本文研究以下具有多项式非线性项和粘性项的非线性抛物方程的初边值问题
其中$ g:\mathbb{R}^{+}\to {\mathbb{R}}^+ $是有界的$ C^1 $函数, $ u_{0}{\in}H_0^1({\Omega}), \ T{\in}(0, +{\infty}], \ {\Omega}{\subset}{\mathbb{R}}^n(n{\geq}1) $是具有光滑边界$ {\partial}{\Omega} $的有界区域.
材料学和力学中对粘弹性的应用非常广泛, 其中粘弹性依赖于温度和外力作用的时间. 所谓的粘弹性是指任何物体对其本身的形变历史都具有一个长期的记忆[1]. 特别的, 当研究具有记忆材料的热传导时, 经典的Fourier定律被以下形式所取代
其中$ q $与单位长度的温差成正比, $ u $是温度, $ d $是热传导系数, 积分项表示材料中的记忆效应, $ q $不是线性地依赖于$ u $. 对于这类问题的研究引起了广泛的关注, 本文将研究该类问题$ (1.1) $的解的存在性和爆破性. 当方程$ (1.1) $中的$ g = 0 $时, 方程如下
可以描述诸多化学反应、热传导过程和种群动力学. 针对这类问题在解的存在性方面可以参考文献[2-5]. 关于解的爆破性方面也得到了广泛的研究, 可参考文献[6-12].
当方程$ (1.1) $中的$ g\neq 0 $时, 可以描述电流变流体的扩散和记忆材料中的热传导(见文献[13, 14]). 由于粘弹性项的影响, 问题变得更加复杂, 为了解决相关问题, 需要对$ g $进行精确的估计和细致的观察. 近年来, 也有不少相关的研究. 在$ g $和$ p $满足合适的条件下, Messaoudi[15, 16]给出了方程的强解在有限时刻内爆破的证明. 之后, Tian[17]在此基础上建立了一个新的爆破准则, 利用微分不等式技巧给出了解的爆破时间的上界. Di等[18]和Sun等[19]研究了含有$ {\Delta}u_{t} $项的非线性拟抛物方程解的存在性和爆破性问题. 还有一些相关的研究, 可以参考文献[20-22]. 本文假设以下条件
条件A $ g:\mathbb{R}^{+}\to {\mathbb{R}}^+ $是有界的$ C^1 $函数, 满足
条件B 常数$ p $满足
定义1.1 (弱解)对任意$ v\in H_0^1(\Omega), t\in (0, T) $, 函数$ u(x, t) $满足$ u(x, t)\in L^{\infty}(0, +\infty; H_0^1(\Omega)) $, $ u_{t}(x, t)\in L^{2}(0, +\infty; H_0^1(\Omega)) $及以下方程
则称$ u = u(x, t) $是方程$ (1.1) $的弱解, 其中$ u(x, 0) = u_0(x)\in H_0^1(\Omega) $, $ (\cdot, \cdot)_2 $表示内积$ (\cdot, \cdot)_{L^2(\Omega)} $.
定义1.2 (最大存在时间)设$ u(x, t) $为方程$ (1.1) $的弱解. 我们定义$ u(x, t) $的最大存在时间$ T $如下:
$ (1) $若对任意$ 0\leq t<+\infty, u(x, t) $都存在, 则$ T = +\infty $.
$ (2) $若存在$ t_0\in(0, +\infty) $使得当$ 0\leq t<t_0 $时, $ u(x, t) $存在, 但在$ t = t_0 $处$ u(x, t) $不存在, 则$ T = t_0 $.
定义1.3 (有限时刻爆破)设$ u(x, t) $为方程$ (1.1) $的弱解. 如果$ u(x, t) $的最大存在时间$ T $是有限的, 且满足
则称$ u(x, t) $在有限时刻爆破.
为了说明本文的主要结果, 需要引入以下修正的能量泛函
则有
本文的主要结果如下.
定理1.1 若条件A、B成立, $ u_0\in H_0^1(\Omega), J(u_0)<d $且$ I(u_0)\geq 0 $. 则方程$ (1.1) $存在全局弱解$ u = u(x, t)\in L^{\infty}(0, +\infty;H_0^1(\Omega)), u_{t}(x, t )\in L^{2}(0, +\infty;H_0^1(\Omega)) $.
定理1.2 若条件A、B成立, $ u_0\in H_0^1(\Omega), J(u_0)<E_1, \int_0^{+\infty}{g(s)ds}<\frac{\varepsilon_0}{2p+\varepsilon_0}. $则方程$ (1.1) $的弱解将在有限时刻爆破, 并且有
这里$ E_1>0 $见$ (3.3) $式, $ 0<\varepsilon_0<p-2, $常数$ K $满足$ {\rm{supp}}(u_0)\subset B_{K}(0), $常数$ 0<\nu<1, $ $ A_0>0 $见$ (3.14) $式.
