput. Math. Appl., 2004, 47(1): 1545-1554.
[17]
Agarwal R P, Ding Shusen. Global Caccioppoli-type and Poincaré Inequalities with Orlicz norms[J]. J. In Equal. Appl., 2010, 2010: 1-27.
[18]
Ding Shusen. Two-weight Caccioppoli inequalities for solutions of nonhomogeneous A-harmonic equations on Riemannian manifolds[J]. P. Am. Math. Soc., 2004, 132(8): 2367-2375. DOI:10.1090/S0002-9939-04-07347-2
[19]
Dai Zhimin, Xing Yuming, Ding Shusen, Wang Yong. Inequalities for the composition of Green's operator and the potential operator[J]. J. Inequal. Appl., 2012, 271: 1-13.
[20]
Iwaniec T, Lutoborski A. Integral estimates for null Lagrangians[J]. Arch. Ration. Mech. Anal., 1993, 125: 25-79. DOI:10.1007/BF00411477
[21]
Mingione G, Radulescu V. Recent developments in problems with nonstandard growth and nonuniform ellipticity[J]. J. Math. Anal. Appl., 2021, 501(1): 125-197.
[22]
Rudin W. Real and Complex Analysis[M]. New York: McGraw-Hill, 1987.
[23]
Nolder C A. Hardy-Littlewood theorems for A-harmonic tensors[J]. Illinois. J. Math, 1999, 43(4): 613-632.
[24]
Bogelein V, Duzaar F, Korte R, Scheven C. The higher integrability of weak solutions of porous medium systems[J]. Adv. Nonlinear Anal., 2019, 8(1): 1004-1034.
[25]
Ding Shusen, Shi Guannan, Xing Yuming. Higher integrability of iterated operators on differential forms[J]. Nonlinear Anal., 2016, 145: 83-96. DOI:10.1016/j.na.2016.07.012
[26]
Niu Jinling, Xing Yuming. The highter integrability of commutators of Calderon-Zygmund singular integral operators on differential forms[J]. J. Funct. Space., 2018, 2018: 1-9.
[27]
Li Huacan, Li Qunfang. Some higher norm inequalities for composition of power operators[J]. J. Inequal. Appl., 2020, 2020: 1-14. DOI:10.1186/s13660-019-2265-6
[28]
Skrzypczak I. Hardy inequalities resulted from nonlinear problems dealing with A-Laplacian[J]. Nonlinear Differ. Equ. Appl., 2014, 21: 841-868. DOI:10.1007/s00030-014-0269-y