数学杂志  2022, Vol. 42 Issue (2): 180-188   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
胡慧
程珵
Lüroth展式相邻字符乘积的部分和的度量性质和相关分形维数
胡慧, 程珵    
南昌航空大学数学与信息科学学院, 江西 南昌 330063
摘要:本文研究了Lüroth展式字符乘积的部分和${S_n}\left(x \right) = \sum\limits_{i = 1}^n {{d_i}(x){d_{i + 1}}(x)} $ 的度量性质和相关分形集的Hausdorff维数, 其中$d_i(x)$表示$x \in \left({0, 1} \right)$ 的Lüroth展式的第$i$个字符. 利用对部分和序列的修正和适当分形集的构造, 获得了$S_n(x)/n\log^2 n$ 依勒贝格测度收敛于1/2并且得到了相关例外集的Hausdorff维数, 扩展了数的展式的维数研究.
关键词Lüroth展式    字符乘积    部分和    Hausdorff维数    
ON THE METRIC PROPERTIES OF THE SUM OF PRODUCTS OF CONSECUTIVE DIGITS IN LÜROTH EXPANSIONS AND RELATED DIMENSIONS
HU Hui, CHENG Cheng    
School of Mathematics and Information Science, Nanchang Hangkong University, Nanchang 330063, China
Abstract: In this paper, we consider the metric properties of ${S_n}\left(x \right) = \sum\limits_{i = 1}^n {{d_i}(x){d_{i + 1}}(x)} $ and the Hausdroff dimension of related fractal sets, where $d_i(x)$ is the i-th digit of the Lüroth expansions of $x \in [0, 1)$. By some modification of $S_n(x)$ and the construction of suitable fractal subsets, we prove that $S_n(x)/n\log^2 n$ converges to 1/2 in Lebesgue measure λ, and we get the Hausdorff dimensions of related exceptional sets. It extends related dimensional results about expansions of numbers.
Keywords: Lüroth expansions     product of digits     partial sum     Hausdorff dimension    
1 引言

Lüroth展式可由如下变换$ T:\left[ {0, 1} \right) \to \left[ {0, 1} \right) $导出,

$ T(x) = \left\{ {\begin{array}{*{20}{c}} {n\left( {n + 1} \right)x - n, }&{x \in \left[ \frac{1}{n + 1}, \frac{1}{n} \right)}, \\ {0, }&{x = 0.} \end{array}} \right. $

对任意的$ x \in (0, 1) $, 定义$ d_1(x)\geq 2 $为使得下式成立的唯一的正整数

$ \frac{1}{d_1(x)} \le x < \frac{1}{d_1(x) - 1}. $

$ n\ge 2 $, 如果$ T^{n-1}(x)\neq 0 $, 则定义$ d_n(x) = d_1(T^{n-1}(x)) $. 从而对任意的无理数$ x\in [0, 1) $, 可以得到由$ T $所诱导的如下无穷级数

$ x = \frac{1}{d_1(x)} + \frac{1}{d_1(x)(d_1(x) - 1)d_2(x)} + \cdots + \frac{1}{{{d_1}\left( x \right) \cdots {d_{n - 1}}\left( x \right)\left( {{d_{n - 1}}\left( x \right) - 1} \right){d_n}\left( x \right)}} + \cdots . $

我们称这一级数为$ x $的Lüroth展式, 它由Lüroth[1]1883年首次引入. 其中$ d_n(x) $称为$ x $的Lüroth展式的第$ n $个字符. 对于有理数$ x\in [0, 1) $, 其Lüroth展式只含有限项. Lüroth展式与度量数论、动力系统和分形几何的研究密切相关, 已有很多的研究成果. 例如变换$ T $相对勒贝格测度$ \lambda $是不变的和遍历的, 字符列$ \{d_n(x): n\geq 1\} $相对于$ \lambda $是独立同分布的[2]. 关于单个Lüroth展式字符的增长速度及相关维数问题的研究, 可参见文献[3]. 在文献[4]和[5]中, 研究了Lüroth展式两个相邻字符乘积的增长速度, 集合$ \{x\in(0, 1): d_n(x)d_{n+1}(x) \geq \varphi(n){无穷多次成立}\} $的勒贝格测度与Hausdorff维数得到了解决.

在本文中, 我们将研究Lüroth展式相邻字符乘积的部分和的分布. 令

$ {S_n}\left( x \right) = \sum\limits_{i = 1}^n {{d_i}(x){d_{i + 1}}(x)} . $

首先考虑对适当的增长速度$ \varphi(n) $, $ S_n(x)/\varphi(n) $的收敛问题. 具体地, 我们有下面的结果.

