本文中的亚纯函数均指复平面上的亚纯函数. 设$ f $是非常数亚纯函数, 采用亚纯函数唯一性理论中的一些基本记号和结论[1-2], 如$ T(r, f), \; N(r, f), \; \overline{N}(r, f), \; m(r, f) $等. 令$ S(r, f) $表示任意满足$ S(r, f)=o\{T(r, f)\} $ ($ r\rightarrow +\infty $, $ r\notin E $) 的量, 其中$ E $是一个有穷线性测度的集合, $ S(r, f) $每次出现时$ E $可能不相同. 若对亚纯函数$ a $, 有$ T(r, a) $ = $ S(r, f) $, 则称$ a $为$ f $的一个小函数. $ N_{k}\left(r, \frac{1}{f}\right) $表示$ f $的零点的计数函数, 其中当$ f $的零点重数$ m\leq k $时, 计$ m $次; 当$ m>k $时, 计$ k $次. $ N_{k)}\left(r, \frac{1}{f}\right) $表示$ f-a $的零点重数$ m\leq k $的计数函数, $ N_{(k}\left(r, \frac{1}{f}\right) $表示$ f-a $的零点重数$ m\geq k $的计数函数.
下面我们介绍由Lahiri I[3-4]引进的权分担记号.
定义1.1 设$ f, \; g $是两个非常数亚纯函数, $ a\in \mathbb{C}\cup \{\infty\} $, $ k $为一正整数或$ \infty $. $ E_{k}(a, f) $表示$ f-a $的所有零点, 若零点重数$ m\leq k $时, 计$ m $次; 若$ m>k $时, 计$ k+1 $次. 若$ E_{k}(a, f)=E_{k}(a, g) $, 则称$ f $和$ g $以权$ k $分担$ a $.
这里记$ f $和$ g $分担$ (a, k) $表示$ f $和$ g $以权$ k $分担$ a $. 显然若$ f $和$ g $分担$ (a, k) $, 那么对任意的$ p\; (0\leq p < k) $, $ p $为整数, 都有$ f $和$ g $分担$ (a, p) $, 同时, 当且仅当$ f $和$ g $分担$ (a, 0) $ (或$ (a, \infty) $)时, $ f $和$ g $分担$ a $ IM (或$ a $ CM).
设$ S $是一个复数集合, $ f $和$ g $是两个非常数亚纯函数, 定义
若$ E_{f}(S, k)=E_{g}(S, k) $, 则称$ f $和$ g $以权$ k $分担集合$ S $, 若$ E_{f}(S, \infty)=E_{g}(S, \infty) $, 则称$ S $为$ f $和$ g $的CM公共值集; 若$ E_{f}(S, 0)=E_{g}(S, 0) $, 则称$ S $为$ f $和$ g $的IM公共值集. 显然$ E_{f}(S, \infty)=E_{f}(S) $, $ E_{f}(S, 0)=\overline{E}_{f}(S) $.
在亚纯函数值分布理论中, 一个著名的问题是1959年由Hayman W K[5]提出的, 即设$ f $是复平面上超越亚纯函数, $ n $为正整数, 则$ f^{n}f^{'} $取可能为零以外的任意复数无穷多次. 上述问题直到1995年才被陈怀惠和方明亮[6], Zalcman L[7]分别证得. 针对上述著名的Hayman问题, 杨重骏与华歆厚[8]研究了微分单项式的唯一性并获得了下述定理.
定理1.1[8] 设$ f $, $ g $是两个非常数整函数(亚纯函数), $ n>6\; (n>11) $是正整数, 若$ f^{n}f^{'} $与$ g^{n}g^{'} $分担$ 1 $ CM, 则或者$ f=c_{1}e^{cz}, \; g=c_{2}e^{-cz} $, 其中$ c_{1}, \; c_{2}, \; c $是非零常数, 且满足$ (c_{1}c_{2})^{n+1}c^{2}=-1 $, 或者$ f(z)\equiv tg(z) $且满足$ t^{n+1}=1 $.
