数学杂志  2023, Vol. 43 Issue (2): 179-188   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
吴舒琦
Fock-Sobolev空间上Volterra型积分算子与复合算子的乘积
吴舒琦    
武汉大学数学与统计学院, 湖北 武汉 430072
摘要:本文研究了Fock-Sobolev空间上有关Volterra型积分算子与复合算子乘积有界性和紧性的问题.利用再生核,Carleson测度和Berezin变换等方法.获得了有界性和紧性的一个等价刻画,推广了Fock空间上的结果.
关键词Fock-Sobolev空间    Volterra型积分算子    复合算子    
PRODUCTS OF VOLTERRA TYPE OPERATORS AND COMPOSITION OPERATORS BETWEEN FOCK SOBOLEV SPACES
WU Shu-qi    
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Abstract: In this paper, we research some characters of products of Volterra type operators and composition operators between Fock Sobolev spaces. We use reproducing kernel and Carleson measure and Berezin transform. Several equivalent conditions on the bounded and compactness of the operator are given, we extend the conclusion of Fock spaces.
Keywords: Fock Sobolev spaces     Volterra type integral operators     composition operators    
1 引言

$ \; \mathbb{C} $表示复平面, $ H(\mathbb{C}) $表示在$ \; \mathbb{C} $上的解析函数全体, $ dA $表示$ \; \mathbb{C} $上的$ Lebesgue $面积测度, $ F^p (\mathbb{C}) $是由$ \; L^p\left(\mathbb{C}, e^{-\frac{p}{2}|z|^2}dA(z)\right) $中的整函数所构成的空间, 即

$ F^p(\mathbb{C}) = \left\{f \in H(\mathbb{C}):||f||_p = \left(\frac {p}{2\pi} \int_\mathbb{C} |f(z)|^p e^{-\frac {p|z|^2}{2}} dA(z)\right)^\frac {1}{p} < \infty\right\}, \; 其中\; 0<p<\infty. $

对任意给定的正整数$ \; m $, Fock-Sobolev空间$ \; F^{{p, m}}=\{f\in H(\mathbb{C}): f^{(m)} \in F^p\} $, Zhu在[1]中证明了$ \; f\in F^{p, m} $当且仅当$ \; z^mf(z)\in F^p. $因此, 在$ \; F^{(p, m)} $中通常使用下述范数:

$ ||f||{^p_{p, m}}=c(p, m){\int_{\mathbb{C}}}|z^mf(z)e^{-|z|^2/2}|^pdA(z), \, \, \, \, \, c(p, m)=\frac{(p/2)^{(mp/2)+1}}{{\pi}\Gamma((mp/2)+1)}. $

$ \; g\in H(\mathbb{C}) $, 则线性算子$ \; V_gf(z )= \int_0^zf(\zeta)g'(\zeta)\, d\zeta\; $称为Volterra型积分算子. 若$ \; \varphi \in H(\mathbb{C}) $, 则线性算子$ \; C_{\varphi}f(z) = f(\varphi(z))\; $称为复合算子. Volterra型积分算子和复合算子的乘积的定义如下:

$ V{_g^\varphi}f(z)\, =\, V{_g}{\circ}C{_\varphi}f(z)\, =\, {\int_0^z}f({\varphi}(\zeta))g'(\zeta)d\zeta, $
$ C{_\varphi^g}f(z)\, =\, C{_\varphi}{\circ}V{_g}f(z)\, =\, {\int_0^{\varphi(z)}}f(\zeta)g'(\zeta)d\zeta. $

方便起见, 后文使用$ \; T\; $来表示$ \; V_g^\varphi\; $$ \; C{_\varphi^g}.\; $

人们对于Fock空间和Fock-Sobolev空间已经有了很多研究. Hong在[2]中研究了Fock-Sobolev空间上复合算子有界性和紧性. Constantin在[3]中研究了Fock空间上的Volterra型积分算子. Mengestie在[4]中研究了Fock空间上Volterra型积分算子和复合算子的乘积, 使用Berezin变换刻画了算子的有界性和紧性, 但是他的结果略微复杂, Tien在[5]中给出了更易使用的结果. Cho在[6]中研究了Fock-Sobolev空间上的Toeplitz算子. Hu和Lv在[7]中研究了$ \; F^p(\varphi) $上Topelitz算子的性质, Fock-Sobolev空间可以视为$ \; F^p(\varphi) $的一个特例. Mengestie在[8, 9]中对Fock-Sobolev空间和Fock-Sobolev空间上的Volterra型积分算子进行了许多研究. 因此, 本文受上述启发, 将研究Fock-Sobolev空间上Volterra型积分算子和复合算子乘积的有界性和紧性.

本文通过$ \; M_T(z)\; $来刻画算子T的有界性和紧性, 定义如下:

$ \begin{eqnarray} M_{V{_g^\varphi}}(z) &=& \frac {|g'(z)|(1+|z|)^{(m+1)} e^{\frac {1}{2}|\varphi(z)|^2- \frac {1}{2}|z|^2}} {(1+|z|+\big||z|^2+|z|-m\big|)(1+|\varphi(z)|)^m} \\ &=& \frac {|g'(z)|(1+|z|)e^{\phi(\varphi(z))-\phi(z)}} {(1+|z|+\big||z|^2+|z|-m\big|)}\; , \\ M_{C{_\varphi^g}}(z) &=& \frac {|g'(\varphi(z))\varphi '(z)|(1+|z|)^{(m+1)} e^{\frac {1}{2}|\varphi(z)|^2 - \frac {1}{2}|z|^2}} {(1+|z|+\big||z|^2+|z|-m\big|)(1+|\varphi(z)|)^m} \\ &=& \frac {|g'(\varphi(z))\varphi '(z)|(1+|z|)e^{\phi(\varphi(z))-\phi(z)}} {(1+|z|+\big||z|^2+|z|-m\big|)}\; , \end{eqnarray} $

其中$ \; \phi(z)=|z|^2/2-mlog(1+|z|) $. 后文中若无特殊说明, $ \phi(z) $都为此定义.