定理1.1  比值$ \frac{S_n(x)}{n\log^2n} $依勒贝格测度$ \lambda $收敛到$ \frac{1}{2} $, 即对任意的$ \varepsilon >0 $,

$ \lim\limits_{n \to \infty } \lambda \left\{ {x \in \left( {0, 1} \right):\left| \frac{S_n(x)}{n\log^2 n} - \frac{1}{2} \right| > \varepsilon } \right\} = 0. $

需要指出的是, 由文献[5]知, 对勒贝格几乎处处的$ x\in(0, 1) $, $ d_n(x)d_{n+1}(x)\ge n\log^2 n $对于无穷多的$ n $成立. 从而$ S_n(x)/n\log^2n $并不是几乎处处收敛到$ 1/2 $. 另一个很自然的问题就是考虑$ S_n(x) $的相关例外集

$ G\left( \psi \right): = \left\{ {x \in \left( {0, 1} \right):\mathop {\lim }\limits_{n \to \infty } \frac{{{S_n}\left( x \right)}}{{\psi \left( n \right)}} = 1} \right\} $

的Hausdorff维数, 其中函数$ \psi: \mathbb{N} \to (1, \infty) $单调递增且$ \lim\limits_{n\to \infty}\psi(n) = \infty $.

定理1.2  若$ \psi :\mathbb{N} \to (1, \infty) $单调递增且满足

$ \mathop {\lim }\limits_{n \to \infty } \frac{{\psi (n)}}{n} = \infty , \mathop {\lim }\limits_{n \to \infty } \frac{{\psi (n + 1)}}{{\psi (n)}} = 1, \mathop {\lim \sup }\limits_{n \to \infty } \frac{{\log \log \psi (n)}}{{\log n}} < \frac{1}{2}, $

则有$ {\dim _H}G(\psi ) = 1. $特别地, 对任意的$ \alpha > 0 $, $ {\dim _H}\left\{ {x \in \left( {0, 1} \right):\mathop {\lim }\limits_{n \to \infty } \frac{{{S_n}\left( x \right)}}{{n{{\log }^2}n}} = \alpha } \right\} = 1. $

2 预备知识

对任意的$ n\geq 1 $和正整数$ d_1, d_2, \ldots, d_n $(其中$ d_i \geq 2, 1\leq i\leq n $), 集合

$ I(d_1, d_2, \ldots, d_n) = \{x\in [0, 1): d_i(x) = d_i, 1\leq i\leq n\} $

称为一个$ n $阶柱集. $ I(d_1, d_2, \ldots, d_n) $是一个区间, 长度为$ |I(d_1, d_2, \ldots, d_n)| = \prod \limits_{i = 1}^n\frac{1}{d_i(d_i-1)} $.

下文将用到Borel-Cantelli引理的收敛部分. 设$ \left\{ {{A_n}, n \ge 1} \right\} $是一列事件, $ P $是一个概率测度. 若$ \sum \limits_{n \geq 1} P\left( {{A_n}} \right) < \infty , $$ P\{A_n \text{无穷多次发生}\} = 0 $, 其中

$ \{A_n \text{无穷多次发生}\} = \bigcap \limits_{k = 1}^\infty \bigcup \limits_{n = k}^\infty {A_n}. $

命题2.1[6]  设$ E \subset \mathbb{R}^n $, 若映射$ f:E \to \mathbb{R}^m $满足$ \alpha $阶-Hölder条件, 即

$ \left| {f\left( x \right) - f\left( y \right)} \right| \le c|x - y{|^\alpha } \ \left( {x, y \in E} \right), $

则有$ \dim_H f(E) \le \frac{1}{\alpha }{\rm{di}}{{\rm{m}}_H}E. $

3 定理1.1的证明

这一节我们先介绍三个引理, 再给出定理1.1的证明.

引理3.1  设$ \phi: \mathbb{N} \to (1, \infty ) $是一个正值函数且$ \lim\limits_{n \to \infty } \phi (n) = \infty $. 对任意的$ n \ge 1 $, 令

$ A_n = \{ x \in (0, 1):{d_1}(x){d_2}(x) \ge \phi (n)\} , $

其中$ {d_1}(x), {d_2}(x) $分别是$ x $的Lüroth展式的第一和第二个字符. 则我们有

$ \lambda ({A_n}) = \frac{{{\rm{log}}\phi \left( n \right)}+O(1)}{{\phi \left( n \right)}}. $

  因为对任意的$ x\in (0, 1) $$ i\geq 1 $, 都有$ {d_i}(x) \ge 2 $, 所以不妨设$ \phi \left( n \right)\geq 4 $. 因为

$ \begin{aligned} {A_n} & = \left\{ {x \in (0, 1):{d_1}(x){d_2}\left( x \right) \ge \phi \left( n \right)} \right\} = B_1\cup B_2, \end{aligned} $

其中

$ B_1 = \{ {x \in (0, 1):{d_1}\left( x \right) \ge \frac{\phi(n)}{2}} \}, B_2 = \{ x \in (0, 1):{d_1}\left( x \right) < \frac{\phi(n)}{2}, {d_1}(x){d_2}\left( x \right) \ge \phi \left( n \right)\}, $

所以$ \lambda \left( {{A_n}} \right) = \lambda \left( {{B_1}} \right) + \lambda \left( {{B_2}} \right) $. 此外,

