数学杂志  2022, Vol. 42 Issue (6): 523-532   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
曹晓东
郭留涛
一类非椭圆薛定谔方程的Cauchy问题的光滑性效应
曹晓东, 郭留涛    
飞行器数学建模与高性能计算工业和信息化部重点实验室; 南京航空航天大学数学学院, 江苏 南京 211106
摘要:本文研究了流体力学中用于描述弱非线性水波的Davey-Stewartson系统的一种特殊情况,即一类齐次非椭圆薛定谔方程的柯西问题.利用傅里叶分析以及交换子估计,证明了这一类方程具有光滑效应,推广了经典薛定谔方程的类似结果.
关键词薛定谔方程    光滑效应    交换子    
SMOOTHING EFFECT OF CAUCHY PROBLEM FOR A CLASS OF NON-ELLIPTIC SCHRÖDINGER EQUATION
CAO Xiao-dong, GUO Liu-tao    
Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles; College of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract: In this paper, we work on a special case of Davey-Stewartson systems which is used to describe weakly nonlinear water waves in fluid mechanics, which is the Cauchy problem for a class of homogeneous non-elliptic Schrödinger equation. By using Fourier analysis and estimates for commutator bracket, we obtain this class of equation has smoothing effect, which generalizes some similar results of the classical Schrödinger equation.
Keywords: Schrödinger equation     smoothing effect     commutator bracket    
1 引言

描述弱非线性水波的Stewartson系统形如:

$ \begin{equation*} \begin{cases} i\frac{\partial u}{\partial t} + \delta \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \chi |u|^2 u + b u\frac{\partial \varphi}{\partial x} \\ \frac{\partial^2 \varphi}{\partial x^2} + m \frac{\partial^2 \varphi}{\partial y^2} = \frac{\partial}{\partial x}(|u|^2) \end{cases} \end{equation*} $

式中$ \delta=\pm 1 $, 以及$ m $可以为负数[1], 该方程具有非常重要的应用价值[2, 3], 该方程首次由Davey和Stewartson[4]引入. 该方程最简单的形式为齐次Schrödinger方程:

$ \begin{equation} \begin{cases} i \partial_t u(t, x) + \Delta u(t, x) = 0, \\ u|_{t=0} = \varphi (x). \end{cases} \end{equation} $ (1.1)

众所周知, 上述Cauchy问题具有光滑性效应[5]. 1985年, Ginibre J, Velo G[6]通过紧凑性方法证明了非线性薛定谔方程全局弱解的存在, 并在更强的假设下证明了这些解的唯一性. 在1987年, Yajima K[7]研究了拉普拉斯算子前系数为$ -\frac{1}{2} $, 且带有一般势函数的情况, 并论证了解的存在性、唯一性. Ohta M[8, 9]在1994年和1995年分别讨论了广义Davey-Stewartson系统驻波的稳定性和不稳定性. 2001年, 王保祥和郭柏灵[10]研究了椭圆-椭圆型的Davey-Stewartson方程初值问题的解和散射算子的存在性. 本文讨论$ \delta=-1 $的齐次Davey-Stewartson系统的方程, 即

$ \begin{equation} \begin{cases} i \partial_t u(t, x, y) + \Delta_x u(t, x, y) - \Delta_y u(t, x, y) = 0, \\ u|_{t=0} = \varphi (x, y), \quad x, y\in\mathbb{R}^N. \end{cases} \end{equation} $ (1.2)

这是一个非椭圆类的齐次Schrödinger方程的Cauchy问题, 本文的主要结论是:

定理1.1  对于方程(1.2), 假设$ m\in\mathbb{N}, \varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $以及$ (1+|(x, y)|^m) \varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $. 则Cauchy问题(1.2)存在唯一弱解满足:

$ \begin{equation} u \in \bigcap\limits_{0 \leq j \leq \left[\frac{m}{2}\right]} C^{j}(\mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H^{m-2j}_{loc}(\mathbb{R}^{N} \times \mathbb{R}^{N})), \end{equation} $ (1.3)

特别的, 若任给$ m\in\mathbb{N} $, 有$ (1+|(x, y)|^m)\varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 则$ u \in C^{\infty}(\mathbb{R} \ \backslash \ \lbrace 0 \rbrace \times \mathbb{R}^{N} \times \mathbb{R}^{N}) $.

因此我们证明了非椭圆类的齐次Schrödinger方程的Cauchy问题(1.2)也有完全类似于经典齐次Schrödinger方程的Cauchy问题的光滑性效应.

2 解的存在唯一性

我们首先研究Cauchy问题(1.2)的弱解, 对于定义在$ \mathbb{R}^{2N}_{x, y} $的函数$ f(x, y) $定义其Fourier变换:

$ \cal{F}(f)(\xi, \eta)=\hat{f}(\xi , \eta)=\int_{\mathbb{R}^{2N}}e^{-ix \cdot \xi} e^{-i y \cdot \eta} f(x, y)dxdy $

和Fourier逆变换

$ \cal{F}^{-1}(f)(x, y)=\frac{1}{(2\pi)^{2N}}\int_{\mathbb{R}^{2N}} e^{ix\cdot \xi} e^{iy\cdot \eta} f(\xi, \eta) d\xi d\eta. $

我们有下面的命题.

