数学杂志  2023, Vol. 43 Issue (2): 159-167   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WANG Xu-long
LONG Si-ying
LIU An-ping
OSCILLATION OF FRACTIONAL NEUTRAL PARTIAL DIFFERENTIAL EQUATIONS
WANG Xu-long, LONG Si-ying, LIU An-ping    
School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
Abstract: In this paper, we study the oscillation of a fractional neutral partial differential equation subject to Neumann boundary condition. Using an integration average technique and the Laplace transform, we obtain some new oscillation criteria, which are the generalization of some classical results involving partial differential equations. Some examples are given to show the applications of our main results.
Keywords: fractional differential equations     neutral     oscillation     laplace transform    
中立型分数阶偏微分方程的振动性
王续龙, 龙思颖, 刘安平    
中国地质大学(武汉)数学与物理学院, 湖北 武汉 430074
摘要:本文研究了一类中立型分数阶偏微分方程的振动性,利用积分平均值方法和拉普拉斯变换,得到了方程振动新的准则,推广了中立型偏微分方程振动的一些经典结论.
关键词分数阶微分方程    中立型    振动    拉普拉斯变换    
1 Introduction

Fractional calculus has become of increasing use for analyzing not only stochastic processes driven by fractional Brownian processes [13], but also nonrandom fractional phenomena in physics [45], like the study of porous systems, for instance, and quantum mechanics [610]. Fractional differential equations have gained increasing attention due to their various applications. Many important research results have been obtained for the initial value problem, stability, attractiveness, boundary value problem, bifurcation, etc. The study of the oscillatory problem with a view on fractional differential equation is just being initiated. As a new cross-cutting area, recently some attention has been paid to oscillations of fractional differential equations [1120]. In[11], Meng et al. studied the oscillation of linear fractional order delay differential equations

$ { }^C D_{-}^\alpha x(t)-p x(t-\tau)=0 $

where $ {}^{C}D_{-}^{\alpha }x(t) $ denotes the Caputo fractional derivative for a function $ x(t) $, $ {}^{C}D_{-}^{\alpha }x(t)=-\frac{1}{\Gamma (1-\alpha )}\int_{t}^{\infty }{\frac{{f}'(s)}{{{(s-t)}^{\alpha }}}ds}, t\in {{R}^{+}} $. By the Laplace transform the authors obtained a sufficient and necessary condition.

In[14], Zhou et al. studied oscillatory behavior of the fractional differential equation of the form

$ \frac{{{\partial }^{\alpha }}u(x, t)}{\partial {{t}^{\alpha }}}=C(t)\Delta u+\sum\limits_{i=0}^{n}{{{P}_{i}}(x)u(x, t-{{\sigma }_{i}})}+R(x, t), $

supplemented with the initial condition

$ {{\left. \frac{{{\partial }^{\alpha -1}}u(x, t)}{\partial {{t}^{\alpha -1}}} \right|}_{t\in [-\sigma , 0]}}=\varphi (x, t)\; for \; x\in \Omega, where \; \sigma =\max \{{{\sigma }_{i}}, i=1, 2, ..., n\}, $

and boundary conditions:

$ \begin{align} \frac{\partial u(x, t)}{\partial N}&=0, (x, t)\in \partial \Omega \times [0, \infty ), \\ u(x, t)&=0, (x, t)\in \partial \Omega \times [0, \infty ), \\ \frac{\partial u(x, t)}{\partial N}+uv&=0, (x, t)\in \partial \Omega \times [0, \infty ), \end{align} $

where $ 0<\alpha <1 $ is a constant, $ \frac{{{\partial }^{\alpha }}u(x, t)}{\partial {{t}^{\alpha }}} $ is the Riemann-Liouville fractional derivative of order $ \alpha $ with respect to $ t $ of a function $ u(x, t). $ Using the Laplace transform and the inequality technique, the author established some new oscillation criteria.

