在数学生物学中, 如何准确地描述物种间关系是一个有意义的话题. 在现实的生活中, 物种的演化都可能被其他的物种或者物种自身的演化所影响, 在数学上一般用确定性(偏)微分方程来描述. 注意到噪声总是存在, 加上其它不确定性因素的影响, 随机(偏)微分方程可以更好的刻画物种的演化. 最早的双物种模型是著名的Lotka-Volterra捕食模型, 本文考虑三物种在随机环境下的演化行为
初始值为$ x_{i}(\theta) $, 并且
这里的$ \phi_{i}(\theta) $是定义在区间$ [-\tau, 0] $上的连续函数并且大于零, $ i=1, 2, 3 $. 换句话说, $ x_{0}=\phi=(\phi_{1}, \phi_{2}, \phi_{3})^{T}\in C([-\tau, 0], R_{+}^{3}) $, 其中$ R_{+}^{3}=\{(x_{1}, x_{2}, x_{3})\in R^{3}:x_{i}>0, 1\leq i\leq 3\} $. $ x_{3} $以$ x_{1} $和$ x_{2} $为食物, $ x_{1} $和$ x_{2} $是合作关系. $ a_{1}>0 $和$ a_{2}>0 $分别表示$ x_{1} $和$ x_{2} $的生长率. $ -a_{3}>0 $则表示$ x_{3} $的死亡率. $ c_{11} $, $ c_{22} $, $ c_{33} $分别表示物种$ x_{1} $, $ x_{2} $, $ x_{3} $内部的竞争系数(大于零). $ c_{12} $和$ c_{21} $为物种$ x_{1} $和$ x_{2} $的合作关系系数(大于零). $ c_{13} $和$ c_{23} $代表损失率(大于零). $ c_{31} $和$ c_{32} $代表俘获率(大于零). $ \tau_{1} $, $ \tau_{2} $, $ \tau_{3} $, $ \tau_{4} $, $ \tau_{5} $, $ \tau_{6} $代表时滞(大于零).
考虑到随机扰动
其中$ \{B_{i}(t)\}_{t\geq0}, i=1, 2, 3, $是定义在具有滤子$ \mathcal {F}_{t\geq0} $的完备概率空间$ (\Omega, \mathcal {F}, \{\mathcal {F}\}_{t\geq0}, \mathbb{P}) $上的标准独立Wiener过程, $ \sigma_{i}^{2}, \ i=1, 2, 3, $代表噪声的强度. 因此, 我们有:
随机模型中, 一般是通过寻求正平衡状态来研究解的平稳分布, 由以往得到的结果知道可通过运用F-P方程的显示解法[1, 2]、马尔科夫半群理论法[3-5]、以及Lyapunov函数法[6-9]来进行研究. 其中, F-P方程的显示解法可以解决不具有时滞的模型; 马尔科夫半群理论法需要一个标准测度, 而这样的标准测度有的很难找到; Lyapunov函数法则需要解的马尔科夫性质, 时滞的模型是不具有这种性质的. 另外, Hu-Wang所得到结果中的条件需要满足方程系数的线性增长[10], 时滞的模型是不能满足的. 本文采用的方法则避免了以上提到的问题, 适用于具有时滞的模型, 对种群的动力学分析更具有现实意义.
最近, Liu等[11]研究了接种疫苗和双疾病的随机时滞SIS传染病模型并且得到了这个模型的阈值. 在文献[12] 中, Liu和Jiang考虑了一类具有不完善疫苗接种的随机分阶进展HIV模型的平稳分布. 随机传染病模型的长期行为是一个重要的问题. 一类具有分布时滞和非线性扰动的随机逻辑斯蒂方程的长时间行为已经由Liu等[13]所研究. 此外, 具有时滞的三物种模型也已得到研究[14]. 近来, Liu-Fan[15]建立了一类具有时滞的三物种随机级联捕食-被捕食系统的平稳分布. 关于平稳分布, 见参考文献[16-18].