命题2.1  假设$ \varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 则Cauchy问题(1.2)存在唯一弱解

$ \begin{equation} u(t, x, y)=\cal{T}(t)(\varphi) (x, y)\in C^0(\mathbb{R}, L^2(\mathbb{R}^{N} \times \mathbb{R}^{N})), \end{equation} $ (2.1)

其中$ \cal{T}(t) $满足

$ \cal{T}(t) (\varphi) = \cal{F}^{-1} (e^{-i (|\xi|^2 - |\eta|^2) t}\ \hat{\varphi}(\xi , \eta) )= K_t * \varphi, $

以及

$ K_t(x, y) = \bigg(\frac{1}{4\pi t}\bigg)^N e^{i\frac{|x|^2-|y|^2}{4t}}. $

命题的证明是通过Fourier变换将(1.2)转换成常微分方程的Cauchy问题求解, 以及在广义函数意义下

$ \begin{equation*} \cal{F}^{-1}(e^{-i(|\xi|^2 - |\eta|^2)t})=\left(\frac{1}{4\pi t}\right)^N\ e^{i\frac{|x|^2-|y|^2}{4t}} . \end{equation*} $

需要特别解释的是关于时间变量$ t $$ L^2(\mathbb{R}^{N} \times \mathbb{R}^{N}) $空间的连续性, 事实上, 任给$ t_0\in\mathbb{R} $,

$ \left|e^{-i (|\xi|^2 - |\eta|^2) t}-e^{-i (|\xi|^2 - |\eta|^2) t_0}\right|^2\ \left|\hat{\varphi}(\xi , \eta)\right|^2 \ \rightarrow \ 0, \quad \mbox{几乎处处的}\ (\xi, \eta)\in \mathbb{R}^{N} \times \mathbb{R}^{N}, $

以及

$ \left|e^{-i (|\xi|^2 - |\eta|^2) t}-e^{-i (|\xi|^2 - |\eta|^2) t_0}\right|^2\ \left|\hat{\varphi}(\xi , \eta)\right|^2\le 4\ \left|\hat{\varphi}(\xi , \eta)\right|^2\in L^1(\mathbb{R}^{N} \times \mathbb{R}^{N}), $

因此由Lebesgue控制收敛定理得到

$ \lim\limits_{t \rightarrow t_0}\|u(t, \cdot, \cdot)- u(t_0, \cdot, \cdot)\|_{L^2(\mathbb{R}^{2N})}=0, $

以及Cauchy初始条件:

$ \lim\limits_{t \rightarrow 0}\|u(t, \cdot, \cdot)- \varphi(\cdot, \cdot)\|_{L^2(\mathbb{R}^{2N})}=0, $

$ \mathbb{S}(\mathbb{R}^n\times\mathbb{R}^n) $为Schwartz急减函数空间, 我们有下列解的光滑性结果.

命题2.2  假设$ \varphi \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 则Cauchy问题(1.2)解$ u\in C^\infty(\mathbb{R}_t; \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N})). $

  由(2.1)知$ u(t, x, y)=\cal{T}(t)\varphi=\cal{F}^{-1} \left( \hat{\varphi}(\xi, \eta) e^{-i(|\xi|^2-|\eta|^2)t} \right) $.对于任意的重指标$ \alpha $以及正整数$ m $:

$ \begin{equation*} |\left( 1+|(\xi, \eta)|^2 \right)^{\frac{m}{2}} \partial_{\xi, \eta}^{\alpha} \left( \hat{\varphi} e^{-i(|\xi|^2-|\eta|^2)t} \right)| \leq C\left( 1+|(\xi, \eta)|^2 \right)^{\frac{m+|\alpha|}{2}}\sum\limits_{\beta \leq \alpha} |\partial_{\xi, \eta}^{\beta} \hat{\varphi}(\xi, \eta)|, \end{equation*} $

因为$ \varphi \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 故$ \hat{\varphi} \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $. 根据$ \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $的定义, 我们证明了

$ \hat{\varphi}(\xi, \eta)\ e^{-i(|\xi|^2-|\eta|^2)t} \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}), \quad \forall t\in\mathbb{R}, $

而关于$ t $的连续性可以立即由Lebesgue控制收敛定理得到, 故

$ u(t, x, y)=\cal{F}^{-1}\left( \hat{\varphi}(\xi, \eta)\ e^{-i(|\xi|^2-|\eta|^2)t}\right) \in C^0(\mathbb{R}, \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N})). $

此外, 任给$ k\in\mathbb{N} $,

$ \partial^k_t u(t, x, y)=\cal{F}^{-1}\left( \hat{\varphi}(\xi, \eta)\ (-i(|\xi|^2-|\eta|^2))^k\ e^{-i(|\xi|^2-|\eta|^2)t}\right), $

以及

$ \hat{\varphi}(\xi, \eta)\ (-i(|\xi|^2-|\eta|^2))^k\ e^{-i(|\xi|^2-|\eta|^2)t} \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}), \quad \forall t\in\mathbb{R}. $

因此任给$ k\in\mathbb{N} $,

$ \partial^k_t u(t, x, y)=\cal{F}^{-1}\left( \hat{\varphi}(\xi, \eta)\ (-i(|\xi|^2-|\eta|^2))^k\ e^{-i(|\xi|^2-|\eta|^2)t}\right) \in C^0(\mathbb{R}, \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N})). $

这就证明了$ u(t, x, y)\in C^{\infty} \left( \mathbb{R}, \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N})\right) $. 证毕.

最后特别指出乘子$ \cal{T}(t) $$ L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $等距的.