$ \begin{equation} \lambda \left( {{B_1}} \right) = \mathop \sum \limits_{k = \left\lceil {\phi(n)/2} \right\rceil }^{ + \infty } \lambda \left\{ {x \in (0, 1):{d_1}\left( x \right) = k} \right\} = \mathop \sum \limits_{k = \left\lceil {\phi(n)/2} \right\rceil }^{ + \infty } \frac{1}{{k\left( {k - 1} \right)}} = \frac{{O(1)}}{{\phi (n)}}. \end{equation} $ (3.1)
$ \begin{aligned} \lambda \left( {{B_2}} \right) & = \mathop \sum \limits_{k = 2}^{\left\lceil {\phi(n)/2} \right\rceil - 1} \lambda \left\{ {x \in (0, 1):{d_1}\left( x \right) = k} \right\}\lambda \left\{ {x \in (0, 1):{d_2}\left( x \right) \ge \frac{{\phi \left( n \right)}}{k}} \right\}\\ & = \mathop \sum \limits_{k = 2}^{\left\lceil {\phi(n)/2} \right\rceil - 1} \frac{1}{{k\left( {k - 1} \right)}}\frac{1}{{\left\lceil {\frac{{\phi \left( n \right)}}{k}} \right\rceil - 1}}, \end{aligned} $

这里记号$ \left\lceil \xi \right\rceil $表示不小于$ \xi $的最小整数. 接下来继续估计$ \lambda \left( {{B_2}} \right) $. 一方面,

$ \lambda \left( {{B_2}} \right) \ge \mathop \sum \limits_{k = 2}^{\left\lceil {\phi \left( n \right)}/2 \right\rceil - 1} \frac{1}{{k\left( {k - 1} \right)}}\frac{1}{{\frac{{\phi \left( n \right)}}{k}}} \ge \frac{{\log \phi \left( n \right) + O(1)}}{{\phi \left( n \right)}}. $

另一方面,

$ \lambda \left( {{B_2}} \right) \le \frac{1}{{\phi \left( n \right) - 1}}\mathop \sum \limits_{k = 2}^{\lceil \phi(n)/2\rceil -1} \left( {\frac{1}{k-1} + \frac{1}{{\phi \left( n \right) - k}}} \right) \le \frac{{\log \phi \left( n \right) + O(1)}}{{\phi \left( n \right)}}. $

所以

$ \begin{equation} \lambda \left( {{B_2}} \right) = \frac{{\log \phi \left( n \right) + O(1)}}{{\phi \left( n \right)}}. \end{equation} $ (3.2)

由关系式(3.1), (3.2)知该引理成立.

对任意无理数$ x\in (0, 1) $$ i\geq 1 $, 令$ {b_i}\left( x \right) = {d_i}\left( x \right){d_{i + 1}}\left( x \right) $. 对任给$ \varepsilon > 0 $和正整数$ N \ge 1 $, 令$ \varphi \left( N \right) = \left\lfloor {{\rm{ \mathsf{ ε} }}N{\rm{lo}}{{\rm{g}}^2}N} \right\rfloor+ 1 $. 对任意$ 1 \le i \le N $, 令

$ b_i^*\left( x \right) = \left\{ \begin{aligned} &{b_i}\left( x \right), \;{b_i}\left( x \right) \le \varphi \left( N \right), \\ &0, \quad \quad \texttt{其它}, \end{aligned} \right. $

其中记号$ \left\lfloor \eta \right\rfloor $表示不大于$ \eta $的最大整数. 令$ S_N^*\left( x \right) = \mathop \sum \limits_{i = 1}^N b_i^*\left( x \right) $. 下面分别给出对$ S_N^*\left( x \right) $的期望和方差的估计.

引理3.2  $ \lim \limits_{N \to \infty } \frac{\mathbb{E}\left( {S_N^*\left( x \right)} \right)}{{N{\rm{lo}}{{\rm{g}}^2}N}} = \frac{1}{2}, $其中$ \mathbb{E} $表示数学期望.

  先计算$ S_N^*\left( x \right) $的数学期望. 因为$ \mathbb{E}\left( {S_N^*\left( x \right)} \right) = N\mathbb{E}\left( {b_1^*\left( x \right)} \right) $, 而

$ \begin{aligned} & \mathbb{E}\left( {b_1^*\left( x \right)} \right) = \mathop \sum \limits_{4\leq k\leq \varphi \left( N \right)} k \cdot \lambda \left\{ {x:{b_1}\left( x \right) = k} \right\}\\ = & \sum\limits_{4\leq k\leq \varphi \left( N \right)} {k \cdot \left( {\lambda \left\{ {x:{b_1}\left( x \right) \ge k} \right\} - \lambda \left\{ {x:{b_1}\left( x \right) \ge k + 1} \right\}} \right)} \\ = & 3\lambda \left\{ {x:{b_1}\left( x \right) \ge 4} \right\} + \mathop \sum \limits_{4 \le k \le \varphi \left( N \right)} \lambda \left\{ {x:{b_1}\left( x \right) \ge k} \right\} - \varphi \left( N \right) \cdot \lambda \left\{ {x:{b_1}\left( x \right) \ge \varphi \left( N \right) + 1} \right\}. \end{aligned} $

由引理3.1  有$ \mathbb{E}\left( {{b_1}^*\left( x \right)} \right) = \frac{1}{2}{\rm{lo}}{{\rm{g}}^2}\varphi \left( N \right)\left( {1 + o\left( 1 \right)} \right) $. 又因为$ \mathbb{E}\left( {S_N^*\left( x \right)} \right) = N\mathbb{E}\left( {b_1^*\left( x \right)} \right) $$ \varphi \left( N \right) = \left\lfloor {\varepsilon N{{\log }^2 N}} \right\rfloor $, 所以$ \mathop {\lim }\limits_{N \to \infty } \frac{{\mathbb{E}({S_N}^*\left( x \right))}}{N{\log }^2 N} = \frac{1}{2} $. 该引理得证.