下文, 我们用$ \; C\; $表示非负常数且不同处的$ C $可以取值不同. 对于两个非负量$ X $$ Y $, 用$ \; X\lesssim Y\; $表示存在常数$ \; C > 0\; $使得$ \; X\leq CY, \; $$ \; X\gtrsim Y\; $表示存在常数$ \; C > 0\; $使得$ \; X\geq CY $. 如果$ \; X\lesssim Y\; $$ \; X\gtrsim Y, \; $则记$ \; X\simeq Y.\; $本文的主要结论为下述两个定理.

定理1  设$ \; 1<p\leq q<\infty, \; g $为整函数且不为常函数, $ \; \varphi(z)=az+b, \; 0<|a|\leq 1 $, 则有:

(a)   算子$ \; T:F^{p, m}(\mathbb{C})\rightarrow F^{q, m}(\mathbb{C}) $有界当且仅当$ M_T(z)\in L^\infty (\mathbb{C}, dA) $, 且

$ ||M_{V{_g^\varphi}}||_{L^\infty} \simeq ||V{_g^\varphi}||, $
$ ||M_{C{_\varphi^g}}||_{L^\infty} \lesssim ||C{_g^\varphi}|| \lesssim (||C_b^g||^q+|a|^{-2} ||M_{V{_g^\varphi}}||^q_{L^\infty})^{\frac {1}{q}}. $

(b)   算子$ \; T:F^{p, m}(\mathbb{C})\rightarrow F^{q, m}(\mathbb{C}) $为紧算子当且仅当$ \lim\limits_{|z| \to \infty} M_T(z)\, =0. $

定理2  设$ \; 1<q< p<\infty, \; g $为整函数且不为常函数, $ \; \varphi(z)=az+b, \; 0<|a|\leq 1 $, 则下列陈述等价:

(i)   算子$ T:F^{p, m}(\mathbb{C})\rightarrow F^{q, m}(\mathbb{C})\; $是有界的.

(ii)   算子$ T:F^{p, m}(\mathbb{C})\rightarrow F^{q, m}(\mathbb{C})\; $是紧的.

(iii)   $ M_T(z) \in L^{\frac {pq}{p-q}}(\mathbb{C}, dA) $. 且有

$ ||M_{V{_g^\varphi}}||_{L^{\frac {pq}{p-q}}} \simeq ||V{_g^\varphi}||, $
$ |a|^{\frac {2(p-q)}{p-q}} ||M_{C{_\varphi^g}}||_{L^{\frac {pq}{p-q}}} \lesssim ||C{_\varphi^g}|| \lesssim (||C_b^g||^q + |a|^{-\frac {2q}{p}} ||M_{C_\varphi ^g}||^q_{L^{\frac {pq}{p-q}}})^{\frac {1}{q}}. $
2 预备知识
2.1 Fock-Sobolev空间

在本节中, 我们给出一些引理和相关推论. Mensgestie在[9]中给出了Fock-Sobolev空间范数的一个等价表述:

$ ||f||{^p_{p, m}}\simeq {\int_{\mathbb{C}}}|f(z)e^{-\phi(z)}|^pdA(z), \; \phi(z)=|z|^2/2-mlog(1+|z|). $

由上式可得$ ||f||_p \lesssim ||f||_{p, m}. $ Hu在[7]中对这类的加权Fock空间进行了一定探讨. 与Fock空间类似, 我们给出Fock-Sobolev空间中的再生核函数$ \; K_m(z, \omega), \; $后文中将其简记为$ \; K_z(\omega) $. 从[7]我们可以得知, $ \; \forall z, \omega \in \mathbb{C}, \; $存在正常数$ \; \theta, C\; $使得

$ |K_z(\omega)e^{-\phi(z)}e^{-\phi(\omega)}| \leq Ce^{-\theta|z-\omega|} \leq C. $

存在正常数$ \; r, \; $对于$ \; \forall z \in \mathbb{C}, $$ |\omega - z| < r $时, 有

$ |K_z(\omega)e^{-\phi(z)}e^{-\phi(\omega)}| \geq CK_z(z)e^{-2\phi(z)} \geq C. $

由上面两个不等式, 显然有

$ |K_z(z)| \simeq e^{2\phi(z)}. $

对于每个$ \; z \in \mathbb{C}, \; $定义$ \; k_z(\omega)=\frac {K_z(\omega)}{\sqrt{K_z(z)}}, \; $$ |k_z(z)|\simeq e^{\phi(z)}, ||k_z||_{p, m}\simeq 1.\; $固定$ \; \omega \in \mathbb{C}, \; $$ \; z \to \infty\; $时, 有$ \; |k_z(\omega)|\simeq |K_z(\omega)e^{-\phi(z)}| \leq Ce^{-\theta|z-\omega|}e^{\phi(\omega)} \to 0. $

引理2.1  设$ \; p \in (0, \infty), \; f\in F^p(\mathbb{C}). $则对任意$ z\in \mathbb{C}, \; $存在常数$ C $使得

$ |f(z)|e^{-\frac {|z|^2}{2}} \leq C||f||_p. $

$ \; f\in F^{p, m}(\mathbb{C})\; $时, 有$ \; z^mf \in F^p $, 自然可推出$ \; |f(z)z^m|e^{-\frac {|z|^2}{2}} \leq C||f||_{p, m} $.