Motivated by the analysis above, in this paper, we are concerned with oscillation for a class of fractional differential equations as follows

$ \begin{aligned} & { }_0 D_t^\alpha\left(u(x, t)+\sum\limits_{i=1}^n r_i u\left(x, t-\sigma_i\right)\right) \\ = & a(t) h(u(x, t)) \Delta u(x, t)+\sum\limits_{i=1}^l b_i(t) h_i\left(u\left(x, t-\zeta_i\right)\right) \Delta u\left(x, t-p_i\right)-\sum\limits_{i=1}^m q_i(t) f_i\left(u\left(x, t-\tau_i\right)\right), \end{aligned} $ (1.1)

where $ 0<\alpha =\frac{odd_{{}}^{{}}\text{integer}}{odd_{{}}^{{}}\text{integer}}<1 $, $ {}_{0}D_{t}^{\alpha }x(t) $ is Riemann-Liouville fractional derivative of order, and $ (x, t)\in \Omega \times (0, \infty )=G $. Here $ \Omega \subset {{R}^{N}} $ is a bounded domain with boundary $ \partial \Omega $ smooth enough. The hypotheses are always true as follows:

(H1) : $ {{r}_{i}}, {{\sigma }_{i}}, {{\zeta }_{i}}, {{p}_{i}}, {{\tau }_{i}}\in {{R}^{+}} $; $ a(t), {{b}_{i}}(t), {{q}_{i}}(t)\in C({{R}^{+}}, {{R}^{+}}) $; $ {{q}_{i}}=\inf {{q}_{i}}(t)>0 $.

(H2) : $ {{f}_{i}}(u)\in C(R, R) $, $ {{f}_{i}}(u)/u\ge {{C}_{i}}=const>0 $, for $ u\ne 0 $.

(H3) : $ h(u)\in C(R, R), \text{ }u{h}'(u)\ge 0 $.

The initial condition $ u(x, t)=\phi (x, t) $, $ \phi (x, t)\in C(\Omega \times [-\rho , 0], R) $, $ (x, t)\in \Omega \times [-\rho , 0] $, $ \rho =\max \{{{\sigma }_{i}}, {{\zeta }_{j}}, {{p}_{j}}, {{\tau }_{k}}, i=1, 2, ..., n;j=1, 2, ..., l;k=1, 2, ..., m\}. $ Consider the boundary conditions as follows :

$ \begin{equation} \frac{\partial u(x, t)}{\partial N}=0, on \; (x, t)\in \partial \Omega \times {{R}^{+}}, \end{equation} $ (1.2)

where $ N $ is the unit exterior normal vector in $ \partial \Omega $.

This paper is organized as follows. In the next section, we introduce some useful preliminaries. In section 3, we present various sufficient conditions for oscillation of all solutions to the system (1.1) by using fractional calculus, Laplace transform and Green's function. Finally, we provide some examples to show applications of our criteria.

2 Preliminaries

In this section, we introduce preliminary facts which are used throughout this paper.

Definition 2.1  [21] The fractional integral of order $ \alpha $ with the lower limit zero for a function $ f $ is defined as

$ ({}_{0}D_{t}^{-\alpha }f)(t)=\frac{1}{\Gamma (\alpha )}\int_{0}^{t}{\frac{f(s)}{{{(t-s)}^{1-\alpha }}}}ds, t>0, 0<\alpha <1, $

provided the right side is pointwise defined on $ [0, b] $, where $ \Gamma (\centerdot ) $ is the gamma function.

Definition 2.2  [21] Riemann-Liouville derivative of order $ \alpha $ with the lower limit zero for a function $ f $ can be written as

$ ({}_{0}D_{t}^{\alpha }f)(t)=\frac{1}{\Gamma (1-\alpha )}\frac{d}{dt}\int_{0}^{t}{\frac{f(s)}{{{(t-s)}^{\alpha }}}}ds, t>0, 0<\alpha <1. $

Definition 2.3  A solution of problem (1.1)-(1.2) is said to be oscillatory in $ G $ if it is neither eventually positive nor eventually negative. Otherwise it is called nonoscillatory.

We recall some facts about Laplace transforms. If $ X(s) $ is the Laplace transform of $ x(t) $,

$ X(s)=L[x(t)](s)=\int_{0}^{\infty }{{{e}^{-st}}x(t)}dt, $

then the abscissa of convergence of $ X(s) $ is defined by $ b=\inf \{\gamma \in R:X{{(\gamma )}_{{}}}exists\}. $

Lemma 2.1 [21] Let $ (L{}_{0}D_{t}^{\alpha }x)(s) $ be the Laplace transform of the Riemann-Liouville fractional derivative of order $ \alpha $ with the lower limit zero for a function $ x $, and $ X(s) $ is the Laplace transform of $ x(t) $. Further, for $ x\in AC[0, b] $ and for any $ b>0 $, $ \left| x(t) \right|\le A{{e}^{{{m}_{0}}t}}, t>b>0 $ holds for constant $ A>0 $ and $ {{m}_{0}}>0 $. Then the relation

$ (L{}_{0}D_{t}^{\alpha }x)(s)={{s}^{\alpha }}X(s)-{{\left. ({}_{0}D_{t}^{\alpha -1}x)(t) \right|}_{t=0}}, 0<\alpha <1 $

is valid for $ \operatorname{Re}(s)>{{m}_{0}} $.