引理3.3  $ {\rm{Var}}\left( {S_N^*\left( x \right)} \right) \ll N\varphi \left( N \right){\rm{log}}\varphi \left( N \right) $, 其中$ \rm{Var}( \cdot ) $表示方差, 记号$ a \ll b $表示存在常数$ c $使得$ a < cb $.

  我们先估计$ {S_N^*}^2\left( x \right) $的期望.

$ \begin{equation*} \begin{aligned} &\mathbb{E}\left( {S_N^{{*^2}}\left( x \right)} \right) = \mathop \sum \limits_{1 \le i, j \le N} \mathbb{E}\left( {b_i^*\left( x \right)b_j^*\left( x \right)} \right)\\ = & \mathop \sum \limits_{1 \le i = j \le N} \mathbb{E}\left( {b_i^*\left( x \right)b_j^*\left( x \right)} \right) + \mathop \sum \limits_{{1 \le i, j \le N} \atop {\left| {i - j} \right| = 1}} \mathbb{E}\left( {b_i^*\left( x \right)b_j^*\left( x \right)} \right) + \mathop \sum \limits_{{1 \le i, j \le N} \atop {\left| {i - j} \right| \ge 2}} \mathbb{E}\left( {b_i^*\left( x \right)b_j^*\left( x \right)} \right). \end{aligned} \end{equation*} $

$ i = j $时, 有

$ \begin{equation*} \begin{aligned} & \mathbb{E}\left( {b_i^*\left( x \right)b_j^*\left( x \right)} \right) = \mathbb{E}\left( {{b{{_i^*}}^2}\left( x \right)} \right) = \mathbb{E}\left( {b{{_1^*}^2}\left( x \right)} \right)\\ = & \mathop \sum \limits_{4 \le k \le \varphi \left( N \right)} {k^2} \cdot \lambda \left\{ {x:{b_i}\left( x \right) = k} \right\} \ll \varphi \left( N \right)\log \varphi \left( N \right). \end{aligned} \end{equation*} $

$ \left| {i - j} \right| = 1 $时, 不妨设$ j = i + 1 $, 则有

$ \begin{equation*} \begin{aligned} & \mathbb{E}\left( {b_i^*\left( x \right)b_j^*\left( x \right)} \right) = \mathbb{E}\left( {b_i^*\left( x \right)b_{i + 1}^*\left( x \right)} \right) = \mathop \sum \limits_{4 \le s, t \le \varphi \left( N \right)} st\lambda \left\{ {x:{b_i}\left( x \right) = s, \;{b_{i + 1}}\left( x \right) = t} \right\}\\ = & \mathop \sum \limits_{4 \le s, t \le \varphi \left( N \right)} st\lambda \left\{ {x:{d_1}\left( x \right){d_2}\left( x \right) = s, \;{d_2}\left( x \right){d_3}\left( x \right) = t} \right\}\\ = & \mathop \sum \limits_{2 \le k \le \frac{\varphi (N)}{2}} \mathop \sum \limits_{2 \le m \le \frac{{\varphi \left( N \right)}}{k}} \mathop \sum \limits_{2 \le n \le \frac{{\varphi \left( N \right)}}{k}} {k^2}mn\lambda \left\{ {x:{d_2}\left( x \right) = k, {d_1}\left( x \right) = m, {d_3}\left( x \right) = n} \right\}\\ \ll & \mathop \sum \limits_{2 \le k \le \frac{\varphi (N)}{2}} {\left( {1 + \log \varphi \left( N \right) - \log k} \right)^2} \ll \varphi \left( N \right). \end{aligned} \end{equation*} $

$ \left| {i - j} \right| \ge 2 $时, 有

$ \begin{equation*} \begin{aligned} & \mathbb{E}\left( {b_i^*\left( x \right)b_j^*\left( x \right)} \right) = \mathop \sum \limits_{4 \le m, n \le \varphi \left( N \right)} mn\lambda \left\{ {x:{b_i}\left( x \right) = m, {b_j}\left( x \right) = n} \right\}\\ = & \mathop \sum \limits_{4 \le m, n \le \varphi \left( N \right)} mn\lambda \left\{ {x:{b_1}\left( x \right) = m} \right\} \cdot \lambda \left\{ {x:{b_1}\left( x \right) = n} \right\} = { \mathbb{E}^2}\left( {b_1^*\left( x \right)} \right). \end{aligned} \end{equation*} $

由上面三种情况的估计, $ \mathbb{E}\left( {S_N^{{*^2}}\left( x \right)} \right) \ll N\varphi \left( N \right)\log \varphi \left( N \right) + N\varphi \left( N \right) + { \mathbb{E}^2}\left( {S_N^*\left( x \right)} \right). $所以$ \rm{Var}\left( {S_N^*\left( x \right)} \right) \ll N\varphi \left( N \right){\rm{log}}\varphi \left( N \right) $. 该引理得证.