在证明的过程中, 需要以下的引理
引理1.1[19] 令$ g(t)\in C[\Omega\times[0, +\infty), R_{+}] $,
$ (1) $如果存在两个正常数$ T $和$ \lambda_{0} $使得对于所有的$ t\geq T $,
那么, 我们有
$ (2) $如果存在三个正常数$ T $, $ \lambda $和$ \lambda_{0} $使得对于所有的$ t\geq T $,
那么, 有
引理1.2[20] 令$ \mu $是关于$ P_{t} $的不变测度, 其中$ t\geq 0 $. 假定在弱意义下, 下面极限成立
则$ \mu $是强混合的.
引理1.3[21] 假定$ y=y(x)\in(a, b) $和$ y=Y(x)\in(a, b) $分别是以下两个方程的解
和
其中, $ f(x, y) $和$ F(x, y) $是连续的且满足局部Lipschitz条件, 并且$ (x_{0}, y_{0})\in R\times R $. 若$ f(x, y)<F(x, y) $, 则有$ y(x)<Y(x), \ x_{0}<x<b;\, y(x)>Y(x), \ a<x<x_{0}. $
引理1.4[22] 假定$ n\geq2 $, 那么以下等式成立:
其中$ G_{i}(x_{i}) $是任意的函数, $ 1\leq i\leq n $.
引理1.5[20] 若$ \mu\in \mathcal{M}_{1}(E) $是半群$ P_{t}, \ t>0 $的唯一不变测度, 那么$ \mu $是遍历的.
引理1.6[20] 假定$ \varphi\in L^{2}(E, \mu) $, 则存在$ \eta^{*}\in L^{2}(\Omega_{1}, \mathcal{F}_{1}, \mathbb{P}_{1}) $使得在$ L^{2}(\Omega_{1}, \mathcal{F}_{1}, \mathbb{P}_{1}) $有
此外, 若$ \mu $是遍历的, 则
为方便本文中的计算, 我们有以下定义:
以及
$ \Lambda_{i} $表示$ \Lambda $中第$ i $列用$ (a_{1}, a_{2}, a_{3})^{T} $代替, $ \tilde{\Lambda}_{i} $表示$ \Lambda $中第$ i $列用$ (\frac{\sigma_{1}^{2}}{2}, \frac{\sigma_{2}^{2}}{2}, \frac{\sigma_{3}^{2}}{2})^{T} $代替, 其中$ i=1, 2, 3 $. 可以很容易得到
假设
在这一节中,我们将建立解的存在唯一性.
引理2.1 给定任意的初始值$ (\phi_{1}, \phi_{2}, \phi_{3})\in C([-\tau, 0], R_{+}^{3}) $, 模型(1.1) 几乎处处有唯一全局解$ x(t)=(x_{1}(t), x_{2}(t), x_{3}(t))^{T}\in R_{+}^{3} $.
证 令$ z_{i}(t)=\ln x_{i}(t) $. 由Itô's公式以及(1.1), 可以得到
则$ z_{i}(\theta)=\ln \phi_{i}(\theta), \theta\in [-\tau, 0], \ i=1, 2, 3 $. 很显然, 这是满足局部Lipschitz条件. 那么我们根据存在性和唯一性定理可以知道(2.1) 在区间$ [0, \tau_{e}) $有一个局部解$ z_{t} $, 这里$ \tau_{e} $是爆破时刻. 也就是说, $ x(t)=(e^{z_{1}(t)}, e^{z_{2}(t)}, e^{z_{3}(t)})^{T} $是(1.1) 的唯一局部正解.
接下来我们要证明这个解是全局的. 换句话说, 我们需要证明$ \tau_{e}=+\infty $. 我们可以考虑如下模型:
其中$ y_{i}(\theta)=\phi_{i}(\theta)>0, \ \theta\in [-\tau, 0], \ i=1, 2, 3 $. 根据引理1.3我们可以得到$ t\in [0, \tau_{e}) $时,
下面, 考虑(2.2) 中的$ y_{i}(t), \ i=1, 2, 3 $.