引理2.2  设$ \; 0<p<q<\infty, \; $则有$ \; F^{p}(\mathbb{C}) \subset F^{q}(\mathbb{C}), \; $

$ ||f||_{q} \leq (\frac {q}{p})^{\frac {1}{q}}||f||_{p}, \; \; \forall f \in F^{p}. $

显然可以推出, 若$ \; 0<p<q<\infty, \; $则有$ \; F^{p, m}(\mathbb{C}) \subset F^{q, m}(\mathbb{C}), \; $$ \; ||f||_{q, m} \leq (\frac {q}{p})^{\frac {1}{q}}||f||_{p, m}. $

由文献[6, 引理3.8] 得到下述紧算子的判别方法:

引理2.3  设$ \; 1<p, q<\infty, \; T:F^{p, m} \to F^{q, m}\; $为紧算子当且仅当对于$ \; F^{p, m}\; $中任意有界且满足在$ \; \mathbb{C}\; $的紧子集上一致收敛于0的序列$ \; \{f_k\}, \; $$ \; ||Tf_k||_{p, m} \to 0, \; k \to \infty. $由文献[9, 引理2.2] 得到如下引理:

引理2.4  设$ 0<p<\infty, \; f \in F^{p, m}.\; $

$ ||f||_{p, m}^p \simeq |f(0)|^p + \int_\mathbb{C} \frac {|f'(z)|^p(1+|z|)^p e^{-p\phi(z)}} {(1+|z| + \big| |z|^2+|z|-m \big|)^p}dA(z). $

为了更好的应用引理2.4, 我们构造如下函数:

$ m_{V{_g^\varphi}}(z) = \frac {|g'(z)|(1+|z|)e^{-\phi(z)}} {(1+|z|+\big||z|^2+|z|-m\big|)} = e^{-\phi(\varphi(z))}M_{V{_g^\varphi}}, $
$ m_{C{_\varphi^g}}(z) = \frac {|g'(\varphi(z))\varphi(z)|(1+|z|)e^{-\phi(z)}} {(1+|z|+\big||z|^2+|z|-m\big|)} = e^{-\phi(\varphi(z))}M_{C{_\varphi^g}}. $

在后文中, 使用$ \; m_T\; $来简记上述两个函数.

对文献[8, 推论3.2] 的证明做简单的修改, 可得下述引理:

引理2.5  设$ g, \; \varphi $为整函数, 且$ g $不恒为0. 若满足不等式

$ \sup \limits_{z\in\mathbb{C}} \frac {|g(z)|(1+|z|)^{m+1} e^{\frac {1}{2}|\varphi(z)|^2 -\frac {1}{2}|z|^2}} {(1+|z|+\big||z|^2+|z|-m\big|)(1+|\varphi(z)|)^m} < \infty , $

则有$ \varphi (z)=az+b $, 且$ |a|\leq 1 $.

根据引理2.5, 可以得知如果有$ \sup\limits_{z \in \mathbb{C}}M_T(z) \leq M $, 则$ \varphi(z)=az+b, \; |a|\leq 1 $.

2.2 Carleson测度

$ \; 0<p, q<\infty, \; \mu\; $$ \; \mathbb{C}\; $上的正Borel测度, 若存在正数$ C $使其满足:

$ \left(\int_{\mathbb{C}}|f|^q e^{-q\phi(z)} d\mu (z)\right)^{\frac {1}{q}} \leq C||f||_{p, m}, \, \, \forall f \in F^{p, m}(\mathbb{C}), $

则称$ \mu $$ \; (p, q)\; $型Fock Sobolev-Carleson测度. 显然, 可以根据$ \; \mu\; $构建恒等算子$ \; i:F^{p, m}(\mathbb{C})\to L^q(\mathbb{C}, \; e^{-q\phi(z)} d\mu ) $, 定义$ \; ||\mu||=||i|| $.

由文献[7, 定理2.8] 得到下述引理:

引理2.6  设$ 0<q<p<\infty, \; \mu $$ \mathbb{C}\; $上的正Borel测度, 则$ \mu $$ (p, q) $型的Fock Sobolev-Carleson测度当且仅当$ \widetilde{\mu} \in L^{\frac {p}{p-q}}(\mathbb{C}, dA) $, 其中

$ \widetilde{\mu}(z)=\int_{\mathbb{C}}|k_z(\zeta)|^q e^{-q\phi(\zeta)} d\mu(\zeta), \, \, z\in \mathbb{C} $

且有$ ||\mu||\simeq ||\widetilde{\mu}||^{\frac {1}{q}}_{L^{\frac {p}{p-q}}} $.

3 Volterra型积分算子和复合算子的乘积

本节将刻画Fock Sobolev空间上算子的有界性和紧性. 下面的命题给出一个在后文中多次使用的重要等式.

命题3.1  设$ q\in (0, \infty), \; g $为整函数且不为常函数. 对于任意的整函数$ f $$ z\in \mathbb{C} $, 有

$ \begin{eqnarray} ||Tf||_{q, m}^{q} &\simeq& |(Tf)(0)|^q + \int_\mathbb{C} |f(\varphi (\zeta))|^q e^{-q\phi(\varphi(\zeta))} M_T(\zeta)^q dA(\zeta) \\ &= & |(Tf)(0)|^q + \int_\mathbb{C} |f(\varphi (\zeta))|^q m_T(\zeta)^q dA(\zeta) \\ &\gtrsim& |(Tf)(0)|^q + |f(\varphi(z))|^q m_T(z)^q, \end{eqnarray} $ (3.1)

$ \begin{eqnarray} \int _\mathbb{C} m_T(\zeta)^q dA(\zeta) \lesssim ||T1||_{q, m}^q. \end{eqnarray} $ (3.2)

  令$ T $$ \; V_g^{\varphi} $, 注意到$ \; V_g^{\varphi}f(0)=0, \; $由引理2.4, 可得

$ \begin{eqnarray} ||V_g^{\varphi}f||_{q, m}^q &\simeq& |V_g^{\varphi}f(0)|^q + \int_\mathbb{C} \frac {|f(\varphi(\zeta))g'(\zeta)|^q(1+|\zeta|)^q e^{-q\phi(\zeta)}} {(1+|\zeta| + \big| |\zeta|^2+|z|-m \big|)^q}dA(\zeta) \\ &=& \int_\mathbb{C} |f(\varphi (\zeta))|^q e^{-q\phi(\varphi(\zeta))} M_{V_g^{\varphi}}(\zeta)^q dA(\zeta)\\ &=& \int_\mathbb{C} |f(\varphi (\zeta))|^q m_{V_g^{\varphi}}(\zeta)^q dA(\zeta)\\ &\geq& \int_{D(\omega, 1)} |f(\varphi (\zeta))|^q m_{V_g^{\varphi}}(\zeta)^q dA(\zeta)\\ &=& \int_{D(\omega, 1)} \frac {|f(\varphi (\zeta)) g'(\zeta)|^q(1+|\zeta|)^{q(m+1)} e^{- \frac {q}{2}|\zeta|^2}} {(1+|\zeta|+\big||\zeta|^2+|\zeta|-m\big|)^q} dA(\zeta), \end{eqnarray} $