3 Main Results

Lemma 3.1  $ {}_{0}D_{t}^{\alpha }x $ is the Riemann-liouville derivative of order $ \alpha $ with the lower limit zero for a function $ x(t) $, $ X(s) $ is the Laplace transform of $ x(t) $, $ \sigma >0 $, $ 0<\alpha <1 $, then the following relation holds.

$ L\left[ {}_{0}D_{t}^{\alpha }x(t-\sigma ) \right](s)={{s}^{\alpha }}{{e}^{-s\sigma }}X(s)+{{s}^{\alpha }}{{e}^{-s\sigma }}\int_{-\sigma }^{0}{{{e}^{-st}}x(t)}dt-{{\left. ({}_{0}D_{t}^{\alpha -1}x(t-\sigma )) \right|}_{t=0}}. $

Proof

$ \begin{align} L\left[ {}_{0}D_{t}^{\alpha }x(t-\sigma ) \right](s)&=L\left[ \frac{d({}_{0}D_{t}^{\alpha -1}x(t-\sigma ))}{dt} \right](s) \\ & =sL\left[ {}_{0}D_{t}^{\alpha -1}x(t-\sigma ) \right](s)-{{\left. ({}_{0}D_{t}^{\alpha -1}x(t-\sigma )) \right|}_{t=0}} \\ & =sL\left[ \frac{1}{\Gamma (1-\alpha )}\int_{0}^{t}{{{(t-s)}^{-\alpha }}x(s-\sigma )}ds \right](s)-{{\left. ({}_{0}D_{t}^{\alpha -1}x(t-\sigma )) \right|}_{t=0}} \\ & =sL\left[ \frac{{{t}^{-\alpha }}}{\Gamma (1-\alpha )}*x(t-\sigma ) \right](s)-{{\left. ({}_{0}D_{t}^{\alpha -1}x(t-\sigma )) \right|}_{t=0}} \\ & =sL\left[ \frac{{{t}^{-\alpha }}}{\Gamma (1-\alpha )} \right]L\left[ x(t-\sigma ) \right]-{{\left. ({}_{0}D_{t}^{\alpha -1}x(t-\sigma )) \right|}_{t=0}}, \end{align} $

where $ L\left[ x(t-\sigma ) \right]={{e}^{-s\sigma }}X(s)+{{e}^{-s\sigma }}\int_{-\sigma }^{0}{{{e}^{-st}}x(t)dt} $. So

$ L\left[ {}_{0}D_{t}^{\alpha }x(t-\sigma ) \right](s)={{s}^{\alpha }}{{e}^{-s\sigma }}X(s)+{{s}^{\alpha }}{{e}^{-s\sigma }}\int_{-\sigma }^{0}{{{e}^{-st}}x(t)}dt-{{\left. ({}_{0}D_{t}^{\alpha -1}x(t-\sigma )) \right|}_{t=0}}. $

The proof is complete.

Theorem 3.1  If the fractional differential inequality

$ \begin{equation} {}_{0}D_{t}^{\alpha }(v(t)+\sum\limits_{i=1}^{n}{{{r}_{i}}v(t-{{\sigma }_{i}})})+\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}v(t-{{\tau }_{i}})}\le 0 \end{equation} $ (3.1)

has no eventually positive solutions and the fractional differential inequality

$ \begin{equation} {}_{0}D_{t}^{\alpha }(v(t)+\sum\limits_{i=1}^{n}{{{r}_{i}}v(t-{{\sigma }_{i}})})+\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}v(t-{{\tau }_{i}})}\ge 0 \end{equation} $ (3.2)

has no eventually negative solutions, then every nontrivial solution of the problems (1.1) and (1.2) is oscillatory.