近20年来, 许多复分析学者对微分多项式的唯一性问题开始了广泛的研究并获得了丰富的成果, 详见文献[9–13]. 注意到, $ f(z)^{n}f(z)^{'}=\frac{1}{n+1}(f(z)^{n+1})^{'} $, 进而方明亮[9]考虑了定理1.1中$ k $阶导数的情形并获得了下述结果.
定理1.2[9] 设$ f $, $ g $是两个非常数整函数, $ n, \; k $均为正整数且满足$ n>2k+4 $, 若$ (f^{n})^{(k)} $与$ (g^{n})^{(k)} $分担$ 1 $ CM, 则或者$ f=c_{1}e^{cz}, \; g=c_{2}e^{-cz} $, 其中$ c_{1}, \; c_{2}, \; c $是非零常数, 且满足$ (-1)^{k}(c_{1}c_{2})^{n}(nc)^{2k}=1 $, 或者$ f(z)\equiv tg(z) $且满足$ t^{n}=1 $.
定理1.3[9] 设$ f $, $ g $是两个非常数整函数, $ n, \; k $均为正整数且满足$ n>2k+8 $, 若$ (f^{n}(f-1))^{(k)} $与$ (g^{n}(g-1))^{(k)} $分担$ 1 $ CM, 则$ f(z)\equiv g(z) $.
2008年, 张晓宇等人[10]进一步将定理1.3中的$ (f^{n}(f-1))^{(k)} $推广到$ (f^{n}P(f))^{(k)} $, 其中$ P(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{1}z+a_{0} $为$ m $次非零多项式, 得到了如下结果.
定理1.4[10] 设$ f $, $ g $是两个非常数整函数, $ n, \; k, \; m $均为正整数且满足$ n>3m+2k+5 $, $ P(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{1}z+a_{0} $或$ P(z)\equiv c_{0} $, 其中$ a_{0}\neq0, \; a_{1}, \; \cdots, \; a_{m-1}, \; a_{m}\neq0 $, $ c_{0}\neq0 $为常数, 若$ (f^{n}(P(f)))^{(k)} $与$ (g^{n}(P(g)))^{(k)} $分担$ 1 $ CM, 则
(Ⅰ) 若$ P(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{1}z+a_{0} $, 则下述情况之一成立:
(Ⅰ.ⅰ) $ f(z)\equiv tg(z) $, 其中$ t $为非零常数且满足$ t^{d}=1 $, $ d=GCD(n+m, \cdots, n+m-i, \cdots, n) $, 且存在一个$ i\in\{0, \; 1, \; \cdots, \; m\} $, 使得$ a_{m-i}\neq0 $;
(Ⅰ.ⅱ) $ R(f, g)\equiv0 $, 其中$ R(\omega_{1}, \omega_{2})=\omega_{1}^{n}(a_{m}\omega_{1}^{m}+\cdots+a_{1}\omega_{1}+a_{0})-\omega_{2}^{n}(a_{m}\omega_{2}^{m}+\cdots+a_{1}\omega_{2}+a_{0}) $.
(Ⅱ) 若$ P(z)\equiv c_{0} $, 则下述情况之一成立:
(Ⅱ.ⅰ) $ f(z)\equiv tg(z) $, 其中$ t $为非零常数且满足$ t^{n}=1 $;
(Ⅱ.ⅱ) $ f=c_{1}/\sqrt[n]{c_{0}}e^{cz}, \; g=c_{2}/\sqrt[n]{c_{0}}e^{-cz} $, 其中$ c_{1}, \; c_{2}, \; c $是非零常数, 且满足$ (-1)^{k}(c_{1}c_{2})^{n}(nc)^{2k} $ $ =1 $.
近年来, 一些学者考虑了上述微分多项式中当分担值$ a $替换为集合$ S $时, 其中$ S=\{a\in\mathbb{C}:a^{s}=1\} $, 是否还能获得上述定理中$ f $与$ g $类似的关系. $ 2018 $年, An V H等人[11]考虑了$ (f^{n})^{(k)} $与$ (g^{n})^{(k)} $ CM分担$ S $的情况, 得到了下述结果.