其中$ D(\omega, 1)=\{\zeta \in \mathbb{C}:|\zeta-\omega|< 1 \}. $$ \; \zeta\in D(\omega, \; 1)\; $时, 有

$ \begin{equation} \left\{ \begin{aligned} &1+|\zeta| \simeq 1+|\omega| \\ &1+|\zeta| + \big| |\zeta|^2+|\zeta|-m \big| \simeq 1+|\omega| + \big| |\omega|^2+|\omega|-m \big|. \end{aligned} \right.\nonumber \end{equation} $

由次调和性得

$ \int_{D(\omega, 1)} \frac {|f(\varphi (\zeta)) g'(\zeta)|^q(1+|\zeta|)^{q(m+1)} e^{- \frac {q}{2}|\zeta|^2}} {(1+|\zeta|+\big||\zeta|^2+|\zeta|-m\big|)^q} dA(\zeta) \gtrsim |f(\varphi (\omega))|^q m_{V_g^{\varphi}}(\omega)^q, \; $

从而有$ ||V_g^{\varphi}f||_{q, m}^{q} \gtrsim |V_g^{\varphi}f(0)|^q + |f(\varphi (z))|^q m_{V_g^{\varphi}}(z)^q.\; $

$ T $$ \; C{_\varphi^g}, \; $由引理2.4, 可得

$ \begin{eqnarray} ||C{_\varphi^g}f||_{q, m}^q &\simeq& |C{_\varphi^g}f(0)|^q + \int_\mathbb{C} \frac {|f(\varphi(\zeta))g'(\varphi (\zeta))\varphi' (\zeta)|^q(1+|\zeta|)^q e^{-q\phi(\zeta)}} {(1+|\zeta| + \big| |\zeta|^2+|\zeta|-m \big|)^q}dA(\zeta) \\ &=& |C{_\varphi^g}f(0)|^q + \int_\mathbb{C} |f(\varphi (\zeta))|^q e^{-q\phi(\varphi(\zeta))} M_{C{_\varphi^g}}(\zeta)^q dA(\zeta)\\ &=& |C{_\varphi^g}f(0)|^q + \int_\mathbb{C} |f(\varphi (\zeta))|^q m_{C{_\varphi^g}}(\zeta)^q dA(\zeta)\\ &\geq& |C{_\varphi^g}f(0)|^q + \int_{D(\omega, 1)} |f(\varphi (\zeta))|^q m_{C{_\varphi^g}}(\zeta)^q dA(\zeta)\\ &=& |C{_\varphi^g}f(0)|^q + \int_{D(\omega, 1)} \frac {|f(\varphi (\zeta)) g'(\varphi (\zeta))\varphi' (\zeta)|^q(1+|\zeta|)^{q(m+1)} e^{- \frac {q}{2}|\zeta|^2}} {(1+|\zeta|+\big||\zeta|^2+|\zeta|-m\big|)^q} dA(\zeta). \end{eqnarray} $

由次调和性得

$ \int_{D(\omega, 1)} \frac {|f(\varphi (\zeta)) g'(\varphi (\zeta))\varphi' (\zeta)|^q(1+|\zeta|)^{q(m+1)} e^{- \frac {q}{2}|\zeta|^2}} {(1+|\zeta|+\big||\zeta|^2+|\zeta|-m\big|)^q} dA(\zeta) \gtrsim |f(\varphi (\omega))|^q m_{C{_\varphi^g}}(\omega)^q, \; $

显然有$ |C{_\varphi^g}f(0)|^q \gtrsim |C{_\varphi^g}f(0)|^q $, 即得$ ||C{_\varphi^g}f||_{q, m}^{q} \gtrsim |C{_\varphi^g}f(0)|^q + |f(\varphi (z))|^q m_{C{_\varphi^g}}(z)^q. $

最后, 取$ \; f = 1, \; $即得$ \int _\mathbb{C} m_T(\zeta)^q dA(\zeta) \lesssim ||T1||_{q, m}^q. $

命题3.2  设$ p, \; q \in (0, \infty), \; g, \; \varphi $为整函数且$ g $不为常函数. 如果$ T:\; F^{p, m}(\mathbb{C})\rightarrow F^{q, m}(\mathbb{C}) $为有界算子, 则$ M_T(z) \in L^\infty (\mathbb{C} , dA), \; \varphi (z)=az+b, |a|\leq 1 $, 且有

$ \begin{eqnarray} M_T(z) \lesssim ||Tk_{\varphi (z)}||_{q, m} \lesssim ||T||, \forall z \in \mathbb{C} . \end{eqnarray} $ (3.3)

  利用$ ||k_\omega||_{p, m}\simeq 1 $和(3.1) 可得$ ||T||\gtrsim ||Tk_\omega||_{q, m}\gtrsim |k_{\omega}(\varphi (z))|m_T(z) , \forall z \in \mathbb{C}. $$ \omega = \varphi (z) $, 有

$ \begin{eqnarray} ||T|| \gtrsim |k_{\varphi(z)} (\varphi(z))|m_T(z) \simeq e^{\phi(\varphi(z))}m_T(z) = M_T(z). \end{eqnarray} $

由引理2.5可得$ \varphi(z)=az+b, |a|\leq 1. $

推论3.3  设$ p, \; q \in (0, \infty), \; g $为整函数且不为常函数, $ \varphi(z) = b, \; $则有:

(a)   $ V_g^b:\; F^{p, m}(\mathbb{C}) \to F^{q, m}(\mathbb{C}) $为紧算子当且仅当$ g\in F^{q, m}({\mathbb{C}}) $.

