In recent years, there is increasing interest in the research of elliptic operators in divergence form (cf. [1-3]). Let $ \Omega $ be a bounded domain in an $ n $-dimensional complete Riemannian manifold $ M $. Let $ A:\Omega\rightarrow \mathrm{End}\left(T\Omega\right) $ be a smooth symmetric and positive definite section of the bundle of all endomorphisms of the tangent bundle $ T\Omega $. Do Carmo, Wang and Xia [4], Sun and Chen [5] researched the Dirichlet eigenvalue problem of elliptic operator in divergence form $ \mathrm{div} \left(A \nabla \right) $ and gave some universal inequalities for its eigenvalues, where $ \nabla $ and $ \rm{div} $ were the gradient operator and the divergence operator on $ M $. The operator $ \mathrm{div} \left(A \nabla \right) $ is an interesting operator. It includes the Laplacian $ \Delta $ as special case. Moreover, it has connections with second order elliptic operators with variable coefficients on $ \Omega \subset \mathbb{R}^n $, the linearized operator $ L_r $ of the $ r $-th mean curvature of a hypersurface and so on.
The purpose of this paper is to investigate the following problem
where $ \rho $ is a positive continuous function on $ \Omega $, $ \nu $ denotes the outward unit normal to the boundary $ \partial\Omega $ and the constants $ p, q \geq 0 $. It is well known that problem (1.1) has real and discrete spectrum
where each eigenvalue is repeated according to its multiplicity. This problem has some connections with some other problems. When $ A $ is the identity, problem (1.1) becomes the following weighted Dirichlet problem of quadratic polynomial operator of the Laplacain.
Furthermore, when $ p=q=0 $ and $ \rho \equiv 1 $, problem (1.2) becomes the clamped plate problem
Cheng and Yang [6], Cheng, Ichikawa and Mametsuka [7], Wang and Xia [8] established some universal inequalities for problem (1.3). Sun and Chen [9], Sun and Qi [10] obtained some universal inequalities for problem (1.2). Shi [11] gave some inequalities for lower order eigenvalues of problem (1.1) in the case of $ p=1 $ and $ \rho \equiv 1 $.
One of the main goals of this paper is to establish some inequalities for eigenvalues of problem (1.1) on bounded domains of some Riemannian manifolds. Nash's theorem [14] states that any complete Riemannian manifold $ M $ can be isometrically immersed into an Euclidean space. We first give the following result:
Theorem 1.1 Let $ \Omega $ be a connected bounded domain in an $ n $-dimensional complete Riemannian manifold $ M $. Let $ A:\Omega\rightarrow \text{End}(T\Omega) $ be a smooth symmetric and positive definite section of the bundle of all endomorphisms of the tangent bundle $ T\Omega $. Assume that the eigenvalues of $ A $ are bounded below by $ \xi_1 $ and that $ tr\left(A\right)\le n\xi_2 $ throughout $ \Omega $, where $ \xi_1 $ and $ \xi_2 $ are two positive constants. Denote by $ \lambda_i $ the $ i $-th eigenvalue of problem (1.1). Set $ \rho_1=\underset{x\in \Omega}{\min}\rho(x) $ and $ \rho_2=\underset{x\in\Omega}{\max}\rho(x) $. If $ M $ is isometrically immersed in $ \mathbb{R}^N $ with mean curvature vector $ {\bf{H}} $, then we have
where $ H_0= \underset{x\in\Omega}{\max} \left|{\bf{H}}\right| \left(x\right) $ and $ B_i= \frac{1 }{2\rho_1} \left[ - p\xi_1 + \sqrt {p^2\xi_1^2 + 4\rho_1 (\lambda _i - \frac{ q}{\rho_2} )} \right]. $
As we know, $ H_0 = 0 $ when $ M $ is an $ n $-dimensional complete minimal submanifold in an Euclidean space and $ H_0 = 1 $ when $ M $ is an $ n $-dimensional unit sphere. Therefore, from Theorem 1.1, we can get some results for problem (1.1) on these two kinds of manifolds.