定理1.5[11] 设$ f $, $ g $是非常数亚纯函数, $ n, \; k, \; s $均为正整数且满足$ n>2k+\frac{2k+8}{s} $, $ s\geq2 $, $ S=\{a\in\mathbb{C}:a^{s}=1\} $, 若$ E_{(f^{n})^{(k)}}(S, \infty)=E_{(g^{n})^{(k)}}(S, \infty) $, 则下述情况之一成立:
(ⅰ) $ f(z)\equiv tg(z) $, 其中$ t $为非零常数且满足$ t^{ns}=1 $, $ t\in\mathbb{C} $;
(ⅱ) $ f=c_{1}e^{cz}, \; g=c_{2}e^{-cz} $, 其中$ c_{1}, \; c_{2}, \; c $是非零常数, 且满足$ (-1)^{ks}(c_{1}c_{2})^{ns}(nc)^{2ks}=1 $.
2020年, Chao M等人[12]考虑了$ (f^{n})^{(k)} $与$ (g^{n})^{(k)} $ IM分担集合$ S $与权1分担集合$ S $的情况, 得到了下述定理.
定理1.6[12] 设$ f $, $ g $是非常数亚纯函数, $ n, \; k, \; s $均为正整数且满足$ n>2k+\frac{3k+9}{s} $, $ s\geq2 $, $ S=\{a\in\mathbb{C}:a^{s}=1\} $, 若$ E_{(f^{n})^{(k)}}(S, 1)=E_{(g^{n})^{(k)}}(S, 1) $, 则定理$ 1.5 $的结论成立.
定理1.7[12] 设$ f $, $ g $是非常数亚纯函数, $ n, \; k, \; s $均为正整数且满足$ n>2k+\frac{8k+14}{s} $, $ s\geq2 $, $ S=\{a\in\mathbb{C}:a^{s}=1\} $, 若$ E_{(f^{n})^{(k)}}(S, 0)=E_{(g^{n})^{(k)}}(S, 0) $, 则定理$ 1.5 $的结论成立.
为了寻求这个方向上更多的结果, 本文结合多项式加权和的概念进一步探讨将定理1.5, 定理1.6以及定理1.7中$ (f^{n})^{(k)} $替换为$ (f^{n}(P(f))^{(k)} $时的情形, 为了方便本文的叙述, 我们引入下述定义.
定义1.2 设$ P(z)=a_{m}z^{m}+\cdots+a_{1}z+a_{0} $为$ m $次非零多项式, 其中$ v\; (1\leq\; v\; \leq\; m) $个不同的零点分别记为$ d_{1}, \; d_{2}, \; \cdots, \; d_{v} $, 相对应的零点重数分别记为$ p_{1}, \; p_{2}, \; \cdots, \; p_{v} $且满足$ p_{1}\; \leq\; p_{2}\; \leq\; \cdots\; \leq\; p_{v} $. 令
其中$ \lambda=\begin{cases}0, \; p_{i}\leq k\\1, \; p_{i} >k\end{cases} $, 称$ \gamma $为$ P(z) $的零点重数关于$ k $的加权和.
当$ t $为$ P(z) $重数不超过$ k $的零点个数(不计重数) 时, 则
且由定义可知$ 0\leq\gamma\leq m $. 特别地, 当$ \sum\limits_{i=1}^{t}p_{i}=m $时有$ \gamma=0 $.
结合加权和的定义, 本文得到了下述定理, 定理中的$ P(z) $相关符号与定义$ 1.2 $中的符号含义一致, 下文中不再一一叙述.