(b)   $ C_b^g:\; F^{p, m}(\mathbb{C}) \to F^{q, m}(\mathbb{C}) $是紧算子.

  $ (a) $  必要性, 令$ f=1, \; V_g^bf(z)=g(z)-g(0) $, 则$ g\in F^{q, m}({\mathbb{C}}) $.

充分性, 显然$ V_g^b $是一个有限秩算子, 因此只需证明其有界即可. 有

$ ||Tf||_{q, m}=|f(b)|\; ||g-g(0)||_{q, m} \leq e^{\frac {|b|^2}{2}} ||g-g(0)||_{q, m} ||f||_p \lesssim ||g-g(0)||_{q, m} ||f||_{p, m}, $

即得$ V_g^b $是紧算子.

(b)   设$ f\in F^{p, m}, \; C_b^gf(z)=\int_0^bf(\zeta)g'(\zeta)d\zeta, \; $

$ ||C_b^gf||_{q, m}=\left|\int_0^b f(\zeta)g'(\zeta)d\zeta\right| \leq |b| \sup\limits_{\zeta\in[0, b]}|f(\zeta)g'(\zeta)| . $

由引理2.1可知$ \forall z \in \mathbb{C}, \; |f(z)|\lesssim ||f||_p $, 又因为$ \; g'\; $是整函数, 所以$ g'(\zeta)\; $$ \; [0, b]\; $上有界, 可得

$ |b| \sup\limits_{\zeta\in[0, b]}|f(\zeta)g'(\zeta)| \lesssim ||f||_p \lesssim ||f||_{p, m}. $

显然$ \; C_b^g\; $是秩为1的有限秩算子, 从而可知$ \; C_b^g\; $是紧算子.

$ \varphi(z)=az+b, \; 0<a\leq1 $时, 情形更为复杂, 我们分$ 1<p\leq q<\infty $$ 1<q<p<\infty $来进行讨论, 先研究$ 1<p\leq q<\infty $的情况.

定理1的证明  (a)  首先证明必要性, 由命题3.2可知$ M_T(z)\lesssim ||T||, $即得$ ||M_T||_{L^\infty} \leq ||T||. $

再证充分性, 设$ M_T(z)\in L^\infty (\mathbb{C}, dA) $. 由命题3.1可得

$ \begin{eqnarray} ||Tf||_{q, m}^{q} &\simeq& |Tf(0)|^q + \int_\mathbb{C} |f(\varphi (\zeta))|^q e^{-q\phi(\varphi(\zeta))} M_T(\zeta)^q dA(\zeta)\\ &\leq & |Tf(0)|^q + ||M_T||_{L^\infty}^q \int_\mathbb{C} |f(\varphi (\zeta))|^q e^{-q\phi(\varphi(\zeta))}dA(\zeta)\\ &\lesssim & |Tf(0)|^q + |a|^{-2} ||M_T||_{L^\infty}^q \int_\mathbb{C} |f(\zeta)|^q e^{-q\phi(\zeta)}dA(\zeta)\\ &\lesssim& |Tf(0)|^q + |a|^{-2} ||M_T||^q_{L^\infty} ||f||^q_{q, m} \\ &\lesssim& |Tf(0)|^q + |a|^{-2} ||M_T||^q_{L^\infty} ||f||^q_{p, m}. \end{eqnarray} $

$ T $$ \; V_g^{\varphi} $, 注意到$ \; V_g^{\varphi}f(0)=0, \; $由上式可得

$ ||V{_g^\varphi}f||_{q, m}^{q} \lesssim |a|^{-2} ||M_{V{_g^\varphi}}||^q_{L^\infty} ||f||^q_{p, m}. $

即得$ V{_g^\varphi} $为有界算子, 再由命题3.2即可得$ ||M_{V{_g^\varphi}}||_{L^\infty} \simeq ||V{_g^\varphi}||. $

$ T $$ \; C_{\varphi}^g $, 注意到$ C_{\varphi}^gf(0)=C_b^gf $, 由推论3.3可知$ C_b^g $是有界算子, 得

$ \begin{eqnarray} ||C_{\varphi}^gf||_{q, m}^{q} &\lesssim& |C_b^gf|^q + |a|^{-2} ||M_{V{_g^\varphi}}||^q_{L^\infty} ||f||^q_{p, m}\\ &\lesssim& ||C_b^g||^q\; ||f||_{p, m}^q + |a|^{-2} ||M_{V{_g^\varphi}}||^q_{L^\infty} ||f||^q_{p, m}\\ &=& (||C_b^g||^q+|a|^{-2} ||M_{V{_g^\varphi}}||^q_{L^\infty})||f||^q_{p, m}. \end{eqnarray} $

即得$ C_{\varphi}^g $为有界算子, 且有$ ||M_{C{_\varphi^g}}||_{L^\infty} \lesssim ||C{_g^\varphi}|| \lesssim (||C_b^g||^q + |a|^{-\frac {2}{q}}||M_{C{_\varphi^g}}||_{L^\infty}^q)^{\frac {1}{q}}. $

(b)   首先证明必要性, 设$ z_n\to \infty $, 则有$ \varphi(z_n)\to \infty $, $ \{k_{\varphi(z_n)}\} $满足$ F^{p, m} $中有界且在$ \; \mathbb{C}\; $的紧子集上一致收敛于0. 由引理2.3可知$ ||Tk_{\varphi(z_n)}||_{q, m} \to 0 $, 再由命题3.2即得$ z\to \infty $时, $ M_T(z)\to 0 $.