令$ u_{1}(t)=\ln y_{1}(t) $, 通过运用Itô's公式可以得到
令$ v_{1}(t)=u_{1}(t)-\sigma_{1}B_{1}(t) $, 再次运用Itô's公式可以得到
再令$ w_{1}(t)=v_{1}(t)-b_{1}t $, 我们可以得到$ w_{1}^{'}(t)=v_{1}^{'}(t)-b_{1} $. 简单计算可得
对上面式子的左右两端同时从0到t进行积分可得:
又因为$ e^{-w_{1}(t)}=e^{-\ln y_{1}(t)+\sigma_{1}B_{1}(t)+b_{1}t}, \ e^{-w_{1}(0)}=\phi_{1}(0)^{-1}, $因此, 可以得到
那么, 运用同样的方法我们可以得到
因此, 当$ t\geq 0 $时, $ y_{i}(t), \ i=1, 2, 3 $是存在的. 也就是说$ \tau_{e}=+\infty $.
注 利用文献[23], 我们可以得到
并且存在一个正常数$ K $使得下式成立
引理3.1 对于模型(2.2) 而言,
$ (1) $若$ b_{i}<0, \ i=1, 2, 3 $, 则
$ (2) $若$ b_{1}\geq0, \; b_{2}+\frac{b_{1}c_{21}}{c_{11}}<0, \; b_{3}+\frac{b_{1}c_{31}}{c_{11}}<0 $, 则
$ (3) $若$ b_{1}\geq0, \; b_{2}+\frac{b_{1}c_{21}}{c_{11}}\geq0, \; b_{3}+\frac{b_{1}c_{31}}{c_{11}}+\frac{b_{2}+\frac{b_{1}c_{21}}{c_{11}}}{c_{22}}c_{32}<0 $, 则
$ (4) $若$ b_{1}\geq0, \; b_{2}+\frac{b_{1}c_{21}}{c_{11}}\geq0, \; b_{3}+\frac{b_{1}c_{31}}{c_{11}}+\frac{b_{2}+\frac{b_{1}c_{21}}{c_{11}}}{c_{22}}c_{32}\geq0 $, 则
$ (5) $若$ b_{1}<0, \; b_{2}\geq0, \; b_{3}+\frac{b_{2}c_{32}}{c_{22}}\geq0 $, 则
$ (6) $若$ b_{1}\geq0, \; b_{2}+\frac{b_{1}c_{21}}{c_{11}}<0, \; b_{3}+\frac{b_{1}c_{31}}{c_{11}}\geq0 $, 则
$ (7) $若$ b_{1}<0, \; b_{2}\geq0, \; b_{3}+\frac{b_{2}c_{32}}{c_{22}}<0 $, 则
证 对模型(2.2) 运用Itô's公式并从$ 0 $到$ t $进行积分, 再除以$ t $可以得到
(1) 由(3.1) 以及引理1.1可得$ \lim_{t\rightarrow +\infty}y_{1}(t)=0 $几乎处处成立. 因此我们有, 对于任意的$ \epsilon>0 $, 存在$ T>0 $, 当$ t>T $时使得
代入(3.2), 则有
其中, t足够大并且$ \epsilon $足够小使得$ 0<\epsilon<-b_{2} $, 由引理1.1可得$ \lim_{t\rightarrow +\infty}y_{2}(t)=0 $几乎处处成立. 同理得$ \lim_{t\rightarrow +\infty}y_{3}(t)=0 $几乎处处成立.
(2) 由(3.1) 以及引理1.1可得
也就是说
因此,有
对于任意的$ \epsilon>0 $, 存在$ T>0 $, 当$ t>T $时使得
把上面的式子代入(3.2) 有
其中$ \epsilon $足够小使得$ 0<\epsilon<-b_{2}-\frac{b_{1}c_{21}}{c_{11}} $, 引理1.1暗含了$ \lim_{t\rightarrow +\infty}y_{2}(t)=0 $几乎处处成立. 则对于任意的$ \epsilon>0 $, 存在$ T>0 $, 当$ t>T $时使得
把上面的式子代入(3.3) 有
其中, $ \epsilon $足够小使得$ 0<\epsilon<-b_{3}-\frac{b_{1}c_{31}}{c_{11}} $, 由于引理1.1得到
(3) 由上面的结果可知
因为$ b_{2}+\frac{b_{1}c_{21}}{c_{11}}\geq0 $, (3.4) 以及引理1.1, 则有
又由于$ \epsilon $的任意性得到
若$ b_{2}+\frac{b_{1}c_{21}}{c_{11}}=0 $, 则
若$ b_{2}+\frac{b_{1}c_{21}}{c_{11}}>0 $, 由极限的定义,类似于(2) 的证明,借助于引理1.1我们有
从而可得
则对于任意的$ \epsilon>0 $, 存在$ T>0 $, 当$ t>T $时使得
代入到(3.3) 得到
此处$ \epsilon $足够小使得$ 0<\epsilon<-b_{3}-\frac{b_{1}c_{31}}{c_{11}}-\frac{b_{2}+\frac{b_{1}c_{21}}{c_{11}}}{c_{22}}c_{32} $, 由引理1得到$ \lim_{t\rightarrow +\infty}y_{3}(t)=0 $几乎必然成立.