定理1.8 设$ f $, $ g $是非常数亚纯函数, $ n, \; k, \; s $均为正整数, $ s\geq2 $, $ P(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{1}z+a_{0} $或$ P(z)\equiv c_{0} $, 其中$ a_{0}\neq0, \; a_{1}, \; \cdots, \; a_{m-1}, \; a_{m}\neq0 $, $ c_{0}\neq0 $为常数, $ P(z) $中相关符号如定义$ 1.2 $所设, $ S=\{a\in\mathbb{C}:a^{s}=1\} $, 若$ E_{(f^{n}P(f))^{(k)}}(S, k)=E_{(g^{n}P(g))^{(k)}}(S, k) $, 则
(Ⅰ) 当$ k=0 $时,
(Ⅰ.ⅰ) 若$ P(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{1}z+a_{0} $且满足$ n> max\{2k+m+1, 2k+\frac{8k+14+7m-5\gamma}{s}-\gamma\} $, 则下述情况之一成立:
(Ⅰ.ⅰ.ⅰ) $ f(z)\equiv tg(z) $, 其中$ t $为常数且满足$ t^{sd}=1 $, $ d=GCD(n+m, \cdots, n+m-i, \cdots, n) $;
(Ⅰ.ⅰ.ⅱ) $ R(f, g)\equiv0 $, 其中$ R(\omega_{1}, \omega_{2})=\omega_{1}^{n}(a_{m}\omega_{1}^{m}+\cdots+a_{1}\omega_{1}+a_{0})-h\omega_{2}^{n}(a_{m}\omega_{2}^{m}+\cdots+a_{1}\omega_{2}+a_{0}) $且$ h^{s}=1 $;
(Ⅰ.ⅰ.ⅲ) $ (f^{n}P(f))^{(k)}(g^{n}P(g))^{(k)}\equiv h $, 其中$ h^{s}=1 $.
(Ⅰ.ⅱ) 若$ P(z)\equiv c_{0} $且满足$ n>2k+\frac{8k+14}{s} $, 则下述情况之一成立:
(Ⅰ.ⅱ.ⅰ) $ f(z)\equiv tg(z) $, 其中$ t $为非零常数且满足$ t^{ns}=1 $;
(Ⅰ.ⅱ.ⅱ) $ f=c_{1}e^{cz}, \; g=c_{2}e^{-cz} $, 其中$ c_{1}, \; c_{2}, \; c $是非零常数且满足$ c_{0}^{2s}(-1)^{ks}(c_{1}c_{2})^{ns}(nc)^{2ks}=1 $.
(Ⅱ) 当$ k=1 $时,
(Ⅱ.ⅰ) 若$ P(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{1}z+a_{0} $且满足$ n>max\{2k+m+1, 2k+\frac{3k+9+\frac{9}{2}m-\frac{5}{2}\gamma}{s}-\gamma\} $, 则(Ⅰ.ⅰ) 的结论成立;
(Ⅱ.ⅱ) 若$ P(z)\equiv c_{0} $且满足$ n>2k+\frac{3k+9}{s} $, 则(Ⅰ.ⅱ) 的结论成立.
(Ⅲ) 当$ k\geq2 $时,
(Ⅲ.ⅰ) 若$ P(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{1}z+a_{0} $且满足$ n> max\{2k+m+1, 2k+\frac{2k+8+4m-2\gamma}{s}-\gamma\} $, 则(Ⅰ.ⅰ) 的结论成立;
(Ⅲ.ⅱ) 若$ P(z)\equiv c_{0} $且满足$ n>2k+\frac{2k+8}{s} $, 则(Ⅰ.ⅱ) 的结论成立.
备注1.1 特别地, 当$ P(z)\equiv c_{0} $时, 由定理1.8可得到定理1.5 – 1.7, 因此定理1.8推广了定理1.5 – 1.7.
引理2.1[2] 设$ f $, $ g $是两个非常数亚纯函数且$ a_{n}(z)(\not \equiv0), a_{n-1}(z), \; \cdots, \; a_{0}(z) $是满足$ T(r, a_{i})=S(r, f), \; i=0, 1, 2, \cdots, n $的亚纯函数, 则
设$ f $, $ g $是两个非常数亚纯函数, 构造如下函数.