再证充分性, 由$ (a) $可知, 此时$ T $是有界算子. 令$ \{f_n\} $$ F^{p, m} $中的任意序列, 满足$ \{||f_n||\} $有界且$ f_n $$ \mathbb{C} $的任意紧子集上一致收敛于0. 由命题3.1可得

$ \begin{eqnarray} ||Tf_n||_{q, m}^{q} &\simeq & |Tf_n(0)|^q + \int_{|z|\leq R} |f_n(\varphi (z))|^q m_T(z)^q dA(z) \\ &&+\int_{|z|>R} |f_n(\varphi (z))|^q e^{-q\phi(\varphi (z))} M_T(z)^qdA(z)\\ &\lesssim& |Tf_n(0)|^q + (\sup\limits_{|z|\leq R}|f_n(\varphi (z))|^q )\int_{|z|\leq R} m_T(z)^q dA(z) \\ &&+ (\sup\limits_{|z|>R}M_T(z)^q) \int_{|z|>R} |f_n(\varphi (z))|^q e^{-q\phi(\varphi (z))}dA(z) \\ &\lesssim& |Tf_n(0)|^q + ||T1||_{q, m}^{q} (\sup\limits_{|z|\leq R}|f_n(\varphi (z))|^q) + |a|^{-2}||f_n||_{q, m}^q (\sup\limits_{|z|>R}M_T(z)^q) \\ &\lesssim& |Tf_n(0)|^q + ||T1||_{q, m}^{q} (\sup\limits_{|z|\leq R}|f_n(\varphi (z))|^q) + |a|^{-2}||f_n||_{p, m}^q (\sup\limits_{|z|>R}M_T(z)^q). \end{eqnarray} $

我们有$ V_g^{\varphi}f_n(0)=0 $$ C_{\varphi}^gf_n(0)=C_b^gf_n=\int_0^b f_n(\zeta)g'(\zeta)d\zeta $. 因为$ \{f_n\} $在紧集$ [0, b] $上一致收敛于0, 所以$ n\to \infty $时, $ C_{\varphi}^gf_n(0) \to 0 $. 再结合$ \{||f_n||\} $有界和$ T $是有界算子即得$ ||Tf_n||_{q, m} \to 0 $, 由引理2.3可知$ T $是紧算子.

接下来证明$ 1<q<p<\infty $的情况, 我们先给出两个$ \mathbb{C} $上测度$ \mu_{T, q} $$ \lambda_{T, q} $, 定义如下:

$ \begin{eqnarray*} \mu_{T, q} (B)=\int_{\varphi^{-1}(B)} m_T(z)^q dA(z), \quad d\lambda_{T, q}(z) = e^{q\phi(z)}d\mu_{T, q}(z). \end{eqnarray*} $

定理2的证明  (ii) $ \to $ (i) 是显然的.

(i) $ \to $ (iii). 设$ T:F^{p, m}(\mathbb{C})\rightarrow F^{q, m}(\mathbb{C})\; $有界, 由(3.1) 式可得

$ \begin{eqnarray} ||T||^q\; ||f||_{p, m}^q &\geq& ||Tf||_{q, m}^q \simeq |Tf(0)|^q + \int_{\mathbb{C}} |f(\varphi (z))|^q m_T(z)^q dA(z)\\ &\geq& \int_{\mathbb{C}} |f(\varphi (z))|^q m_T(z)^q dA(z) \geq\int_{\mathbb{C}} |f(z)|^q d\mu_{T, q} (z) = \int_{\mathbb{C}} |f(z)|^q e^{-q\phi(z)} d\lambda_{T, q}(z). \end{eqnarray} $

由上述不等式可知$ \lambda_{T, q} $是一个Fock Sobolev-Carleson测度, 由引理2.6可得

$ \widetilde{\lambda_{T, q}}(\omega)=\int_{\mathbb{C}}|k_\omega(\zeta)|^q e^{-q\phi(\zeta)} d\lambda_{T, q}(\zeta)\, \in L^{\frac {p}{p-q}}(\mathbb{C}, dA). $

再使用命题3.1, 有

$ \begin{eqnarray} \int_{\mathbb{C}}|k_\omega(\zeta)|^q e^{-q\phi(\zeta)} d\lambda_{T, q}(\zeta) &=& \int_{\mathbb{C}}|k_{\omega}(\zeta)|^q d\mu_{T, q}(\zeta) =\int_{\mathbb{C}}|k_{\omega}(\varphi(\zeta))|^q m_T(\zeta)^q dA(\zeta) \\ &\gtrsim& |k_{\omega}(\varphi(z))|^q m_T(z)^q. \end{eqnarray} $

$ \omega=\varphi(z) $, 得到$ \widetilde{\lambda_q}(\varphi(z))\gtrsim e^{q\phi(\varphi(z))}m_T(z)^q = M_T(z)^q $, 从而有

$ \begin{eqnarray} \int_\mathbb{C} M_T(z)^{\frac {pq}{p-q}} dA(z) \lesssim \int_\mathbb{C} |\widetilde{\lambda_q}(\varphi(z))|^{\frac {p}{p-q}} dA(z) =|a|^{-2} \int_\mathbb{C} |\widetilde{\lambda_q}(\omega)|^{\frac {p}{p-q}} dA(\omega). \end{eqnarray} $

由引理2.5我们还可知$ ||\widetilde{\lambda_{T, q}}||_{L^{\frac {p}{p-q}}}^{\frac {1}{q}}\simeq||\lambda_{T, q}||\leq||T||, $从而有$ ||M_T||_{L^{\frac {pq}{p-q}}} \lesssim |a|^{-\frac {2(p-q)}{pq}}||T|| $.