Corollary 1.1 Let $ \Omega $ be a connected bounded domain in an $ n $-dimensional complete minimal submanifold in a Euclidean space. Denote by $ \lambda_i $ the $ i $-th eigenvalue of problem (1.1). Then we have
Corollary 1.2 Let $ \Omega $ be a connected bounded domain in an $ n $-dimensional unit sphere $ \mathbb{S}^n(1) $. Denote by $ \lambda_i $ the $ i $-th eigenvalue of problem (1.1). Then we have
Moreover, we consider problem (1.1) on Riemannian manifolds admitting some special functions. We obtain the following result:
Theorem 1.2 Let $ \Omega $ be a connected bounded domain in an $ n $-dimensional complete Riemannian manifold $ M $. Let $ A:\Omega\rightarrow \text{End}(T\Omega) $ be a smooth symmetric and positive definite section of the bundle of all endomorphisms of the tangent bundle $ T\Omega $. Assume that $ \xi_1 I \le A \le \xi_2 I $ in the sense that the eigenvalues of $ A $ lie in the interval $ [\xi_1,\xi_2] $ throughout $ \Omega $, where $ \xi_1 $ and $ \xi_2 $ are two positive constants. Denote by $ \lambda_i $ the $ i $-th eigenvalue of problem (1.1). Set $ \rho_1=\underset{x\in \Omega}{\min}\rho(x) $, $ \rho_2=\underset{x\in\Omega}{\max}\rho(x) $ and $ B_i= \frac{1 }{2\rho_1} \left[ - p\xi_1 + \sqrt {p^2\xi_1^2 + 4\rho_1 (\lambda _i - \frac{ q}{\rho_2} )} \right]. $
i) If there exists a function $ \psi:\Omega\rightarrow \mathbb{R} $ and a constant $ C_0 $ such that $ \left|\nabla\psi\right|=1 $ and $ \left|\Delta\psi\right|\le C_0 \ \text{on}\ \Omega $, then
ii) If there exists a function $ \varphi:\Omega\rightarrow \mathbb{R} $ and a constant $ D_0 $ such that $ \left|\nabla\varphi\right|=1 $ and $ \Delta\varphi= D_0 $ on $ \Omega $, then
iii) If there exist $ l $ functions $ \phi_\alpha:\Omega\rightarrow \mathbb{R} $ such that $ \left<\nabla\phi_\alpha,\nabla\phi_\beta\right>=\delta_{\alpha\beta} $ and $ \Delta\phi_\alpha=0,\,\,\alpha,\beta=1,\cdots,l $ on $ \Omega $, then
iv) If $ \Omega $ admits an eigenmap $ f=\left(f_1,f_2,\cdots,f_{N+1}\right):\Omega\rightarrow \mathbb{S}^N(1) $ corresponding to an eigenvalue $ \mu $, that is $ \sum_{\alpha=1}^{N+1}f_\alpha^2=1 $ and $ \Delta f_\alpha=-\mu f_\alpha $, $ \alpha=1,2,\cdots,N+1 $, then
As applications of the above results, we can give some results for problem (1.2). For example, when $ A $ is the identity, we can obtain the following corollary for problem (1.2) from Theorem 1.1.
Corollary 1.3 Let $ M $ be an $ n $-dimensional complete Riemannian manifold and $ \Omega $ be a connected bounded domain in $ M $. Denote by $ \lambda_i $ the $ i $-th eigenvalue of problem (1.2). Set $ \rho_1=\underset{x\in \Omega}{\min}\rho(x) $ and $ \rho_2=\underset{x\in\Omega}{\max}\rho(x) $. $ E_i= \frac{1 }{2\rho_1} \left[ - p + \sqrt {p^2 + 4\rho_1 (\lambda _i - \frac{ q}{\rho_2} )} \right]. $ If $ M $ is isometrically immersed in $ \mathbb{R}^N $ with mean curvature vector $ {\bf{H}} $, then
where $ H_0=\underset{x\in\Omega}{\max} \left|{\bf{H}}\right| \left(x\right) $.
Remark 1.1 Let $ \{a_i\}_{i=1}^m $, $ \{b_i\}_{i=1}^m $ and $ \{c_i\}_{i=1}^m $ be three sequences of non-negative real numbers with $ \{a_i\}_{i=1}^m $ decreasing and $ \{b_i\}_{i=1}^m $ and $ \{c_i\}_{i=1}^m $ increasing. Then it holds [8]
Using (1.12), we know that (1.11) becomes (1.11) of Theorem 1.1 in [10].
Moreover, when $ A $ is the identity, we can derive the following corollary for problem (1.2) from Theorem 1.2.
Corollary 1.4 Let $ M $ be an $ n $-dimensional complete Riemannian manifold and $ \Omega $ be a connected bounded domain in $ M $. Denote by $ \lambda_i $ the $ i $-th eigenvalue of problem (1.2). Set $ \rho_1=\underset{x\in \Omega}{\min}\rho(x) $, $ \rho_2=\underset{x\in\Omega}{\max}\rho(x) $ and $ E_i= \frac{1 }{2\rho_1} \left[ - p + \sqrt {p^2 + 4\rho_1 (\lambda _i - \frac{ q}{\rho_2} )} \right]. $
i) If there exists a function $ \psi:\Omega\rightarrow \mathbb{R} $ and a constant $ C_0 $ such that $ \left|\nabla\psi\right|=1 $ and $ \left|\Delta\psi\right|\le C_0 $ on $ \Omega $, then
iii) If there exist $ l $ functions $ \phi_\alpha:\Omega\rightarrow \mathbb{R} $ such that $ \left<\nabla\phi_\alpha,\nabla\phi_\beta\right>=\delta_{\alpha\beta} $ and $ \Delta\phi_\alpha=0 $, $ \alpha,\beta=1,\cdots,l $ on $ \Omega $, then
Remark 1.2 It is easy to find that when $ p=q=0 $ and $ \rho \equiv 1 $, (1.13-1.16) for problem (1.2) become the results of Theorem 1.1 for problem (1.3) in [8].