引理2.2[13] 设$ f $, $ g $是两个非常数亚纯函数, 若$ f $, $ g $分担$ (1, k), k\geq2 $且$ H\not\equiv0 $, 则
$ T(r, g) $类同.
引理2.3[14] 设$ f $, $ g $是两个非常数亚纯函数, 若$ f $, $ g $分担$ (1, 1) $且$ H\not\equiv0 $, 则
引理2.4[14] 设$ f $, $ g $是两个非常数亚纯函数, 若$ f $, $ g $分担$ (1, 0) $且$ H\not\equiv0 $, 则
引理2.5[15] 设$ f $是非常数亚纯函数, $ p, \; k $为正整数, 则
引理2.6 设$ f $是非常数亚纯函数, $ P(z) $中相关符号如定义$ 1.2 $所设, $ n, \; k $为正整数且$ n>k $, 则
证明: 由对数导数引理可得
且
将$ P(f) $改写为下述形式:
其中$ p_{1}\; \leq\; p_{2}\; \leq\; \cdots\; p_{t}\; \leq\; k\; <\; k+1\; \leq\; p_{t+1}\; \leq\; \cdots\; \leq\; p_{v} $.
由定义1.2与(2.3) 式, 得
结合(2.1), (2.2) 和(2.4) 式, 得
因此
引理2.7[16] 设$ f_{1}, \; f_{2} $是两个非常数亚纯函数, 若$ c_{1}f_{1}+c_{2}f_{2}=c_{3} $且$ c_{1}, \; c_{2}, \; c_{3} $为非零常数, 则
引理2.8[17] 设$ f $是非常数亚纯函数, $ a_{1}, \; a_{2}, \cdots\; a_{q} $为$ q $个判别的复数, 则
引理2.9 设$ f, \; g $是两个非常数亚纯函数, $ P(z)=a_{m}z^{m}+\cdots+a_{1}z+a_{0} $为$ m $次非零多项式, 若$ ((f^{n}P(f))^{(k)})^{s}=((g^{n}P(g))^{(k)})^{s} $, 则
(Ⅰ) 若$ P(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{1}z+a_{0} $, 且$ n>2k+m+1 $, 则下述结论之一成立:
(Ⅰ.ⅰ) $ f(z)\equiv tg(z) $, 其中$ t $为常数且满足$ t^{sd}=1 $, $ d=GCD(n+m, \cdots, n+m-i, \cdots, n) $;
(Ⅰ.ⅱ) $ R(f, g)=0 $, 其中$ R(\omega_{1}, \omega_{2})=\omega_{1}^{n}(a_{m}\omega_{1}^{m}+\cdots+a_{1}\omega_{1}+a_{0})-h\omega_{2}^{n}(a_{m}\omega_{2}^{m}+\cdots+a_{1}\omega_{2}+a_{0}) $, $ h^{s}=1 $.
(Ⅱ) 若$ P(z)\equiv c_{0} $, 且$ n\geq2k+1 $, 则$ f(z)\equiv tg(z) $, 其中$ t $为非零常数且满足$ t^{ns}=1 $.
证 我们分两种情形讨论.
情形1 当$ P(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{1}z+a_{0} $时, 因为$ ((f^{n}P(f))^{(k)})^{s}=((g^{n}P(g))^{(k)})^{s} $, 从而$ (f^{n}P(f))^{(k)}=h(g^{n}P(g))^{(k)}=(hg^{n}P(g))^{(k)} $, 其中$ h^{s}=1 $, 因此$ f^{n}P(f)=hg^{n}P(g)+Q(z) $, $ Q(z) $为$ deg(Q(z))\leq k-1 $多项式. 下证$ deg(Q(z))\equiv0 $, 假设$ Q(z)\not\equiv0 $, 则
结合引理2.7与(2.5) 式, 得
由(2.6) 式, 得
同理
因为$ f, g $为非常数亚纯函数, 故$ T(r, f)\geq \text{log}r+O(1) $, $ T(r, g)\geq \text{log}r+O(1) $, 结合(2.7) 与(2.8) 式, 得
由(2.9) 式可知, 这与$ n>2k+m+1 $矛盾, 因此$ Q(z)\equiv0 $. 从而$ f^{n}P(f)=hg^{n}P(g) $, 即
接下来, 我们再分两种子情形讨论.