Proof  Assume that (1.1) with the boundary condition (1.2) has no oscillation solution, without loss of generality, we assume that $ u(x, t) $ is an eventually positive solution of (1.1) and (1.2) which implies that there exists $ T>0 $ such that $ u(x, t)>0, u(x, t-{{\sigma }_{i}})>0, u(x, t-{{\tau }_{i}})>0 $ in $ \Omega \times [T, \infty ) $. Since (H1) and (H2), from (1.1), we can obtain

$ \begin{equation} \begin{split} & {}_{0}D_{t}^{\alpha }(u(x, t)+\sum\limits_{i=1}^{n}{{{r}_{i}}u(x, t-{{\sigma }_{i}})})\\ \le& a(t)h(u(x, t))\Delta u(x, t) +\sum\limits_{i=1}^{l}{{{b}_{i}}(t){{h}_{i}}(u(x, t-{{\zeta }_{i}}))\Delta u(x, t-{{p}_{i}})} -\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}u(x, t-{{\tau }_{i}})}. \end{split} \end{equation} $ (3.3)

Integrating (3.3) with respect to $ x $ over $ \Omega $ yields

$ \begin{equation} \begin{split} & {}_{0}D_{t}^{\alpha }(\int_{\Omega }{u(x, t)dx}+\sum\limits_{i=1}^{n}{{{r}_{i}}\int_{\Omega }{u(x, t-{{\sigma }_{i}})dx}})\le a(t)\int_{\Omega }{h(u(x, t))\Delta u(x, t)dx} \\ & \text{ }+\sum\limits_{i=1}^{l}{{{b}_{i}}(t)\int_{\Omega }{{{h}_{i}}(u(x, t-{{\zeta }_{i}}))\Delta u(x, t-{{p}_{i}})dx}}-\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}\int_{\Omega }{u(x, t-{{\tau }_{i}})dx}}. \\ \end{split} \end{equation} $ (3.4)

By Green's formula and the boundary condition (1.2), we have

$ \begin{equation} \begin{split} & \int_{\Omega }{h(u)\Delta u(x, t)dx}=\int_{\partial \Omega }{h(u)\frac{\partial u(x, t)}{\partial N}dS}-\int_{\Omega }{{h}'(u){{\left| grad\text{ }u \right|}^{2}}dx} \\ =& -\int_{\Omega }{{h}'(u){{\left| grad\text{ }u \right|}^{2}}}dx\le 0, \\ &\int_{\Omega }{{{h}_{i}}(u(x, t-{{\zeta }_{i}}))\Delta u(x, t-{{p}_{i}})dx}\le 0. \\ \end{split} \end{equation} $ (3.5)

Let $ v(t)=\int_{\Omega }{u(x, t)dx} $, from (3.4) and (3.5), we get

$ \begin{equation} {}_{0}D_{t}^{\alpha }(v(t)+\sum\limits_{i=1}^{n}{{{r}_{i}}v(t-{{\sigma }_{i}})})+\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}v(t-{{\tau }_{i}})}\le 0. \end{equation} $ (3.6)

That is, there exists eventually positive solution for the inequality (3.1) which contradicts the conditions of theorem.

Secondly, if $ u(x, t) $ is an eventually negative solution of the problem (1.1) and (1.2), then using above procedure, we can easily show that $ v(t)=\int_{\Omega }{u(x, t)dx} $ is an eventually negative solution of the fractional differential inequality (3.2) which again contradicts the conditions of theorem. This completes the proof.

Theorem 3.2  Assume that $ \tau >\sigma $, $ \tau =\min \{{{\tau }_{i}}, i=1, 2, ..., m\} $, $ \sigma =\max \{{{\sigma }_{i}}, i=1, 2, ..., n\} $, if

$ \begin{equation} p(\lambda )={{\lambda }^{\alpha }}+{{\lambda }^{\alpha }}\sum\limits_{i=1}^{n}{{{r}_{i}}{{e}^{-\lambda {{\sigma }_{i}}}}}+\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-\lambda {{\tau }_{i}}}}}=0 \end{equation} $ (3.7)

has no real roots, then every solution of (1.1) and (1.2) is oscillatory.

Proof  Suppose that $ u(x, t) $ is a nonoscillatory solution of (1.1). Without loss of generality, we may assume that $ u(x, t) $ is an eventually positive solution of (1.1). We proceed as in the proof of theorem 3.1 to get that (3.6) holds. Taking Laplace transform of both sides of (3.6), we obtain

$ \begin{gather*} {{s}^{\alpha }}V(s)-A+V(s)\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}}+\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}\int_{-{{\sigma }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}-\sum\limits_{i=1}^{n}{{{B}_{i}}{{r}_{i}}}+ \\ V(s)\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}}+\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}\int_{-{{\tau }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}\le 0, \\ \end{gather*} $

where $ V(s)=\int_{0}^{\infty }{{{e}^{-st}}v(t)}dt $, $ A={{\left. ({}_{0}D_{t}^{\alpha -1}v(t)) \right|}_{t=0}} $, $ {{B}_{i}}={{\left. ({}_{0}D_{t}^{\alpha -1}v(t-{{\sigma }_{i}})) \right|}_{t=0}} $.