(4)–(7)的证明类似于(3), 我们把细节留给感兴趣的读者. 证毕.
类似地, 我们可得如下的结论.
注 由引理1.1我们可以得到, $ 1\leq i\leq 3 $, $ \lim\limits_{t\rightarrow +\infty}\overline{y_{i}(t)}=J, \ \ a.s, $这里$ J $为大于零的常数. 所以, 对于任意的$ \tilde{\tau}\geq 0 $, 有
由于(2.3), 可得
引理3.2 假设$ (1.3) $成立, 则对于模型(1.1) 而言
$ (3) $若$ \Lambda_{i}-\tilde{\Lambda}_{i}>0, \ i=1, 2, 3 $, 则
$ (4) $若$ \Gamma_{1}-\tilde{\Gamma}_{1}>0, \; \Gamma_{2}-\tilde{\Gamma}_{2}>0, \; \Lambda_{3}-\tilde{\Lambda}_{3}<0 $, 则
$ (5) $若$ b_{1}<0, \; b_{3}c_{22}+b_{2}c_{32}>0, \; \Gamma_{3}-\tilde{\Gamma}_{3}>0 $, 则
$ (6) $若$ b_{2}<0, \; b_{3}c_{11}+b_{1}c_{31}>0, \; b_{1}c_{33}-b_{3}c_{13}>0 $, 则
$ (7) $若$ b_{1}<0, \; b_{3}c_{22}+b_{2}c_{32}<0, \; b_{2}\geq0 $, 则
引理3.2的证明类似于引理3.1, 在此省略.
引理4.1 假设$ (1.3) $成立, 则模型(1.1) 是依分布稳定的.
证 假定模型(1.1) 有两个解, $ x(t)=x(t;x(\theta)) $与$ \tilde{x}(t)=x(t;\tilde{x}(\theta)) $, 并且$ x(\theta)\in C([-\tau, 0], R_{+}^{3}), \ \tilde{x}(\theta)\in C([-\tau, 0], R_{+}^{3}) $. 令
且$ m_{1}, \ m_{2}, \ m_{3} $分别是$ L_{K} $对角元素的代数余子式. 因为K是不可约的, 由文献[2] 可知$ m_{i}>0, \ i=1, 2, 3 $. 其次, 我们有如下定义
通过运用Itô's公式得到
由引理1.4可以得到
因此
将上式的左右两端同时从0到t进行积分并取期望有
由此可知
从而得到
由模型(1.1) 可以得到
也就是说$ E(x_{1}(t)) $是可微的. 由(2.5) 可知
其中D是一个正常数. 那么, $ E(x_{1}(t)) $是一致连续的. 同理得$ E(x_{2}(t)) $与$ E(x_{3}(t)) $也是一致连续的. 由(4.1) 知
设$ \mathbb{P}(R_{+}^{3}) $是定义在$ R_{+}^{3} $上的所有概率测度并且$ P(t, x(\theta), Q) $是$ x(t;x(\theta)) $的概率, 其中$ x(t;x(\theta))\in Q $. 对于$ \forall P_{1}\in\mathbb{P}, \ \forall P_{2}\in\mathbb{P} $, 我们有如下定义
于是, 有$ \forall h\in M, t>0, s>0 $,
又因(4.2) 有对于任意的$ \epsilon>0 $, 存在$ T>0 $, 当$ t>T $时使得$ \sup_{h\in M}|Eh(\tilde{x}(t;\tilde{x}(\theta)))-Eh(x(t;x(\theta)))|\leq\epsilon, $因此
由$ h $的任意性可知
换言之, 对于$ \forall t\geq T $, $ s>0 $有
也就是$ \{P(t, x(\theta), \cdot)\} $在$ \mathbb{P}(R_{+}^{3}) $中是Cauchy列. 从而$ \xi(\theta)=(\xi_{1}(\theta), \xi_{2}(\theta), \xi_{3}(\theta))^{T}, \ \xi_{i}(\theta)\equiv0.1, \ \theta\in[-\tau, 0), \; \{P(t, \xi(\theta), \cdot)\} $也是Cauchy列. 因此$ \exists \ ! \ \mu(\cdot)\in\mathbb{P}(R_{+}^{3}) $使得
因(4.2) 可知
因此, 可以得到
即得证.