(iii) $ \to $ (ii). 设$ M_T(z) \in L^{\frac {pq}{p-q}} $, $ f \in F^{p, m}(\mathbb{C}) $. 注意到$ \frac {1}{p} + \frac {p-q}{pq} = \frac {1}{q} $, 使用命题3.1和Hölder不等式得

$ \begin{eqnarray} ||Tf||_{q, m}^{q} &\simeq& |Tf(0)|^q + \int_\mathbb{C} |f(\varphi (\zeta))|^q e^{-\frac {q|\phi(\varphi (\zeta))|^2}{2}} M_T(\zeta)^q dA(\zeta) \\ &\leq & |Tf(0)|^q + \left(\int_\mathbb{C} |f(\varphi (\zeta))|^p e^{-\frac {p|\phi(\varphi (\zeta))|^2}{2}}dA(\zeta)\right)^{\frac {q}{p}} \times \left( \int_\mathbb{C} M_T(\zeta)^{\frac {pq}{p-q}}dA(\zeta)\right)^{\frac {p-q}{p}} \\ &\lesssim& |Tf(0)|^q + |a|^{-\frac {2q}{p}} ||f||_{p, m}^q ||M_T||_{L^{\frac {pq}{p-q}}}^q. \end{eqnarray} $

$ V_g^{\varphi}f(0)=0 $$ C_{\varphi}^gf(0)=C_b^gf, $从而可推出$ T $有界, 且

$ \begin{eqnarray} ||V_g^{\varphi}|| \lesssim |a|^{-\frac {2}{p}} ||M_{V_g^{\varphi}}||_{L^{\frac {pq}{p-q}}}, \quad ||C_{\varphi}^g|| \lesssim (||C_b^g||^q + |a|^{-\frac {2q}{p}} ||M_{C_\varphi ^g}||^q_{L^{\frac {pq}{p-q}}})^{\frac {1}{q}}. \end{eqnarray} $

接下来我们再证$ T $的紧性. 令$ \{f_n\} $$ F^{p, m} $中的任意序列, 满足$ \{||f_n||_{p, m}\} $有界且$ f_n $$ \mathbb{C} $的任意紧子集上一致收敛于0. 由命题3.1和Hölder不等式可得

$ \begin{eqnarray} ||Tf_n||_{q, m}^{q} &\simeq& |Tf_n(0)|^q + \int_\mathbb{C} |f_n(\varphi (\zeta))|^q e^{-\frac {q|\phi(\varphi (\zeta))|^2}{2}} M_T(\zeta)^q dA(\zeta) \\ &=& |Tf_n(0)|^q + \int_{|z|\leq R} |f_n(\varphi (z))|^q m_T(z)^q dA(z) \\ &&+\int_{|z|>R} |f_n(\varphi (z))|^q e^{-q\phi(\varphi(z))} M_T(z)^qdA(z)\\ &\lesssim& |Tf_n(0)|^q + \sup\limits_{|z|\leq R}|f_n(\varphi (z))|^q \int_{|z|\leq R} m_T(z)^q dA(z) \\ &\, &+ \left(\int_{|z|> R} |f_n(\varphi (z))|^p e^{-p\phi(\varphi(z))}dA(z)\right)^{\frac {q}{p}} \times \left(\int_{|z|> R} M_T(z)^{\frac {pq}{p-q}}dA(z)\right)^{\frac {p-q}{p}} \\ &\lesssim& |Tf_n(0)|^q + ||T1||_{q, m}^{q} \sup\limits_{|z|\leq R}|f_n(\varphi (z))|^q \\ &&+ |a|^{-\frac {2q}{p}} \sup\limits_{n}||f_n||_{p, m}^q \left(\int_{|z|> R} M_T(z)^{\frac {pq}{p-q}}dA(z)\right)^{\frac {p-q}{p}}. \end{eqnarray} $

$ \; T\; $有界可知$ ||T1||_{q, m}< \infty $, 再注意到$ M_T(z) \in L^{\frac {pq}{p-q}} $, $ V_g^{\varphi}f_n(0)=0 $和当$ n\to \infty $时, $ C_{\varphi}^gf_n(0)=C_b^gf_n \to 0 $. 所以我们可推出当$ n\to \infty $时, 有$ ||Tf_n||_{q, m}\to 0 $, 再通过引理2.3即可得出$ T $是紧算子.

利用本文的结论, 我们可以对$ \; V_g^{\varphi}, \; C_{\varphi}^g\; $在Fock sobolev空间中的拓扑性质做些简单的探讨, Mengestie在[10]中对Fock空间中$ \; V_g^{\varphi}\; $的拓扑结构做了更深入的研究.

推论3.4  设$ \; 1<p\leq q<\infty, \; g_1, \; g_2 $为整函数且不为常函数, $ \; \varphi_1(z)=a_1z+b_1, \; \varphi_2(z)=a_2z+b_2, \; 0<|a_1|, |a_2|\leq 1.\; V_{g_1}^{\varphi_1}, \; V_{g_2}^{\varphi_2}, $$ F^{p, m}(\mathbb{C})\rightarrow F^{q, m}(\mathbb{C}) $上的有界算子, 如果$ \; V_{g_1}^{\varphi_1}-V_{g_2}^{\varphi_2}\; $是紧算子, 则有$ V_{g_1}^{\varphi_1} $$ \; V_{g_2}^{\varphi_2} $都为紧算子或者$ a_1=a_2 $.

  出于方便起见, 用$ T_1, \; T_2 $来代表$ \; V_{g_1}^{\varphi_1} $$ V_{g_2}^{\varphi_2}\; $. 若$ T_1 $$ T_2 $中某一个为紧算子, 则通过$ \; T_1-T_2 $为紧算子可以推出$ T_1, \; T_2 $都为紧算子.