命题2.3  假设$ \varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, $ u=\cal{T}(t)\varphi $, 是Cauchy问题(1.2)的解, 则任给$ t\in \mathbb{R} $, 有

$ \left\| u(t) \right\|_{L^2(\mathbb{R}^{2N})} = \left\| \varphi \right\|_{L^2(\mathbb{R}^{2N})}. $
3 高阶微分的交换子

现在研究解的高阶偏微.

定义3.1  对$ k, j \in \{ 1, ..., N \} $, 对于$ u(t, \cdot, \cdot) \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 定义$ \mathbb{R}^{2N+1} $上的偏微分算子:

$ \begin{equation} P_{x_k}u(t, x, y)=(x_k+2it\partial_{x_k})u(t, x, y), \quad P_{y_j}u(t, x, y)=(-y_j+2it\partial_{y_j})u(t, x, y), \end{equation} $ (3.1)

对多重指标$ \alpha , \beta $, 定义:

$ \begin{equation} P_{\alpha , \beta} = \prod\limits_{k=1}^N P_{x_{k}}^{\alpha_k} P_{y_{k}}^{\beta_k} \end{equation} $ (3.2)

引理3.2  定义3.1中的偏微分算子和算子$ i\partial_t + \Delta_x - \Delta_y $是可交换的:

$ [P_{\alpha, \beta}, i\partial_t + \Delta_x - \Delta_y] u=P_{\alpha , \beta}((i\partial_t + \Delta_x - \Delta_y)u) - (i\partial_t + \Delta_x - \Delta_y) P_{\alpha , \beta}u= 0. $

   为证明引理中的结论, 仅需证明下式:

$ \begin{equation} P_{\alpha , \beta}((i\partial_t + \Delta_x - \Delta_y)u) = (i\partial_t + \Delta_x - \Delta_y) P_{\alpha , \beta}u, \end{equation} $ (3.3)

下面证明

$ \begin{equation} (i\partial_t + \Delta_x - \Delta_y)(P_{x_k} P_{y_j} u) = P_{x_k} P_{y_j} ((i\partial_t + \Delta_x - \Delta_y)u). \end{equation} $ (3.4)

等式(3.4)左边等于

$ \begin{equation*} \begin{aligned} &\quad (i\partial_t + \Delta_x - \Delta_y) (P_{x_k} P_{y_j} u)\\ &= (i\partial_t + \Delta_x - \Delta_y) (-x_k y_j u + 2it \partial_{y_j}u - 2it\partial_{y_j} u - 2iy_j t \partial_{x_k}u - 4t^2\partial_{x_k}\partial_{y_j}u)\\ &= -ix_k y_j \partial_t u - 2x_k t \partial_t \partial_{y_j} u + 2y_j t \partial_t \partial_{x_k} u-4it^2 \partial_{t} \partial_{x_k} \partial_{y_j} u - x_k y_j \Delta_x u \\ &\quad + 2ix_k t \Delta_x \partial_{y_j} u - 2iy_j t \Delta_x (\partial_{x_k} u) -4t^2 \Delta_x (\partial_{x_k} \partial_{y_j} u) + x_k y_j \Delta_y u - 2ix_k t \Delta_y (\partial_{y_j} u)\\ &\quad + 2iy_j t \Delta_y \partial_{x_k} u + 4t^2\Delta_y (\partial_{x_k} \partial_{y_j}u), \end{aligned} \end{equation*} $

等式(3.4)右边等于

$ \begin{equation*} \begin{aligned} &\quad P_{x_i}P_{y_j} ((i\partial_t + \Delta_x - \Delta_y)u)\\ &= (x_k + 2it\partial_{x_k}) (-y_j+2it\partial_{y_j})(i\partial_t u + \Delta_x u - \Delta_y u)\\ &= (x_k + 2it\partial_{x_k}) (-iy_j \partial_t u -y_j \Delta_x u + y_j \Delta_y u - 2t\partial_{y_j}\partial_t u + 2it\partial_{y_j}\Delta_x u - 2it\partial_{y_j} \Delta_y u)\\ &=-ix_k y_j \partial_t u -x_k y_j \Delta_x u + x_k y_j \Delta_y u - 2x_k t \partial_{y_j} \partial_t u + 2ix_k t \partial_{y_j}\Delta_x u - 2ix_k t \partial_{y_j} (\Delta_y u)\\ & \quad +2y_j t \partial_{x_k} \partial_t u -2iy_j t \partial_{x_k} (\Delta_x u) + 2iy_j t \partial_{x_k} (\Delta_y u) - 4it^2 \partial_{x_k} \partial_{y_j} \partial_t u - 4t^2\partial_{x_k} \partial_{y_j} \Delta_x u\\ & \quad + 4t^2 \partial_{x_k} \partial_{y_j} \Delta_y u, \end{aligned} \end{equation*} $

故(3.4)的左边减去右边等于0.

因此(3.4)成立. 高阶微分的情形由数学归纳法证明.