Hence

$ \begin{equation} \begin{split} & V(s)({{s}^{\alpha }}+\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}}+\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}}) \\ \le& A+\sum\limits_{i=1}^{n}{{{B}_{i}}{{r}_{i}}}-\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}\int_{-{{\sigma }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}-\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}\int_{-{{\tau }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}. \\ \end{split} \end{equation} $ (3.8)

Let

$ \begin{align} & p(s)={{s}^{\alpha }}+\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}}+\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}}, \\ & \Phi (s)=A+\sum\limits_{i=1}^{n}{{{B}_{i}}{{r}_{i}}}-\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}\int_{-{{\sigma }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}-\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}\int_{-{{\tau }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}, \end{align} $

then from (3.8) we get

$ \begin{equation} V(s)p(s)\le \Phi (s). \end{equation} $ (3.9)

Since $ p(s)=0 $ has no real roots and $ p(0)>0 $, $ p(s)>0 $. By positivity of $ v(t) $ in $ [-\rho , 0] $, there exists a constant $ z>0 $ such that $ z<v(t) $. Since $ {{r}_{i}}>0 $, $ \tau >\sigma $ then

$ \begin{align} \frac{\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}\int_{-{{\tau }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}}{-\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}\int_{-{{\sigma }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}}& \ge \frac{\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}\int_{-\tau }^{0}{{{e}^{-st}}v(t)dt}}}{-\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}\int_{-\sigma }^{0}{{{e}^{-st}}v(t)dt}}} \\ & \ge \frac{\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}}}{-\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}}}\ge \frac{\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s\tau }}}}{-\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s\sigma }}}} \\ & =\frac{\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}}}{\sum\limits_{i=1}^{n}{{{r}_{i}}}}\frac{{{e}^{-s(\tau -\sigma )}}}{{{(-s)}^{\alpha }}}\to +\infty \text{ }(s\to -\infty ). \end{align} $

Thus there exists a constant $ k<0 $ such that $ s<k $,

$ \frac{\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}\int_{-{{\tau }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}}{-\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}\int_{-{{\sigma }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}}\ge 2. $

Then,

$ \begin{align} & -\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}\int_{-{{\sigma }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}-\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}\int_{-{{\tau }_{i}}}^{0}{{{e}^{-st}}v(t)dt}} \\ & =-\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}\int_{-{{\sigma }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}(1-\frac{\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-s{{\tau }_{i}}}}\int_{-{{\tau }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}}{-\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}\int_{-{{\sigma }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}}) \\ & \le \sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}\int_{-{{\sigma }_{i}}}^{0}{{{e}^{-st}}v(t)dt}}\le \sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}{{e}^{-s{{\sigma }_{i}}}}z\int_{-{{\sigma }_{i}}}^{0}{{{e}^{-st}}dt}} \\ & =\sum\limits_{i=1}^{n}{{{r}_{i}}{{s}^{\alpha }}z\frac{1}{s}\frac{{{e}^{s{{\sigma }_{i}}}}-1}{{{e}^{s{{\sigma }_{i}}}}}}=\sum\limits_{i=1}^{n}{{{r}_{i}}z\frac{1-{{e}^{-s{{\sigma }_{i}}}}}{{{(-s)}^{1-\alpha }}}\to -\infty \text{ }(s\to -\infty )}. \end{align} $

Thus we conclude that $ \Phi (s)\to -\infty (s\to -\infty ) $, but $ p(s) $ and $ V(s) $ are positive. Hence, (3.9) leads to a contradiction. The proof is complete.

Theorem 3.3  Assume that $ \tau >\sigma $, $ \tau =\min \{{{\tau }_{i}}, i=1, 2, ..., m\} $, $ \sigma =\max \{{{\sigma }_{i}}, i=1, 2, ..., n\} $, if

$ \begin{equation} (\frac{1}{m}\sum\limits_{i=1}^{m}{{{\tau }_{i}}}-\frac{1}{n}\sum\limits_{i=1}^{n}{{{\sigma }_{i}}}){{\left( \frac{m{{\left( \prod\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}} \right)}^{\frac{1}{m}}}}{1+n{{\left( \prod\limits_{i=1}^{n}{{{r}_{i}}} \right)}^{\frac{1}{n}}}} \right)}^{\frac{1}{\alpha }}}>\frac{1}{e}, \end{equation} $ (3.10)

then every solution of (1.1) and (1.2) is oscillatory.