定理1.1的证明  由引理3.2 和引理3.3 可知, 当$ N $充分大时, 有

$ \begin{equation*} \begin{aligned} & \lambda \left\{ {x \in \left( {0, 1} \right):\left| {S_N^*\left( x \right) - \frac{1}{2}N\log ^2N}\right| > \varepsilon N\log ^2N} \right\}\\ \le & \lambda \left\{ {x \in \left( {0, 1} \right):\left| {S_N^*\left( x \right) - \mathbb{E}\left( {S_N^*\left( x \right)} \right)} \right| > \frac{\varepsilon }{2}N\log ^2N} \right\}\\ \le & \frac{{{\rm{Var}}\left( {S_N^*\left( x \right)} \right)}}{{{{\left( {\frac{\varepsilon }{2}N\log ^2N} \right)}^2}}} \ll \frac{N\varphi \left( N \right)\log\varphi \left( N \right)}{\left( \frac{\varepsilon }{2} \right)^2N^2\log ^4N} \ll \frac{1}{\varepsilon \log N}. \end{aligned} \end{equation*} $

$ S_N^*(x) $定义知, 对任意的$ x \in \left( {0, 1} \right) $, 如果对所有的$ 1 \le i \le N $都有$ b_i(x) \le \varphi(N) $, 则$ {S_N}\left( x \right) = S_N^*\left( x \right) $. 因此

$ \begin{aligned} &\left\{ {x \in \left( {0, 1} \right):\left| {\frac{{{S_N}\left( x \right)}}{{N{\rm{lo}}{{\rm{g}}^{\rm{2}}}N}} - \frac{1}{{\rm{2}}}} \right| > \varepsilon } \right\}\\ \subset & \left\{ {x \in \left( {0, 1} \right):\left| {S_N^*\left( x \right) - \frac{1}{{\rm{2}}}N\log ^2N} \right| > \frac{\varepsilon }{2}N\log ^2N} \right\}\cup\bigcup\limits_{i = 1}^{N}\left\{ {x \in \left( {0, 1} \right):{b_i}\left( x \right) \ge \varphi(N)+1 }\right\}. \end{aligned} $

从而

$ \begin{equation*} \begin{aligned} & \lambda \left\{ {x \in \left( {0, 1} \right):\left| {\frac{{{S_N}\left( x \right)}}{{N\log ^2N}} - \frac{1}{{\rm{2}}}} \right| > \varepsilon } \right\}\\ \ll & \frac{1}{\varepsilon \log N} + \sum \limits_{1 \le i \le N} \lambda \left\{ x \in \left( {0, 1} \right):b_i(x) \ge \varphi(N)+1 \right\}. \end{aligned} \end{equation*} $

由引理3.1 可知,

$ \sum \limits_{1 \le i \le N} \lambda\left\{ x \in (0, 1):b_i(x) \ge \varphi(N)+1 \right\} \ll \frac{1}{\varepsilon \log N}. $

由此$ \lambda \{ x \in(0, 1):\left| \frac{S_N(x)}{N\log^2N} - \frac{1}{2} \right| > \varepsilon\} \ll \frac{1}{\varepsilon\log N}\to 0\;\left( {N \to \infty } \right). $定理得证.

4 定理1.2的证明

本节将先介绍四个引理, 之后再给出定理1.2的证明, 其中集合

$ G\left( \psi \right) = \left\{ {x \in \left( {0, 1} \right):\mathop {\lim }\limits_{n \to \infty } \frac{{{S_n}\left( x \right)}}{{\psi \left( n \right)}} = 1} \right\}. $

引理4.1  对任意正整数$ M \ge 3 $, 令

$ F\left( M \right): = \left\{ {x \in \left( {0, 1} \right):{d_i}\left( x \right) \le M, \;i \ge 1} \right\}. $

(1) $ {\dim _H}F\left( M \right) = {s_M} $, 其中$ s_M $是方程$ \mathop \sum \limits_{j = 2}^M \frac{1}{{{j^s}{{\left( {j - 1} \right)}^s}}} = 1 $的唯一解.

(2) $ \mathop {\lim }\limits_{M \to \infty } {s_M} = 1. $

  (1) 对任意$ 2 \le j \le M $, 令

$ {f_{j - 1}}\left( x \right) = \frac{1}{j} + \frac{1}{{j\left( {j - 1} \right)}}x, \ x \in \left( {0, 1} \right). $

$ F\left( M \right) $是迭代函数系$ {\left\{ {{f_{j - 1}}} \right\}_{2 \le j \le M}} $的吸引子. 从而$ F\left( M \right) $是压缩比为$ r_j = \frac{1}{{j\left( {j - 1} \right)}} $ $ \left( {2 \le j \le M} \right) $的自相似集, 所以$ {\dim _H}F\left( M \right) $是方程$ \mathop \sum \limits_{j = 2}^M \frac{1}{{{r_j}^s}} = 1 $的唯一解.