引理3.3  当$ t \ne 0 $时, 对于$ u(t, \cdot, \cdot) \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 以及多重指标$ \alpha, \beta \in \mathbb{N}^{N} $, 有

$ \begin{equation} P_{\alpha, \beta} u(t, x, y) = (2it)^{|\alpha| + |\beta|} e^{i \frac{|x|^2 - |y|^2}{4t}} \partial_{x, y}^{\alpha, \beta} (e^{-i \frac{|x|^2 - |y|^2}{4t}}u). \end{equation} $ (3.5)

   首先计算:

$ \begin{equation} \begin{aligned} &(2it)e^{i \frac{|x|^2 - |y|^2}{4t}} \partial_{y_j} (e^{-i \frac{|x|^2 - |y|^2}{4t}}u) \\ =&(2it)e^{i \frac{|x|^2 - |y|^2}{4t}}(\frac{i}{2t}\cdot e^{-i \frac{|x|^2 - |y|^2}{4t}}\cdot y_j u + e^{-i \frac{|x|^2 - |y|^2}{4t}} \partial_{y_j}u)\\ =&-y_j u + 2it\partial_{y_j}u=(-y_j + 2it\partial_{y_j})u, \end{aligned} \end{equation} $ (3.6)

因此由(3.1) (3.6):

$ \begin{equation} \begin{aligned} P_{x_{k}} P_{y_{j}} u(t, x, y) &= (x_k + 2it\partial_{x_k})(-y_j + 2it\partial_{y_j}) u(t, x, y) \\ &= (x_k + 2it \partial_{x_k}) ((2it)e^{i \frac{|x|^2 - |y|^2}{4t}} \partial_{y_j} (e^{-i \frac{|x|^2 - |y|^2}{4t}}u))\\ &=(2it)e^{i \frac{|x|^2 - |y|^2}{4t}}\partial_{x_k} (e^{-i \frac{|x|^2 - |y|^2}{4t}} (2it) e^{i \frac{|x|^2 - |y|^2}{4t}} \partial_{y_j} (e^{-i \frac{|x|^2 - |y|^2}{4t}}u)) \\ &=(2it)(2it)e^{i \frac{|x|^2 - |y|^2}{4t}}\partial x_k \partial y_j (e^{-i \frac{|x|^2 - |y|^2}{4t}}u). \end{aligned} \end{equation} $ (3.7)

高阶微分公式由数学归纳法证明.

引理3.4  如果$ u(0) \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 则对多重指标$ \alpha, \beta \in \mathbb{N}^{N} $, 有

$ \begin{equation} \left(P_{\alpha, \beta}u(t, x, y)\right)|_{t=0}=x^{\alpha}(-y)^{\beta}u(0, x, y). \end{equation} $ (3.8)

   因为$ u(0) \in \cal{S} \subset C^{\infty} $, 我们仅仅需要证明, 对于$ \alpha_k, \beta_j\in\mathbb{N}, \; k, \; j=1, 2, \cdots, N $, 有

$ \begin{equation} \left(P_{x_k}^{\alpha_k}P_{y_j}^{\beta_j}u(t, x, y)\right)|_{t=0}=x_k^{\alpha_k}(-y_j)^{\beta_j}u(0, x, y). \end{equation} $ (3.9)

$ \alpha_k=\beta_j=1 $时, 根据(3.1)定义计算可得

$ \begin{equation*} P_{x_k}P_{y_j}u=-x_k y_j u -y_j \cdot 2it \partial_{x_k}u + x_k \ 2it\partial_{y_j}u-4t^2\partial_{y_j}\partial_{x_k}u, \end{equation*} $

因此

$ \left(P_{x_k}P_{y_j}u(t, x, y)\right)|_{t=0}=x_k (-y_j)u(0, x, y). $

假设$ \alpha_k = m, \beta_j = l $时, 有

$ \begin{equation*} \left(P_{x_k}^{m}P_{y_j}^{l}u(t, x, y)\right)|_{t=0}=\left((x_k + 2it\partial_{x_k})^{m}(-y_j+2it\partial_{y_j})^{l} u(t, x, y) \right)|_{t=0}=x_k^m (-y_j)^l u(0, x, y). \end{equation*} $

则当$ \alpha_k = m+1, \beta_j = l + 1 $时:

$ \begin{equation*} \begin{aligned} &\quad \left(P_{x_k}^{m+1}P_{y_j}^{l+1}u(t, x, y)\right)|_{t=0}\\ &=\left(P_{x_k}P_{x_k}^{m}P_{y_j}P_{y_j}^{l}u(t, x, y)\right)|_{t=0}\\ &=\left(P_{x_k}P_{y_j}P_{x_k}^{m}P_{y_j}^{l}u(t, x, y)\right)|_{t=0}\\ &=\left[(x_k+2it\partial_{x_k})(-y_j+2it\partial_{y_j})(x_k+2it\partial_{x_k})^{m} (-y_j+2it\partial_{y_j})^{l}u(t, x, y)\right] |_{t=0}\\ &=-x_k y_j \left[(x_k+2it\partial_{x_k})^{m} (-y_j+2it\partial_{y_j})^{l}u(t, x, y)\right] |_{t=0} \\ &\quad + \left[2it \cdot x_k \cdot \partial_{y_j} (x_k+2it\partial_{x_k})^{m} (-y_j+2it\partial_{y_j})^{l}u(t, x, y)\right] |_{t=0} \\ &\quad -\left[2it\cdot y_j \cdot \partial_{x_k}(x_k+2it\partial_{x_k})^{m} (-y_j+2it\partial_{y_j})^{l}u(t, x, y)\right] |_{t=0}\\ &\quad + \left[(2it)^{2} \partial_{x_k}\partial_{y_j}(x_k+2it\partial_{x_k})^{m} (-y_j+2it\partial_{y_j})^{l}u(t, x, y)\right] |_{t=0}\\ &=x_k (-y_j) x_k^{m} (-y_j)^{l} u(0, x, y)\\ &=x_k^{m+1}(-y_j)^{l+1}u(0, x, y), \end{aligned} \end{equation*} $

因此(3.9)成立.