情形1.1 若$ \frac{f}{g}=t $, 其中$ t $为非零常数, 将$ f=tg $带入(2.10) 式可得$ a_{m}g^{n+m}(t^{n+m}-h)+a_{m-1}g^{n+m-1}(t^{n+m-1}-h)+\cdots+a_{1}g^{n+1}(t^{n+1}-h)+a_{0}g^{n}(t^{n}-h)\equiv0 $. 因为$ g $为非常数亚纯函数, 从而$ t^{d}=h $, 其中$ d=GCD(n+m, \cdots, n+m-i, \cdots, n) $, 进一步有$ (t^{d})^{s}=h^{s}=1 $, 因此$ f(z)\equiv tg(z) $, 其中$ t $为常数且满足$ t^{sd}=1 $, $ d=GCD(n+m, \cdots, n+m-i, \cdots, n) $.
情形1.2 若$ \frac{f}{g}=t $, 其中$ t $不为常数, 将$ f=tg $带入(2.10) 式可得$ R(f, g)=0 $, 其中$ R(\omega_{1}, \omega_{2})=\omega_{1}^{n}(a_{m}\omega_{1}^{m}+\cdots+a_{1}\omega_{1}+a_{0})-h\omega_{2}^{n}(a_{m}\omega_{2}^{m}+\cdots+a_{1}\omega_{2}+a_{0}) $且$ h^{s}=1 $.
情形2 当$ P(z)\equiv c_{0} $时, 因为$ ((f^{n})^{(k)})^{s}=((g^{n})^{(k)})^{s} $, 从而$ (f^{n})^{(k)}=h(g^{n})^{(k)}=(hg^{n})^{(k)} $, 其中$ h^{s}=1 $, 因此$ f^{n}=hg^{n}+Q(z) $, $ Q(z) $为$ deg(Q(z))\leq k-1 $多项式. 下证$ deg(Q(z))\equiv0 $, 假设$ Q(z)\not\equiv0 $.
置
因此$ F=hG+1 $, 进一步, 有
结合引理2.1与(2.11) 式, 得
由$ g^{n}=\frac{1}{h}f^{n}-\frac{1}{h}Q(z) $可知
进一步, 有
结合引理2.8与(2.12), (2.14) – (2.16) 式, 得
由(2.13) 与(2.17) 式, 得
即
因为$ f $为非常数亚纯函数, 故$ T(r, f)\geq \text{log}r+O(1) $, 结合(2.18) 式得
这与已知条件$ n\geq2k+1 $矛盾, 因此$ Q(z)\equiv0 $. 进而$ f^{n}=hg^{n} $, 从而$ f(z)\equiv tg(z) $, 其中$ t $为非零常数且满足$ t^{ns}=1 $. 引理2.9证毕.
引理2.10[10] 设$ f, \; g $是两个非常数整函数, $ n, \; k $为正整数, 且$ n>k $, 如果$ (c_{0}f^{n})^{(k)}(c_{0}g^{n})^{(k)}\equiv h $, $ h $为非零常数, 则$ f=c_{1}e^{cz}, \; g=c_{2}e^{-cz} $, 其中$ c_{0}, \; c_{1}, \; c_{2}, \; c $是非零常数, 且满足$ c_{0}^{2}(-1)^{k}(c_{1}c_{2})^{n}(nc)^{2k}=h $.
设
下面, 我们分三种情形讨论.