(2) 由$ {s_M} $的定义可知, $ {s_M} $关于$ M $是单调递增的. 一方面, 对任意的$ M \ge 3 $, 有$ {s_M} < 1 $. 另一方面, 对任意的$ s < 1 $, 有$ \mathop \sum \limits_{j = 2}^{ + \infty } \frac{1}{{{j^s}{{\left( {j - 1} \right)}^s}}} > \mathop \sum \limits_{j = 2}^{ + \infty } \frac{1}{{j\left( {j - 1} \right)}} = 1, $从而存在整数$ {M_0} = {M_0}\left( s \right) $, 使得$ \mathop \sum \limits_{j = 2}^{{M_0}} \frac{1}{{{j^s}{{\left( {j - 1} \right)}^s}}} \ge 1 $, 因此$ {s_{{M_0}}} \ge s $. 从而对任意$ M \ge {M_0} $, 有$ {s_M} \ge {s_{{M_0}}} \ge s $. 所以$ \mathop {\lim }\limits_{M \to \infty } {s_M} = 1 $, 即此引理得证.

取定常数$ 0 < \tau < \frac{1}{2} $, 使条件$ \mathop {\lim \sup }\limits_{n \to \infty } \frac{{\log \log \psi \left( n \right)}}{{\log n}} < \frac{1}{2} - \tau $成立. 另取$ 0 < \delta < 1 $使得不等式$ \left( {1 + \frac{1}{{1 - \delta }}} \right)\left( {\frac{1}{2} - \tau } \right) < 1 $成立. 对任意$ k \ge 1 $, 令$ {\varepsilon _k} = {k^{ - \delta }} $. 下面归纳定义自然数的子序列$ \{n_k\} $. 设$ {n_1} \ge 3 $是使得$ \log \psi \left( n \right) < {n^{\frac{1}{2} - \tau }} $对所有$ n \ge {n_1} $都成立的最小正整数. 对任意$ k \ge 2 $, 令$ {n_k} $是满足条件$ {n_k} \ge {n_{k - 1}} + 4 $$ \psi \left( {{n_k}} \right) \ge \left( {1 + {\varepsilon _{k - 1}}} \right)\psi \left( {{n_{k - 1}}} \right) $的最小正整数.

定义

$ G\left( {\psi , M} \right): = \left\{ \begin{array}{l} x \in \left( {0, 1} \right):{d_{{n_1}}}\left( x \right) = \left\lfloor {\frac{1}{4}\left( {1 + {\varepsilon _1}} \right)\psi \left( {{n_1}} \right)} \right\rfloor + 1, \;\\ \quad \;\;\, {d_{{n_{k + 1}}}}\left( x \right) = \left\lfloor {\frac{1}{4}\left(( {1 + {\varepsilon _{k + 1}}} )\psi \left( {{n_{k + 1}}} \right) - \left( {1 + {\varepsilon _k}} \right)\psi \left( {{n_k}} \right)\right)} \right\rfloor + 1\left( {k \ge 1} \right), \\ \quad \;\, \;{d_{{n_k} - 1}}\left( x \right) = {d_{{n_k} + 1}}\left( x \right) = 2\left( {k \ge 1} \right), \;\\ \quad \, \, \;2 \le {d_i}\left( x \right) \le M,i\not \in { \cup _{k \ge 1}}\{ {n_k},{n_k} - 1,{n_k} + 1\}. \end{array} \right\} $

下证集合$ G\left( {\psi , M} \right) $是集合$ G\left( \psi \right) $的子集.

引理4.2  $ G\left( {\psi , M} \right) \subset G\left( \psi \right). $

  任取$ x \in G\left( {\psi , M} \right) $. 对充分大的$ n $, 存在$ k\geq 1 $使得$ {n_k} \le n < {n_{k + 1}} $. 一方面,

$ {S_n}\left( x \right) \ge {S_{{n_{_k}}}}\left( x \right) \ge \left( {1 + {\varepsilon _k}} \right)\psi \left( {{n_k}} \right). $

另一方面,

$ \begin{aligned} {S_n}\left( x \right) \le & {S_{{n_{_{k + 1}}}}}\left( x \right) \le \left( {{n_{k + 1}} - 2k} \right){M^2} + \sum\limits_{i = 1}^{k + 1} {\left( {{d_{{n_i} - 1}}(x){d_{{n_i}}}(x) + {d_{{n_i}}}(x){d_{{n_i} + 1}}(x)} \right)} \\ \le &\left( {{n_{k + 1}} - 2k} \right){M^2} + \left( {1 + {\varepsilon _{k + 1}}} \right)\psi \left( {{n_{k + 1}}} \right) + 4\left( {k + 1} \right). \end{aligned} $

所以

$ \begin{equation} \left( {1 + {\varepsilon _k}} \right)\psi \left( {{n_k}} \right) \le {S_n}\left( x \right) \le \left( {{n_{k + 1}} - 2k} \right){M^2} + \left( {1 + {\varepsilon _{k + 1}}} \right)\psi \left( {{n_{k + 1}}} \right) + 4\left( {k + 1} \right). \end{equation} $ (4.1)

$ n_k(k\ge2) $定义, 不等式$ \psi \left( {{n_k} - 1} \right) < \left( {1 + {\varepsilon _{k - 1}}} \right)\psi \left( {{n_{k - 1}}} \right) $, $ \psi \left( {{n_k} - 4} \right) < \left( {1 + {\varepsilon _{k - 1}}} \right)\psi \left( {{n_{k - 1}}} \right) $中总有一个是成立的. 又因为$ \mathop {\lim }\limits_{n \to \infty } \frac{{\psi \left( {n + 1} \right)}}{{\psi \left( n \right)}} = 1 $, 所以