4 初始条件的衰减性和光滑效应

我们首先研究Cauchy问题(1.2)中的初始值$ \varphi\in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $的情形.

命题4.1  假设$ \varphi \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}), u $是Cauchy问题(1.2)的解, 则任给$ \alpha, \beta\in \mathbb{N}^N $, 有

$ \begin{equation*} (2|t|)^{|\alpha|+|\beta|} ||\partial_{x, y}^{\alpha, \beta} (e^{-i \frac{|x|^2 - |y|^2}{4t}}u)||_{L^2} = ||x^{\alpha} y^{\beta} \varphi||_{L^2}, \quad t \ne 0. \end{equation*} $

   根据命题2.2, 因为$ \varphi \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 所以Cauchy问题(1.2)的解$ u\in C^\infty(\mathbb{R}_t; \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $. 另一方面, 对于$ \alpha, \beta\in\mathbb{N}^N $, 考虑Cauchy问题

$ \begin{equation} \begin{cases} i \partial_t v(t, x, y) + \Delta_x v(t, x, y) - \Delta_y v(t, x, y) = 0, \\ v|_{t=0} = x^{\alpha} (-y)^{\beta} \varphi (x, y), \quad x, y\in\mathbb{R}^N. \end{cases} \end{equation} $ (4.1)

因为仍然有$ x^{\alpha} (-y)^{\beta} \varphi \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 所以Cauchy问题(4.1)存在唯一解

$ v_{\alpha, \beta}=\cal{T}(t) (x^{\alpha} (-y)^{\beta} \varphi)\in C^\infty(\mathbb{R}_t; \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N})). $

利用命题2.3, 则任给$ t\in \mathbb{R} $, 有

$ \left\| v_{\alpha, \beta}(t) \right\|_{L^2(\mathbb{R}^{2N})} = \|x^{\alpha} (-y)^{\beta} \varphi \|_{L^2(\mathbb{R}^{2N})}= \|x^{\alpha} y^{\beta} \varphi \|_{L^2(\mathbb{R}^{2N})}. $

同时

$ \begin{equation*} (i\partial_t +\Delta_x - \Delta_y)(P_{\alpha, \beta}u)=P_{\alpha, \beta}((i\partial_t + \Delta_x - \Delta_y)u(t, x, y)) = 0. \end{equation*} $

利用引理3.4, 有

$ \begin{equation} \begin{cases} (i\partial_t +\Delta_x - \Delta_y)(P_{\alpha, \beta}u)= 0, \\ (P_{\alpha, \beta}u)|_{t=0} = x^{\alpha} (-y)^{\beta} \varphi (x, y), \quad x, y\in\mathbb{R}^N. \end{cases} \end{equation} $ (4.2)

因为Cauchy问题(1.2)的解是唯一的, 所以

$ \begin{equation} v_{\alpha, \beta}(t, x, y)=P_{\alpha, \beta}u(t, x, y). \end{equation} $ (4.3)

因此

$ \begin{equation} \|P_{\alpha, \beta}u(t, \cdot, \cdot)\|_{L^2(\mathbb{R}^{2N})}=\| x^{\alpha} y^{\beta} \varphi\|_{L^2(\mathbb{R}^{2N})}. \end{equation} $ (4.4)

根据(3.5)有

$ \begin{equation} \|P_{\alpha , \beta}u(t, \cdot, \cdot)\|_{L^2(\mathbb{R}^{2N})}=\left\| (2it)^{|\alpha|+|\beta|} e^{i\frac{|x|^2-|y|^2}{4t}} \partial_{x, y}^{\alpha, \beta} (e^{-i\frac{|x|^2-|y|^2}{4t}}u)\right\|_{{L^2(\mathbb{R}^{2N})}} \end{equation} $ (4.5)

故由(4.5)知,

$ \begin{equation*} \left\|(2it)^{|\alpha|+|\beta|} e^{i\frac{|x|^2-|y|^2}{4t}} \partial_{x, y}^{\alpha, \beta} (e^{-i\frac{|x|^2-|y|^2}{4t}}u) \right\|_{L^2(\mathbb{R}^{2N})}= \| x^{\alpha} y^{\beta} \varphi \|_{L^2(\mathbb{R}^{2N})}. \end{equation*} $

因此得到

$ \begin{equation*} (2|t|)^{|\alpha|+|\beta|} \left\| \partial_{x, y}^{\alpha, \beta} (e^{-i\frac{|x|^2-|y|^2}{4t}}u) \right\|_{L^2(\mathbb{R}^{2N})} = \| x^{\alpha} y^{\beta} \varphi \|_{L^2(\mathbb{R}^{2N})}, \quad \forall t\not=0. \end{equation*} $
5 定理1.1的证明

现在研究$ L^2 $初始值的Cauchy问题(1.2).