定理4.1 对于模型(1.1) 而言, 假设(1.3) 成立有
$ (1) $若$ b_{i}<0, \ i=1, 2, 3 $, 则$ x_{1}(t), \ x_{2}(t), \ x_{3}(t) $是灭绝的.
$ (2) $若$ b_{1}\geq0, \; b_{2}+\frac{b_{1}c_{21}}{c_{11}}<0, \; b_{3}+\frac{b_{1}c_{31}}{c_{11}}<0 $, 则$ x_{2}(t) $和$ x_{3}(t) $是灭绝的, $ x_{1}(t) $的分布弱收敛到唯一的遍历不变分布$ \nu_{1} $, 且有
$ (3) $若$ \Lambda_{i}-\tilde{\Lambda}_{i}>0, \ i=1, 2, 3 $, 则$ (x_{1}(t), x_{2}(t), x_{3}(t))^{T} $的分布弱收敛到唯一的遍历不变分布$ \nu_{2} $, 且有
$ (4) $若$ \Gamma_{1}-\tilde{\Gamma}_{1}>0, \; \Gamma_{2}-\tilde{\Gamma}_{2}>0, \; \Lambda_{3}-\tilde{\Lambda}_{3}<0 $, 则$ x_{3}(t) $灭绝, $ (x_{1}(t), x_{2}(t))^{T} $的分布弱收敛到唯一的遍历不变分布$ \nu_{3} $, 且有
$ (5) $若$ b_{1}<0, \; b_{3}c_{22}+b_{2}c_{32}>0, \; \Gamma_{3}-\tilde{\Gamma}_{3}>0 $, 则$ x_{1}(t) $灭绝, $ (x_{2}(t), x_{3}(t))^{T} $的分布弱收敛到唯一的遍历不变分布$ \nu_{4} $, 且有
$ (6) $若$ b_{2}<0, \; b_{3}c_{11}+b_{1}c_{31}>0, \; b_{1}c_{33}-b_{3}c_{13}>0 $, 则$ x_{2}(t) $灭绝, $ (x_{1}(t), x_{3}(t))^{T} $的分布弱收敛到唯一的遍历不变分布$ \nu_{5} $, 且有
$ (7) $若$ b_{1}<0, \; b_{3}c_{22}+b_{2}c_{32}<0, \; b_{2}\geq0 $, 则$ x_{1}(t) $和$ x_{3}(t) $是灭绝的, $ x_{2}(t) $的分布弱收敛到唯一的遍历不变分布$ \nu_{6} $, 且有
证 (1) 可以由引理3.2中(1) 得出.
(2) 可以由引理3.2中(2) 得出. 此外, 由模型(1.1) 是平稳分布知存在一个概率测度$ \nu_{1} $使得$ x_{1}(t) $的分布弱收敛到$ \nu_{1} $. 又由$ | \int_{R_{+}}\varphi(x)p(t, x(\theta), dx_{1})-\int_{R_{+}}\varphi(x)\nu_{1}(dx_{1})|\rightarrow 0, $可知$ \langle\varphi, P\circ x(\theta)\rangle\rightarrow \langle\varphi, \nu_{1}\rangle, $则$ \nu_{1} $是不变的. 根据引理1.2知$ \nu_{1} $是强混合的. 又由引理1.5知$ \nu_{1} $是遍历的. 最后根据引理1.6得到
同(2) 的证明过程我们可以得到(3), (4), (5), (6), (7) 的证明.