$ \begin{equation} \mathop {\lim }\limits_{n \to \infty } \frac{{\psi \left( {{n_k}} \right)}}{{\psi \left( {{n_{k - 1}}} \right)}} = 1. \end{equation} $ (4.2)

再结合(4.1), (4.2), $ \mathop {\lim }\limits_{n \to \infty } \frac{n}{{\psi \left( n \right)}} = 0 $以及

$ \frac{{{S_n}\left( x \right)}}{{\psi \left( {{n_{k + 1}}} \right)}} \le \frac{{{S_n}\left( x \right)}}{{\psi \left( n \right)}} \le \frac{{{S_n}\left( x \right)}}{{\psi \left( {{n_k}} \right)}}, $

可知$ \mathop {\lim }\limits_{n \to \infty } \frac{{{S_n}\left( x \right)}}{{\psi \left( n \right)}} = 1. $$ x \in G\left( \psi \right) $. 因此$ G\left( {\psi , M} \right) \subset G\left( \psi \right). $该引理得证.

$ n \ge 1 $, 令$ r\left( n \right) = \sharp \left\{ {k:{n_k}\leq n} \right\}. $由集合$ G\left( {\psi , M} \right) $的定义可知, 给定$ k \ge 1 $, 对任意的$ x \in G\left( {\psi , M} \right) $, $ {d_{{n_k}}}\left( x \right) $的值都是相等的. 为了简化记号, 记$ {d_{{n_k}}}\left( x \right) $$ {d_{{n_k}}} $.

引理4.3  数列$ \left\{ {{n_k}} \right\} $$ \left\{ {{d_k}} \right\} $的定义如前所述. 则

$ \mathop {\lim }\limits_{n \to \infty } \frac{{r\left( n \right)}}{n} = \mathop {\lim }\limits_{n \to \infty } \frac{{\log \left( {{d_{{n_1}}}{d_{{n_{_2}}}} \cdots {d_{{n_{r\left( n \right)}}}}} \right)}}{n} = 0. $

  由[7]中关系式(10)(12)可知, 如果$ \psi \left( {{n_k}} \right) \ge \left( {1 + {\varepsilon _{k - 1}}} \right)\psi \left( {{n_{k - 1}}} \right) $, 那么$ r(n) \ll {n^\frac{{\frac{1}{2} - \tau }}{{1 - \delta }}}. $从而由$ \frac{{\frac{1}{2} - \tau }}{{1 - \delta }} < 1 $可知$ \mathop {\lim }\limits_{n \to \infty } \frac{{r\left( n \right)}}{n} = 0. $此外,

$ \begin{aligned} \log \left( {{d_{{n_1}}}{d_{{n_2}}} \cdots {d_{{n_{r\left( n \right)}}}}} \right) & \ll \sum \limits_{i = 1}^{r(n)}\log\left((1 + \varepsilon _i)\psi (n_i)\right)\\ & \ll r\left( n \right)\log\psi \left( n \right) + \left( {{\varepsilon _1} + \cdots + {\varepsilon _{r\left( n \right)}}} \right)\\ & \ll r\left( n \right) \cdot {n^{\frac{1}{2} - \tau }} + r{\left( n \right)^{1 - \delta }}. \end{aligned} $

所以$ \mathop {\lim }\limits_{n \to \infty } \frac{{\log \left( {{d_{{n_1}}}{d_{{n_2}}} \cdots {d_{{n_{r\left( n \right)}}}}} \right)}}{n} = 0 $. 引理得证.

$ \Lambda = \bigcup\limits_{k \ge 1} {\left\{ {{n_k} - 1, {n_k}, {n_k} + 1} \right\}}. $定义映射$ f:G\left( {\psi , M} \right) \to F\left( M \right) $如下,

$ f(x) = \sum \limits_{{i \ge 1} \atop {i \notin \Lambda }} \frac{1}{d_i(x)}\prod\limits_{{1\le k<i} \atop {k \notin \Lambda }} \frac{1}{d_k(x)(d_{k}(x)-1)}, $

$ f(x) $的Lüroth展式的字符依次为$ d_1(x), \cdots, $$ d_{n_1-2}(x), d_{n_1+2}(x), \cdots, $$ d_{n_2-2}(x), d_{n_2+2}(x), $ $ \cdots. $因此$ f(G(\psi , M)) = F(M) $.

引理4.4  对任意$ \varepsilon > 0 $, 映射$ f $满足$ \frac{1}{{1 + \varepsilon }} $阶-Hölder条件.