命题5.1  令$ \varphi \in L^2(\mathbb{R}^{N} \times \mathbb{R}^{N}), \alpha, \beta\in\mathbb{N}^N $, 满足$ x^{\alpha} y^{\beta} \varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $.若$ u(t) = T(t)\varphi \in C(R, L^2(\mathbb{R}^{N} \times \mathbb{R}^{N})) $, 则

$ \begin{equation} \partial^{\alpha, \beta}_{x, y} \left(e^{-i \frac{|x|^2 - |y|^2}{4t}} u\right) \in C(\mathbb{R} \ \backslash \ \lbrace0\rbrace , L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N})). \end{equation} $ (5.1)

   利用命题4.1, 如果$ \varphi \in \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}), $则(5.1)成立, 以及

$ \begin{equation*} \left\| \partial_{x, y}^{\alpha, \beta} (e^{-i\frac{|x|^2-|y|^2}{4t}}u) \right\|_{L^2(\mathbb{R}^{2N})} =(2|t|)^{-|\alpha|-|\beta|} \| x^{\alpha} y^{\beta} \varphi \|_{L^2(\mathbb{R}^{2N})}, \quad \forall t\not=0. \end{equation*} $

现在假设$ \varphi, x^{\alpha} y^{\beta} \varphi \in L^2(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 则存在$ \{\varphi_j\} \subset \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 满足

$ \begin{equation} \lim\limits_{j \rightarrow +\infty}\|\varphi_j-\varphi\|_{ L^2(\mathbb{R}^{2N})}=0, \ \ \lim\limits_{j \rightarrow +\infty}\|x^{\alpha} y^{\beta}(\varphi_j-\varphi)\|_{ L^2(\mathbb{R}^{2N})}=0. \end{equation} $ (5.2)

这个结果可以由$ \cal{S}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $$ H^m(\mathbb{R}^{N} \times \mathbb{R}^{N}) $中稠密得到. 因此$ \{x^{\alpha} y^{\beta}\varphi_j\} $$ L^2(\mathbb{R}^{N} \times \mathbb{R}^{N}) $的一个Cauchy序列. 记$ u_j(t) = T(t)\varphi_j $, 则由Cauchy问题(1.2)的解的唯一性

$ \lim\limits_{j \rightarrow +\infty}\|u_j-u\|_{ L^2(\mathbb{R}^{2N})}=0. $

另一方面, 任给$ j, k\in\mathbb{N} $,

$ \begin{equation*} \left\| \partial_{x, y}^{\alpha, \beta} (e^{-i\frac{|x|^2-|y|^2}{4t}}(u_j-u_k)) \right\|_{L^2(\mathbb{R}^{2N})} =(2|t|)^{-|\alpha|-|\beta|} \| x^{\alpha} y^{\beta} (\varphi_j-\varphi_k) \|_{L^2(\mathbb{R}^{2N})}, \quad \forall t\not=0. \end{equation*} $

由此导出$ \{\partial_{x, y}^{\alpha, \beta} (e^{-i\frac{|x|^2-|y|^2}{4t}}u_j)\} $$ L^2(\mathbb{R}^{N} \times \mathbb{R}^{N}) $的一个Cauchy序列, 由唯一性有

$ \begin{equation} \lim\limits_{j \rightarrow +\infty}\left\| \partial_{x, y}^{\alpha, \beta} (e^{-i\frac{|x|^2-|y|^2}{4t}}(u_j-u)) \right\|_{L^2(\mathbb{R}^{2N})} =0, \quad \forall t\not=0. \end{equation} $ (5.3)

结合(5.2), (5.3), 我们就证明了, 如果$ \varphi, x^{\alpha} y^{\beta} \varphi \in L^2(\mathbb{R}^{N} \times \mathbb{R}^{N}), $

$ \begin{equation} \left\| \partial_{x, y}^{\alpha, \beta} (e^{-i\frac{|x|^2-|y|^2}{4t}}u) \right\|_{L^2(\mathbb{R}^{2N})} =(2|t|)^{-|\alpha|-|\beta|} \| x^{\alpha} y^{\beta} \varphi \|_{L^2(\mathbb{R}^{2N})}, \quad \forall t\not=0. \end{equation} $ (5.4)

这就证明了(5.1). 关于$ t\not=0 $的连续性由上式直接给出.

命题5.2  假设$ m\in\mathbb{N}, \varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $以及$ (1+|(x, y)|^m) \varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $. 则Cauchy问题(1.2)存在唯一弱解满足:

$ \begin{equation} e^{-i\frac{|x|^2-|y|^2}{4t}}u \in C^{0}(\mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H^{m}(\mathbb{R}^{N} \times \mathbb{R}^{N})). \end{equation} $ (5.5)

   首先, 对于$ m\in\mathbb{N} $,

$ \begin{equation*} (1 + |(x, y)|^m)^2 \ge (|x|^2 +|y|^2)^{m} \ge C \sum\limits_{|(\alpha, \beta)| = m} (x^\alpha y^\beta)^2 . \end{equation*} $

故由命题5.1可知, 当$ |(\alpha, \beta)| = m $时, $ \partial^{\alpha, \beta}_{x, y} e^{-i \frac{|x|^2-|y|^2}{4t}} u(t) \in C(\mathbb{R} \ \backslash \ \lbrace0\rbrace , L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N})) $, 进而利用(5.4), 任给$ |t|\ge \delta_0>0 $, 有