情形3 当$ k=0 $时, 即$ E_{(f^{n}P(f))^{(k)}}(S, 0)=E_{(g^{n}P(g))^{(k)}}(S, 0) $, 从而$ F, G $分担(1, 0), 假设$ H\not\equiv0 $, 由引理2.4, 得
由引理$ 2.5 $, 得
根据定义1.2, 类同引理2.6的证明可得
结合(3.2), (3.4), (3.6), (3.7), (3.9)–(3.11) 式, 得
由引理2.1, 得
结合引理2.6与(3.14) 式, 得
结合(3.12), (3.13), (3.16) 与(3.17) 式, 得
由于$ s\geq2 $, 因此
结合(3.18)–(3.22) 式, 得
这与$ n>2k+\frac{8k+14+7m-5\gamma}{s}-\gamma $矛盾. 因此$ H\equiv 0 $, 即
对(3.23) 式连续积分两次可得
其中$ A, B $为常数且$ A\neq0 $. 由(3.24) 式, 得
接下来我们分三种子情形讨论.
情形3.1 若$ B\neq0, \; -1 $, 由(3.26) 式, 得
结合第二基本定理及$ (3.9) $与$ (3.27) $式, 得
若$ A-B-1\neq0 $, 由(3.25) 式, 得
结合第二基本定理及(3.7), (3.8) 与$ (3.29) $式, 得
结合(3.16), (3.17), (3.28) 与(3.30) 式, 得
结合$ (3.18)-(3.20) $, (3.31) 与(3.32) 式, 得
因为$ 2k+\frac{8k+14+7m-5\gamma}{s}-\gamma=2k+\frac{8k+14+3m-\gamma+4(m-\gamma)}{s}-\gamma>2k+\frac{k+3+3m-\gamma}{s}-\gamma $, 且$ m\geq\gamma $, 这与$ n>2k+\frac{8k+14+7m-5\gamma}{s}-\gamma $矛盾, 因此$ A-B-1=0 $, 带入(3.25) 式可得
结合第二基本定理及(3.8) 与(3.33) 式, 得
结合(3.16), (3.17), (3.28) 与(3.34) 式, 得
结合(3.19)–(3.22) 与(3.35) 式, 得
这与$ n>2k+\frac{8k+14+7m-5\gamma}{s}-\gamma $矛盾.
情形3.2 若$ B=-1 $, 由(3.25) 与(3.26) 式, 得
若$ A+1\neq0 $, 由(3.36) 与(3.37) 式, 得
结合第二基本定理及(3.6), (3.9), (3.38) 与(3.39) 式, 得
结合(3.16), (3.17), (3.40) 与(3.41) 式, 得
结合(3.19), (3.20), (3.22), (3.42) 与(3.43) 式, 得
这与$ n>2k+\frac{8k+14+7m-5\gamma}{s}-\gamma $矛盾, 因此$ A+1=0 $, 将其带入(3.36) 式可得$ FG\equiv1 $. 若$ P(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{1}z+a_{0} $, 则$ (f^{n}P(f))^{(k)}(g^{n}P(g))^{(k)}\equiv h $, 其中$ h^{s}=1 $. 若$ P(z)\equiv c_{0} $, 则$ (c_{0}f^{n})^{(k)}(c_{0}g^{n})^{(k)}\equiv h $, 易见$ f\neq0, \; f\neq\infty $, $ g\neq0, \; g\neq\infty $, 故$ f, \; g $为非常数整函数. 从而由引理2.10得$ f=c_{1}e^{cz}, \; g=c_{2}e^{-cz} $, 其中$ c_{1}, \; c_{2}, \; c $是非零常数, 且满足$ c_{0}^{2s}(-1)^{ks}(c_{1}c_{2})^{ns}(nc)^{2ks}=1 $.
情形3.3 若$ B=0 $, 将其带入(3.25) 与(3.26) 式, 得
与情况1.2的证明类同, 可得到$ A-1=0 $, 将其带入(3.44) 式可得$ F\equiv G $, 即$ ((f^{n}P(f))^{(k)})^{s}\equiv ((g^{n}P(g))^{(k)})^{s} $, 再应用引理2.9的结论, 这就完成了$ k=0 $时情况的证明. $ k=1 $与$ k\geq2 $情况的证明与$ k=0 $情况的证明完全类似, 不再赘述. 至此, 定理1.8证毕.