  任取$ x, y \in G\left( {\psi , M} \right) $且距离充分小, 则存在$ n \ge 0 $, 使得当$ 1 \le i \le n $时, $ {d_i}\left( x \right) = {d_i}\left( y \right) $; 但$ {d_{n + 1}}\left( x \right) \ne {d_{n + 1}}\left( y \right) $. 从而$ n + 1 \notin \Lambda $并且$ 2 \le {d_{n + 1}}\left( x \right), \;{d_{n + 1}}\left( y \right) \le M $. 一方面, $ I\left( {{d_1}\left( x \right), \cdots , {d_n}\left( x \right), {d_{n + 1}}\left( x \right), M + 1} \right) $$ I\left( {{d_1}\left( y \right), \cdots , {d_n}\left( y \right), {d_{n + 1}}\left( y \right), M + 1} \right) $一定落在$ x $$ y $之间的空隙里. 从而

$ \left| {x - y} \right| \ge \min \left\{ {\left| {I\left( {{d_1}\left( x \right), \cdots , {d_{n + 1}}\left( x \right), M + 1} \right)} \right|, \left| {I\left( {{d_1}\left( y \right), \cdots , {d_{n + 1}}\left( y \right), M + 1} \right)} \right|\;} \right\}. $

由[8]中引理4.1知, 存在某个常数$ c_M $使得

$ \left| {I\left( {{d_1}\left( x \right), \cdots , {d_{n + 1}}\left( x \right), M + 1} \right)} \right| \ge {c_M}\left| {I\left( {{d_1}\left( x \right), \cdots , {d_n}\left( x \right)} \right)} \right| $

$ \begin{aligned} \left| {I\left( {{d_1}\left( y \right), \cdots , {d_{n + 1}}\left( y \right), M + 1} \right)} \right| & \ge {c_M}\left| {I\left( {{d_1}\left( y \right), \cdots , {d_n}\left( y \right)} \right)} \right|\\ & = {c_M}\left| {I\left( {{d_1}\left( x \right), \cdots , {d_n}\left( x \right)} \right)} \right|. \end{aligned} $

所以$ \left| {x - y} \right| \ge {c_M}\left| {I\left( {{d_1}\left( x \right), \cdots , {d_n}\left( x \right)} \right)} \right|. $$ f $的定义知, $ f(I\left( {{d_1}\left( x \right), \ldots , {d_n}\left( x \right)} \right) $$ n-3r(n) $阶柱集, 记作$ I\left( {{b_1}, \cdots , {b_{n - 3r\left( n \right)}}} \right) $. 从而

$ \begin{aligned} &\left| {x - y} \right| \ge {c_M}\left| {I\left( {{d_1}\left( x \right), \cdots , {d_n}\left( x \right)} \right)} \right|\\ = & {c_M}|I({b_1}, \cdots , {b_{n - 3r(n)}})|\mathop \prod \limits_{i = 1}^{r(n)} \prod\limits_{k = 0}^2\left(d_{n_i-1+k}(x)(d_{n_i-1+k}(x)-1)\right)^{-1}\\ = & {c_M}{2^{ - 2r(n)}}|I({b_1}, \cdots , {b_{n - 3r\left( n \right)}})| \prod\limits_{i = 1}^{r(n)}\left(d_{n_i}(x)(d_{n_i}(x)-1)\right)^{-1}. \end{aligned} $

由引理4.3可知, 如果$ n \ge {n_0} $, 则

$ \left| {x - y} \right| \ge {c_M}{\left| {I({b_1}, \cdots , {b_{n - 3r\left( n \right)}})} \right|^{1 + \varepsilon }} \ge {c_M}{\left| {f(x) - f(y)} \right|^{1 + \varepsilon }}, $

其中$ {n_0} $是跟$ M $$ \varepsilon $有关的整数. 从而引理得证.

定理1.2的证明  由引理4.1知$ {\dim _H}F(M) = {s_M} $, 且$ \lim \limits_{M\to \infty} s_M = 1 $. 由引理4.2和引理4.3知,

$ {\dim _H}G(\psi ) \ge {\dim _H}G(\psi , M) \ge \frac{1}{{1 + \varepsilon }}{\dim _H}F(M). $

所以$ {\dim _H}G(\psi ) \ge \frac{1}{{1 + \varepsilon }}{s_M} $. 令$ \varepsilon \to 0, M \to \infty $, 则定理结论得证.

参考文献
[1] Lüroth J. Ueber eine eindeutige entwichelung von zahlen in eine unendliche reihe[J]. Math. Ann, 1883, 21(3): 411–423. DOI:10.1007/BF01443883
[2] Galambos J. Representations of real numbers by infinite series[M]. Berlin: Springer-Verlag, 1976.
[3] Shen Luming. Hausdorff dimension of the set concerning with Borel-Bernstein theory in Lüroth expansions[J]. J. Korean Math. Soc, 2017, 54(4): 1301–1316.
[4] Tan Bo, Zhou Qinglong. Approximation properties of Lüroth expansions[J]. Discrete Contin. Dyn. Syst, 2021, 41(6): 2873–2890.
[5] Tan Bo, Zhou Qinglong. Dimension theory of the product of partial quotients in Lüroth expansions[J]. Int. J. Number Theory, 2012, 17(5): 1139–1154.
[6] Falconer K J. Fractal geometry-mathematical foundations and applications[M]. Chichester: John Wiley and Sons, 1990.
[7] Wu Jun, Xu Jian. On the distribution for sums of partial quotients in continued fraction expansions[J]. Nonlinearity, 2011, 24(4): 1177–1187. DOI:10.1088/0951-7715/24/4/009
[8] Hu Hui, Yu Yueli. On Schmidt's game and the set of points with non-dense orbits under a class of expanding maps[J]. J. Math. Anal. Appl, 2014, 418(2): 906–920.