Proof  By using the arithmetic-geometric mean inequality $ \sum\limits_{i=1}^{m}{{{a}_{i}}\ge m{{\left( \prod\limits_{i=1}^{m}{{{a}_{i}}} \right)}^{\frac{1}{m}}}}, $ for $ \lambda<0 $, we find

$ \begin{align} {{\lambda }^{\alpha }}+{{\lambda }^{\alpha }}\sum\limits_{i=1}^{n}{{{r}_{i}}{{e}^{-\lambda {{\sigma }_{i}}}}}+\sum\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-\lambda {{\tau }_{i}}}}}&\ge {{\lambda }^{\alpha }}+{{\lambda }^{\alpha }}n{{\left( \prod\limits_{i=1}^{n}{{{r}_{i}}{{e}^{-\lambda {{\sigma }_{i}}}}} \right)}^{\frac{1}{n}}}+m{{\left( \prod\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}{{e}^{-\lambda {{\tau }_{i}}}}} \right)}^{\frac{1}{m}}} \\ & ={{\lambda }^{\alpha }}+{{\lambda }^{\alpha }}n{{\left( \prod\limits_{i=1}^{n}{{{r}_{i}}} \right)}^{\frac{1}{n}}}{{e}^{-\lambda \frac{\sum\limits_{i=1}^{n}{{{\sigma }_{i}}}}{n}}}+m{{\left( \prod\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}} \right)}^{\frac{1}{m}}}{{e}^{-\lambda \frac{\sum\limits_{i=1}^{m}{{{\tau }_{i}}}}{m}}} \\ & ={{\lambda }^{\alpha }}+{{\lambda }^{\alpha }}A{{e}^{-\lambda B}}+C{{e}^{-\lambda D}}. \end{align} $

Let

$ \begin{equation} f(\lambda )={{\lambda }^{\alpha }}+{{\lambda }^{\alpha }}A{{e}^{-\lambda B}}+C{{e}^{-\lambda D}} \end{equation} $ (3.11)

where $ A=n{{\left( \prod\limits_{i=1}^{n}{{{r}_{i}}} \right)}^{\frac{1}{n}}}, B=\frac{1}{n}\sum\limits_{i=1}^{n}{{{\sigma }_{i}}}, C=m{{\left( \prod\limits_{i=1}^{m}{{{q}_{i}}}{{C}_{i}} \right)}^{\frac{1}{m}}}, D=\frac{1}{m}\sum\limits_{i=1}^{m}{{{\tau }_{i}}} $ and $ D>B $.

Assume that Eq. (3.11) has a real roots $ {{\lambda }_{1}} $, if $ {{\lambda }_{1}}\ge 0 $, then $ f({{\lambda }_{1}})>0 $, it is impossible. Thus we conclude that $ {{\lambda }_{1}}<0 $. Since $ \alpha $ is the ratio of two odd integers, it follows from (3.11) that

$ \begin{align} \lambda _{1}^{\alpha }&+\lambda _{1}^{\alpha }A{{e}^{-{{\lambda }_{1}}B}}+C{{e}^{-{{\lambda }_{1}}D}}=0 \\ \lambda _{1}^{\alpha }&=-\frac{C{{e}^{-{{\lambda }_{1}}D}}}{1+A{{e}^{-{{\lambda }_{1}}B}}} =-\frac{C}{{{e}^{{{\lambda }_{1}}D}}+A{{e}^{{{\lambda }_{1}}(D-B)}}} \le -\frac{C}{1+A}. \end{align} $

Then

$ \begin{align} {{(-{{\lambda }_{1}})}^{\alpha }}\ge \frac{C}{1+A}, \quad {{(-{{\lambda }_{1}})}^{1-\alpha }}\ge {{\left( \frac{C}{1+A} \right)}^{\frac{1-\alpha }{\alpha }}}. \end{align} $ (3.12)