$ \begin{align*} \left\| e^{-i \frac{|x|^2-|y|^2}{4t}} u(t) \right\|^2_{H^m(\mathbb{R}^{2N})} &= \sum\limits_{|\alpha, \beta| \leq m} \left\| \partial^{\alpha, \beta}_{x, y} e^{-i \frac{|x|^2-|y|^2}{4t}} u(t) \right\|_{L^2(\mathbb{R}^{2N})}^2\\ &=\sum\limits_{|\alpha, \beta| \leq m} (2|t|)^{-2|\alpha|-2|\beta|} \| x^{\alpha} y^{\beta} \varphi \|^2_{L^2(\mathbb{R}^{2N})}\\ &\le C_0 \delta_0^{-2m}\|(1+|(x, y)|^m \varphi \|^2_{L^2(\mathbb{R}^{2N})}. \end{align*} $

因此$ e^{-i \frac{|x|^2-|y|^2}{4t}} u(t) \in C^0(\mathbb{R}\ \backslash \ \lbrace 0 \rbrace, H^{m}(\mathbb{R}^{N} \times \mathbb{R}^{N})) $. 这里关于$ t\not=0 $的连续性和命题5.1的证明一样.

引理5.3  假设$ 0<a<b<+\infty, 0<R<\infty $, 任给$ \alpha, \beta\in\mathbb{N}^N $, 存在$ C(\alpha, \beta, a, b, R)>0 $使得

$ \begin{equation} \left|\partial_{x}^{\alpha}\partial_{y}^{\beta} e^{i \frac{|x^2-|y|^2}{4t}}\right|\le C(\alpha, \beta, a, b, R), \quad \forall\ a\le |t|\le b, \ \ |(x, y)|\le R. \end{equation} $ (5.6)

事实上

$ \partial_{x}^{\alpha}\partial_{y}^{\beta}\left( e^{i \frac{|x|^2-|y|^2}{4t}}\right)=P_{\alpha, \beta}\left(\frac{1}{t}, x, y\right) e^{i \frac{|x|^2-|y|^2}{4t}}, $

这里$ P_{\alpha, \beta}(\frac{1}{t}, x, y) $是变量$ \frac{1}{t}, x, y $$ |(\alpha, \beta)| $阶多项式. 因此

$ \left|\partial_{x}^{\alpha}\partial_{y}^{\beta}\left( e^{i \frac{|x|^2-|y|^2}{4t}}\right)\right|= \left|P_{\alpha, \beta}\left(\frac{1}{t}, x, y\right)\right|\le C(\alpha, \beta, a, b, R), \quad \forall\ a\le |t|\le b, \ \ |(x, y)|\le R. $

命题5.4  假设$ m\in\mathbb{N}, \varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $以及$ (1+|(x, y)|^m) \varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $. 则Cauchy问题(1.2)的唯一弱解满足:

$ \begin{equation} u \in C^{0}(\mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H^{m}_{loc}(\mathbb{R}^{N} \times \mathbb{R}^{N})). \end{equation} $ (5.7)

   我们需要证明, 任给$ 0<R<+\infty, 0<a<b<\infty $, $ \|u(t)\|_{H^m(B_R)}<+\infty, $以及关于$ t $在[a, b]上连续, 这里

$ B_R=\{(x, y)\in\mathbb{R}^{N} \times \mathbb{R}^{N}; |(x, y)|<R\}. $

利用莱布尼茨公式, 当$ a\le |t|\le b $时有

$ \begin{equation*} \begin{aligned} &\left\| u(t) \right\|^2_{H^m (B_R)} = \sum\limits_{|(\alpha, \beta)| \leq m} \left\| \partial^{\alpha, \beta}_{x, y} \left(e^{i \frac{|x|^2-|y|^2}{4t}} \cdot e^{-i \frac{|x|^2-|y|^2}{4t}} u(t, x, y)\right)\right\|_{L^2}^2\\ =& \sum\limits_{|(\alpha, \beta)| \leq m} \int_{B_R} \Big| \sum\limits_{(\tilde{\alpha}, \tilde{\beta}) \leq (\alpha, \beta)}\dbinom{\alpha, \beta}{\tilde{\alpha}, \tilde{\beta}} \big(\partial_{x, y}^{\tilde{\alpha}, \tilde{\beta}} e^{i \frac{|x|^2-|y|^2}{4t}}\big) \times \partial_{x, y}^{\alpha-\tilde{\alpha}, \beta - \tilde{\beta}} \big(e^{-i \frac{|x|^2-|y|^2}{4t}} u(t, x, y)\big)\Big|^2 dxdy\\ \le& C(a, b, R, m) \sum\limits_{|(\alpha, \beta)| \leq m} \int_{B_R} \Big| \sum\limits_{(\tilde{\alpha}, \tilde{\beta}) \leq (\alpha, \beta)} \left| \partial_{x, y}^{\alpha-\tilde{\alpha}, \beta - \tilde{\beta}} \big(e^{-i \frac{|x|^2-|y|^2}{4t}} u(t, x, y)\big)\right|\Big|^2 dxdy \\ \le& \tilde{C}(a, b, R, m) \left\| e^{-i\frac{|\ \cdot\ |^2 - |\ \cdot\ |^2}{4t}} u(t, \cdot, \cdot) \right\|^2_{H^{m}(\mathbb{R}^{2N})}. \end{aligned} \end{equation*} $

因此$ u \in C(\mathbb{R} \backslash \{ 0\}, H_{loc}^m (\mathbb{R}^{N} \times \mathbb{R}^{N})) $.