In this section, we first prove a general inequality which plays the key role in the proofs of Theorems 1.1 and 1.2.
Lemma 2.1 Let $ \Omega $ be a bounded domain in an $ n $-dimensional compact Riemannian manifold $ M $. Assume that $ A:\Omega\rightarrow \text{End}(T\Omega) $ is a smooth symmetric and positive definite section of the bundle of all endomorphisms of the tangent bundle $ T\Omega $. Denote by $ \lambda_i $ the $ i $-th eigenvalue of problem (1.1) and $ u_i $ the $ i $-th weighted orthonormal eigenfunctions. For any function $ h\in C^4\left(\bar{\Omega}\right) $ and any integer $ k $, we have
where $ \delta $ is any positive constant.
Proof For each $ i=1,\cdots,k $, we define $ \varphi_i:\Omega\rightarrow \mathbb{R} $ by $ \varphi_i = h u_i-\sum_{j=1}^k a_{ij} u_j, $ where $ a_{ij} = \int_{\Omega}{\rho h u_i u_j}=a_{ji}. $ Since $ \int_{\Omega}{\rho \varphi_i u_j}=0,\,\forall i,j=1,\cdots,k, $ we know from Rayleigh-Ritz inequality that
By direct computation, we have
and
Substituting (2.3) and (2.4) into (2.2), we get
where $ p_i =\Delta h \Delta u_i +2\left<\nabla h,\nabla \Delta u_i\right> +2\Delta \left<\nabla h,\nabla u_i\right> +\Delta \left( u_i \Delta h\right)-p u_i \mathrm{div}\left(A \nabla h\right) -2p \left<\nabla h,A \nabla u_i\right>. $
Using the divergence theorem, we deduce
Using (2.6) and (2.7), we derive
It yields
Moreover, we have
Using (2.9)-(2.11), we obtain
Substituting (2.12) into (2.5), we get
Set $ b_{ij}= \int_{\Omega} u_j \left( \left<\nabla h,\nabla u_i\right> +\frac{u_i \Delta h}{2} \right). $ Then one gets from the divergence theorem that
Moreover, since
it holds
Multiplying both sides of (2.15) by $ \left(\lambda_{k+1}-\lambda_i\right)^2 $, using the Schwarz inequality, we get
Substituting (2.13) into (2.16), we obtain
Taking the sum on $ i $ from $ 1 $ to $ k $ in (2.17) and noticing
we induce
Since
we have
Substituting (2.23) into (2.18), we obtain (2.1). This completes the proof of Lemma 2.1.
Now we give the proof of Theorems 1.1 and 1.2 by using Lemma 2.1.
Proof of Theorem 1.1 Let $ x_1,x_2,\dots,x_N $ be the standard coordinate functions of $ \mathbb{R}^N $. Then it holds
Taking $ h=x_\alpha $ in (2.1), taking the sum on $ \alpha $ from $ 1 $ to $ N $, and using (2.24–2.27), we get
From
This is a quadratic inequality of $ {\int_\Omega {\left| {{\nabla }{u_i}} \right|} ^2} $. Thus we obtain
Introducing (2.30) into (2.28), we infer
Taking
in (2.31), we can obtain (1.4). This finishes the proof of Theorem 1.1.
Proof of Theorem 1.2 i) Taking $ h=\psi $ in (2.1), we get
By using (2.30), we have
Substituting (2.33) into (2.32), we deduce
in (2.34), we get (1.7).
ii) Taking $ h=\varphi $ in (2.1), we have
we get
in (2.36), we obtain (1.8).
iii) Because $ \left<\nabla\phi_\alpha,\nabla\phi_\beta\right>=\delta_{\alpha\beta} $ and $ \Delta\phi_\alpha=0 $, $ \alpha,\beta=1,\cdots,l $, we know
Thus, taking $ h=\phi_\alpha $ in (2.1), we obtain by summing over $ \alpha $ that
It implies
in (2.38), we derive (1.9).
iv) Taking the Laplacian of $ \sum_{\alpha=1}^{N+1} f_\alpha^2 = 1 $ and using the fact that $ \Delta f_\alpha = -\mu f_\alpha, \,\,\alpha=1,2,\cdots,N+1 $, we have
It then follows by taking $ h=f_\alpha $ in (2.1) and summing over $ \alpha $ that
in (2.42), we obtain (1.10). This ends the proof of Theorem 1.2.