By (3.12) and the inequality $ {{e}^{x}}\ge ex $ for $ x\ge 0 $, we get

$ \begin{align} {{(-{{\lambda }_{1}})}^{\alpha }}&=\frac{C{{e}^{-{{\lambda }_{1}}D}}}{1+A{{e}^{-{{\lambda }_{1}}B}}}=\frac{C{{e}^{{{\lambda }_{1}}(B-D)}}}{{{e}^{{{\lambda }_{1}}B}}+A} \ge \frac{Ce{{\lambda }_{1}}(B-D)}{1+A}=\frac{Ce(D-B)}{1+A}(-{{\lambda }_{1}}) \\ & =\frac{Ce(D-B)}{1+A}{{(-{{\lambda }_{1}})}^{\alpha }}{{(-{{\lambda }_{1}})}^{1-\alpha }} \ge \frac{Ce(D-B)}{1+A}{{(-{{\lambda }_{1}})}^{\alpha }}{{\left( \frac{C}{1+A} \right)}^{\frac{1-\alpha }{\alpha }}}, \end{align} $

which implies that $ 1\ge e(D-B){{\left( \frac{C}{1+A} \right)}^{\frac{1}{\alpha }}}, $ which contradicts the conditions (3.10). The proof is complete.

4 Example

In this section we give examples to illustrate our results.

Example 4.1  Consider the following fractional differential equation

$ \begin{equation} \begin{split} &{}_{0}D_{t}^{1/5}(u(x, t)+\frac{1}{4}u(x, t-\frac{1}{3})+u(x, t-\frac{1}{2})) \\ \text{ } &={{e}^{t}}{{u}^{2}}\Delta u(x, t)+{{u}^{4}}(x, t-3)\Delta u(x, t-\frac{1}{2})+{{t}^{2}}{{u}^{6}}(x, t-5)\Delta u(x, t-\frac{4}{5})- \\ \text{ } &[(t+\frac{1}{t})u(x, t-\frac{3}{2})+\sin (u(x, t-1))+2u(x, t-1)] \\ \end{split} \end{equation} $ (4.1)

with the boundary conditions

$ \frac{\partial u(0, t)}{\partial x}=\frac{\partial u(5, t)}{\partial x}=0, (x, t)\in (0, 5)\times (0, \infty ). $

Notice $ \alpha =\frac{1}{5} $, $ {{r}_{1}}=\frac{1}{4}, $ $ {{r}_{2}}=1 $, $ {{\sigma }_{1}}=\frac{1}{3} $, $ {{\sigma }_{2}}=\frac{1}{2} $, $ a(t)={{e}^{t}} $, $ h(u)={{u}^{2}} $, $ {{h}_{1}}(u)={{u}^{4}} $, $ {{h}_{2}}(u)={{u}^{6}} $, $ {{b}_{1}}(t)=1 $, $ {{b}_{2}}(t)={{t}^{2}} $, $ {{\zeta }_{1}}=3 $, $ {{\zeta }_{2}}=5 $, $ {{p}_{1}}=\frac{1}{2} $, $ {{p}_{2}}=\frac{4}{5} $, $ {{q}_{1}}(t)=t+\frac{1}{t} $, $ {{q}_{2}}(t)=1 $, $ {{f}_{1}}(u)=u $, $ {{f}_{2}}(u)=\sin (u)+2u $, $ {{\tau }_{1}}=\frac{3}{2} $, $ {{\tau }_{2}}=1 $, then it is easy to find $ {{q}_{1}}=2, \text{ }{{q}_{2}}=1 $, $ {{C}_{1}}=1, \text{ }{{C}_{2}}=1 $.

Therefore, $ (\frac{1}{m}\sum\limits_{i=1}^{m}{{{\tau }_{i}}}-\frac{1}{n}\sum\limits_{i=1}^{n}{{{\sigma }_{i}}}){{\left( \frac{m{{\left( \prod\limits_{i=1}^{m}{{{q}_{i}}{{C}_{i}}} \right)}^{\frac{1}{m}}}}{1+n{{\left( \prod\limits_{i=1}^{n}{{{r}_{i}}} \right)}^{\frac{1}{n}}}} \right)}^{\frac{1}{\alpha }}}=\frac{10\sqrt{2}}{3}>\frac{1}{e}, $ then (4.1) is oscillatory by Theorem 3.3.