完成定理1.1的证明

现在证明(1.3), 即:

$ \begin{equation*} u \in \bigcap\limits_{0 \leq j \leq \left[\frac{m}{2}\right]} C^{j}(\mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H^{m-2j}_{loc}(\mathbb{R}^{N} \times \mathbb{R}^{N})). \end{equation*} $

命题5.4就是$ j=0 $的情形. 如果$ m\ge 2 $, 由$ u \in C^0( \mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H_{loc}^{m} (\mathbb{R}^{N} \times \mathbb{R}^{N})) $, 有

$ \Delta_x u, \Delta_y u \in C^0( \mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H_{loc}^{m-2} (\mathbb{R}^{N} \times \mathbb{R}^{N})), $

因此, 利用方程(1.2)

$ \partial_t u(t, x, y) =i \Delta_x u(t, x, y) - i \Delta_y u(t, x, y)\in C^0( \mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H_{loc}^{m-2} (\mathbb{R}^{N} \times \mathbb{R}^{N})), $

所以

$ u\in C^1( \mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H_{loc}^{m-2} (\mathbb{R}^{N} \times \mathbb{R}^{N})). $

同理, 如果$ m\ge 4 $, 有

$ \Delta_x u, \Delta_y u \in C^1( \mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H_{loc}^{m-4} (\mathbb{R}^{N} \times \mathbb{R}^{N})), $

因此利用方程(1.2)

$ \partial_t u(t, x, y) =i \Delta_x u(t, x, y) - i \Delta_y u(t, x, y)\in C^1( \mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H_{loc}^{m-4} (\mathbb{R}^{N} \times \mathbb{R}^{N})), $

所以

$ u\in C^2( \mathbb{R}\ \backslash \ \lbrace 0 \rbrace , H_{loc}^{m-4} (\mathbb{R}^{N} \times \mathbb{R}^{N})). $

重复上述过程, 对于$ k\le \left[\frac m 2\right] $, 最后得到:

$ \begin{equation*} u \in \bigcap\limits_{0 \leq j \leq k} C^{j}(\mathbb{R} \backslash \{ 0 \} , H_{loc}^{m-2j}(\mathbb{R}^{N} \times \mathbb{R}^{N})). \end{equation*} $

现在假设任给$ m\in\mathbb{N} $, 有$ (1+|x, y|^{m})\varphi \in L^{2}(\mathbb{R}^{N} \times \mathbb{R}^{N}) $, 则

$ \begin{equation*} u \in \bigcap\limits_{0 \leq j \leq \left[\frac m 2\right]} C^{j}(\mathbb{R} \backslash \{ 0 \} , H_{loc}^{m-2j}(\mathbb{R}^{N} \times \mathbb{R}^{N})), \quad \forall m\in\mathbb{N}. \end{equation*} $

利用Soblev嵌入定理, 任给$ p\in\mathbb{N}, $

$ H_{loc}^{p+N+1}(\mathbb{R}^{N} \times \mathbb{R}^{N})\subset C^p(\mathbb{R}^{N} \times \mathbb{R}^{N}). $

这就证明了

$ \begin{equation*} u \in \bigcap\limits_{0 \leq j \leq \left[\frac {(m-N-1)} 2\right]} C^{j}(\mathbb{R} \backslash \{ 0 \} , C^{m-2j-N-1}(\mathbb{R}^{N} \times \mathbb{R}^{N})), \quad \forall m >N. \end{equation*} $

因此得

$ \begin{equation*} u(t) \in C^{\infty} (\mathbb{R} \backslash \{ 0\} \times \mathbb{R}^{N} \times \mathbb{R}^{N}), \end{equation*} $

这就完成了定理1.1的证明.

参考文献
[1] Djordjevic V D, Redekopp L G. On two-dimensional packets of capillary-gravity waves[J]. J. Fluid Mech., 1977, 79(4): 703–714. DOI:10.1017/S0022112077000408
[2] Ghidaglia J M, Saut J C. On the initial value problem for the Davey-Stewartson systems[J]. Nonlinearity, 1990, 3(2): 475–506. DOI:10.1088/0951-7715/3/2/010
[3] Ablowitz M J, Haberman R. Nonlinear evolution equations-two and three dimensions[J]. Phys. Rev. Lett., 1975, 35(18): 1185–1188. DOI:10.1103/PhysRevLett.35.1185
[4] Davey A, Stewartson K. On three-dimensional packets of surface waves[J]. Proc. R. Soc. London Ser.A., 1974, 338(1613): 101–110. DOI:10.1098/rspa.1974.0076
[5] Cazenave T. Semilinear SchrÖdinger Equations[M]. New York: American Mathematical Soc., 2003.
[6] Ginibre J, Velo G. The global Cauchy problem for the non linear Schrödinger equation revisited[A]. Dalibard A, Lewin M. Ann. Inst. H. Poincaré Anal. Non Linéaire[C]. Paris: Elsevier Masson, 1985: 309-327.
[7] Yajima K. Existence of solutions for Schrödinger evolution equations[J]. Commun. Math. Phys., 1987, 110(3): 415–426. DOI:10.1007/BF01212420
[8] Ohta M. Stability of standing waves for the generalized Davey-Stewartson system[J]. J. Dyn. Diff. Eqs., 1994: 325–334.
[9] Ohta M. Instability of standing waves for the generalized Davey-Stewartson system[J]. Ann. Inst. Henri. Poincaré Phys., 1995: 69–80.
[10] 王保祥, 郭柏灵. 广义Davey-Stewartson方程组初值问题的解和散射算子的存在性[J]. 中国科学: A辑, 2001, 31(5): 413–421.