$ \; T_1, T_2\; $都不为紧算子, 我们使用反证法来证明$ \; a_1=a_2 $. 先假设有$ a_1 \neq a_2 $. 对$ (T_1-T_2)f(z)=\int_0^z f({\varphi_1}(\zeta))g_1'(\zeta)d\zeta-\int_0^zf({\varphi_2}(\zeta))g_2'(\zeta)d\zeta $使用引理2.4得

$ \begin{eqnarray} ||(T_1-T_2)f||_{q, m}^q &\simeq& |\big((T_1-T_2)f\big)(0)|^q \\ &&+ \int_\mathbb{C} \frac {|f({\varphi_1}(\zeta))g_1'(\zeta)-f({\varphi_2}(\zeta))g_2'(\zeta)|^q(1+|\zeta|)^q e^{-q\phi(\zeta)}} {(1+|\zeta| + \big| |\zeta|^2+|\zeta|-m \big|)^q}dA(\zeta)\\ &\gtrsim& |(T_1-T_2)f(0)|^q \\ &&+ \frac {|f({\varphi_1}(z))g_1'(z)-f({\varphi_2}(z))g_2'(z)|^q(1+|z|)^q e^{-q\phi(z)}} {(1+|z| + \big| |z|^2+|z|-m \big|)^q}dA(z). \end{eqnarray} $

$ k_\omega $代入上式, 得

$ \begin{eqnarray} ||(T_1-T_2)k_\omega||_{q, m}^q &\gtrsim& |\big((T_1-T_2)k_\omega\big)(0)|^q \\ &&+ \frac {|k_\omega({\varphi_1}(z))g_1'(z)-k_\omega({\varphi_2}(z))g_2'(z)|^q(1+|z|)^q e^{-q\phi(z)}} {(1+|z| + \big| |z|^2+|z|-m \big|)^q}dA(z)\\ &\gtrsim& |\big((T_1-T_2)k_\omega\big)(0)|^q \\ &&+ \frac {(1+|z|)^q e^{-q\phi(z)}} {(1+|z| + \big| |z|^2+|z|-m \big|)^q}(|k_\omega({\varphi_1}(z))g_1'(z)|-|k_\omega({\varphi_2}(z))g_2'(z)|)^q . \end{eqnarray} $

$ \; \omega=\varphi_1(z) $, 则存在正数C使得

$ \begin{eqnarray} M_{T_1}(z) &\simeq& \frac{(1+|z|) e^{-\phi(z)}} {(1+|z| + \big| |z|^2+|z|-m \big|)} |k_{\varphi_1(z)}{\varphi_1(z)}| \\ &\leq& \big(C||(T_1-T_2)k_{\varphi_1(z)}||_{q, m}^q - |\big((T_1-T_2)k_{\varphi_1(z)}\big)(0)|^q \big)^{\frac {1}{q}}\\ &&+ M_{T_2}(z)e^{-\phi(\varphi_2(z))}|k_{\varphi_1(z)}(\varphi_2(z))| \\ &\lesssim& \big(C||(T_1-T_2)k_{\varphi_1(z)}||_{q, m}^q - |\big((T_1-T_2)k_{\varphi_1(z)}\big)(0)|^q \big)^{\frac {1}{q}} + M_{T_2}(z)e^{-\theta|\varphi_1(z)-\varphi_2(z)|} . \end{eqnarray} $

通过$ T_1-T_2 $的紧性和$ \; a_1 \neq a_2 $, 可以得出当$ z \to \infty $时, 有$ ||(T_1-T_2)k_{\varphi_1(z)}||_{q, m} \to 0 $$ e^{-\theta|\varphi_1(z)-\varphi_2(z)|}\to 0 $.又有$ |\big((T_1-T_2)k_{\varphi_1(z)}\big)(0)|=0 $$ M_{T_2} $有界, 我们可以推出$ \; z \to \infty $时, $ M_{T_1}(z) \to 0 $. 根据定理1, 此时$ \; T_1 $为紧算子, 导出矛盾, 即得此时有$ a_1=a_2 $.

从上述的论证中, 注意到当$ z \to \infty $时, $ \; \big|\big((C_{\varphi_1}^{g_1}-C_{\varphi_2}^{g_2})\big) k_{\varphi_1(z)}\big)(0)\big|\to 0 $. 即可知此推论的结果对于$ \; C_{\varphi_1}^{g_1}-C_{\varphi_2}^{g_2}\; $同样成立.

参考文献
[1] Cho H R, Zhu Kehe. Fock-Sobolev spaces and their Carleson measures[J]. J. Funct. Anal., 2012, 263(8): 2483–2506. DOI:10.1016/j.jfa.2012.08.003
[2] Cho H R, Choe B R, Koo H. Linear combinations of composition operators on the Fock-Sobolev spaces[J]. Potential Anal., 2014, 41(4): 1223–1246. DOI:10.1007/s11118-014-9417-6
[3] Constantin O. A Volterra-type integration operator on Fock spaces[J]. Proc. Amer. Math. Soc., 2012, 140(12): 4247–4257. DOI:10.1090/S0002-9939-2012-11541-2
[4] Mengestie T. Product of Volterra type integral and composition operators on weighted Fock spaces[J]. J. Geom. Anal., 2014, 24: 740–755.
[5] Tien P T. Products of Volterra type operators and composition operators between Fock spaces[J]. Results Math., 2020, 75(3): 104–128. DOI:10.1007/s00025-020-01222-3
[6] Cho H R, Isralowitz J, Joo J C. Toeplitz operators on Fock-Sobolev type spaces[J]. Integral Equations Operator Theory., 2015, 82(1): 1–32. DOI:10.1007/s00020-015-2223-8
[7] Hu Zhangjian, Lv Xiaofen. Toeplitz operators on Fock spaces Fp(φ)[J]. Integral Equations Operator Theory., 2014, 80: 33–59. DOI:10.1007/s00020-014-2168-3
[8] Mengestie T. Carleson type measures for Fock-Sobolev spaces[J]. Complex Anal. Oper. Theory., 2014, 8(6): 1225–1256. DOI:10.1007/s11785-013-0321-7
[9] Mengestie T. Spectral properties of Volterra-type integral operators on Fock-Sobolev spaces[J]. J. Korean Math. Soc., 2017, 54(6): 1801–1816.
[10] Mengestie T, Worku M. Topological structures of generalized Volterra-type integral operators[J]. Mediterr. J. Math., 2018, 15(2): 42–57. DOI:10.1007/s00009-018-1080-5