References
[1]
Decreusefond L, Ustunel A S. Stochastic analysis of the fractional brownian motion[J]. Potential Analysis, 1999, 10: 177-214. DOI:10.1023/A:1008634027843
[2]
Mishura Y, Zili M. Stochastic analysis of mixed fractional gaussian processes[M]. London: ISTE Press and Elsevier, 2018.
[3]
Mishura Y S. Stochastic calculus for fractional brownian motion and related processes[M]. Lecture Notes in Mathematics, Berlin: Springer-Verlag, 2008.
[4]
Momani S, Arqub O A, Freihat A, AI-Smadi M. Analytical approximations for fokker-planck equations of fractional order in multistep schemes[J]. Appl. Comput. Math., 2016, 15(3): 319-330.
[5]
Tapaswini S, Behera D. Imprecisely defined fractional-order fokker-planck equation subjected to fuzzy uncertainty[J]. Pramana, 2021, 95(1): 1-9. DOI:10.1007/s12043-020-02034-4
[6]
Wei Ting, Zhang Yun. The backward problem for a time-fractional diffusion-wave equation in a bounded domain[J]. Computers & Mathematics with Applications, 2018, 75(10): 3632-3648.
[7]
Herzallah M A E, El-Sayed A M A, Baleanu D. On the fractional-order diffusion-wave process[J]. Rom. J. Phys., 2010, 55(3-4): 274-284.
[8]
Yan Xiongbin, Zhang Yuanxiang, Wei Ting. Identify the fractional order and diffusion coefficient in a fractional diffusion wave equation[J]. Journal of Computational and Applied Mathematics, 2021, 393: 113497. DOI:10.1016/j.cam.2021.113497
[9]
Nottale L. Scale relativity and fractal space-time: theory and applications[J]. Foundations of Science, 2010, 15(2): 101-152. DOI:10.1007/s10699-010-9170-2
[10]
Rahimkhani P, Ordokhani Y. Approximate solution of nonlinear fractional integro-differential equations using fractional alternative legendre functions[J]. Journal of Computational and Applied Mathematics, 2020, 365: 112365. DOI:10.1016/j.cam.2019.112365
[11]
Meng Qiong, Jin Zhen, Liu Guirong. Sufficient and necessary conditions for oscillation of linear fractional-order delay differential equations[J]. Advances in Difference Equations, 2021, 2021(1): 1-9. DOI:10.1186/s13662-020-03162-2
[12]
Zhu Pengxian, Xiang Qiaomin. Oscillation criteria for a class of fractional delay differential equations[J]. Advances in Difference Equations, 2018, 2018(1): 1-11. DOI:10.1186/s13662-017-1452-3
[13]
Feng Limei, Sun Shurong. Oscillation theorems for three classes of conformable fractional differential equations[J]. Advances in Difference Equations, 2019, 2019(1): 1-30. DOI:10.1186/s13662-018-1939-6
[14]
Zhou Yong, Ahmad B, Chen Fulai, Alsaedi A. Oscillation for fractional partial differential equations[J]. Bull. Malays. Math. Sci. Soc., 2019, 42: 449-465. DOI:10.1007/s40840-017-0495-7
[15]
Uzun T Y. Oscillatory criteria of nonlinear higher order Ψ-hilfer fractional differential equations[J]. Fundamental Journal of Mathematics and Applications, 2021, 4(2): 134-142.
[16]
Feng Qian, Liu Anping. Oscillation for a class of fractional differential equation[J]. Journal of Applied Mathematics and Physics, 2019, 7: 1429-1439. DOI:10.4236/jamp.2019.77096
[17]
Feng Qian, Liu Anping. Oscillatory behavior of a class impulsive fractional partial differential equation[J]. IAENG International Journal of Applied Mathematics, 2020, 50(2): 1-6.
[18]
Ma Qingxia, Liu Keying, Liu Anping. Forced oscillation of fractional partial differential equations with damping term[J]. Journal of Mathematics, 2019, 39(1): 111-120.
[19]
Xu Weijie, Liu Anping, Xiao Li. Oscillation of modified Riemann-Liouville fractional impulsive partial differential equations[J]. Journal of Mathematics, 2020, 40(6): 717-727.
[20]
Yang Jichen, Liu Anping, Liu Ting. Forced oscillation of nonlinear fractional differential equations with damping term[J]. Advances in Difference Equations, 2015, 2015(1): 1-7. DOI:10.1186/s13662-014-0331-4
[21]
Kilbas A A, Srivastava H M, Trujillo J J. Theory and applications of fractional differential equations[M]. In North-Holland Mathematics Studies, Amsterdam: Elsevier, 2006.