注1.1 在$ g $和$ p $具有相似但不同的限制条件下, Messaoudi[15, 16]证明了具有正、负或消失的初始能量时(初始能量都满足$ J(u_0)<E_0, E_0>0 $) 该方程的解在有限时刻爆破. 在定理1.2中, 我们将这一能量范围进行了扩大, 得到一个新的更大的能量范围$ E_1, $即$ E_0<E_1, $具体证明见$ (3.5) $式.
注1.2 在定理1.2的条件下, 可以得出$ I(u_0)<0 $, 与定理1.1不存在冲突.
本文结构如下: 在第2节中, 利用位势井理论和Galerkin方法给出定理1.1的证明. 在第3节中, 给出相关引理和定理1.2的证明.
为了证明方程解的存在性, 需要定义
显然有$ d>0 $. 从而, 定义
接下来给出能量恒等式.
引理2.1
这里$ J(u(t)) = J(u), $见$ (1.3) $式. 事实上, 由于$ u = u(x, t) $是$ x, t $的函数, 由$ (1.3) $式可知, $ J(u) $是$ t $的函数, 为了突出这一点, 故用记号$ J(u(t)). $后文会用到类似的其他记号.
证明 结合(1.3)式, 定义
利用(1.2)式, 可得
上式两端在$ [0, t] $上进行积分, 可得
从而引理2.1得证.
现在, 给出方程解的存在性的证明.
证明定理1.1 在$ J(u_0)<d $, $ I(u_0)\geq 0 $时, 不难得到$ J(u_0)\geq 0 $. 考虑若$ J(u_0) = 0 $且$ I(u_0)\geq 0, $则$ u_0 = 0 $, 这是一个平凡解. 若$ J(u_0)>0 $, $ I(u_0) = 0 $, 则有$ \int_\Omega |\nabla u_0|^2dx\neq0 $, 进而$ J(u_0)\geq d, $这与$ J(u_0)<d $相矛盾. 所以我们只需考虑$ 0<J(u_0)<d $, $ I(u_0)>0 $的情况.
下面利用Galerkin方法构造问题(1.1) 的近似解$ u_m(x, t) $. 我们选择$ \{\omega_j(x)\} $作为$ H_0^1(\Omega) $上的一组正交基, 令
且对于$ k = 1, 2, \cdots, m $, 满足
同时, 当$ m $足够大, 且$ t\in [0, T) $时($ T $是$ u_m(x, t) $的最大存在时间), 能量恒等式如下
现在证明对于足够大的$ m $和任意的$ 0\leq t<T $, 有$ u_m(x, t)\in W $. 假设该命题不成立, 则存在$ t_0\in (0, T) $使得$ u_m(x, t_0)\in \partial W $, 从而
结合(2.4)式, 可知$ J(u_m(t_0)) = d $不成立. 又若$ I(u_m(t_0)) = 0, \;\Vert \nabla u_m(t_0)\Vert_{L^2(\Omega)}\neq 0 $, 根据$ d $的定义, 有$ J(u_m(t_0))\geq d $, 这与$ (2.4) $式相矛盾. 从而可得, 对足够大的$ m $和任意的$ 0\leq t<T $, 有$ u_m(x, t)\in W $. 进而, 以$ u_m(x, T) $为初始能量, 重复上述讨论, 则对于足够大的$ m $和任意的$ 0\leq t<+\infty $, 都有$ u_m(x, t)\in W $.
根据
可知
由(2.4)式可以得到
另一方面, 通过计算可得如下结果
这里$ C_{*} $是Sobolev空间$ H_0^1(\Omega) \hookrightarrow L^{p}(\Omega) $的最佳嵌入常数.
这里用$ \mathop{\longrightarrow}\limits_{ }^{w^*} $表示弱星收敛. 根据(2.5)-(2.7)式, 存在一个子序列$ \{u_m\} $和$ u $使得, 当$ m\longrightarrow\infty $, 有
因此, 在(2.2) 式中, 当$ k $固定, $ m\longrightarrow +\infty $时, 有
进而对任意$ v\in H_0^1(\Omega) $, 有
同时, 从(2.3)式中, 可以得到$ u(x, 0) = u_0(x) \in H_0^1(\Omega) $. 因此, $ u $是问题(1.1)的全局弱解. 定理1.1证毕.
在证明解的爆破性之前, 先介绍一个必需的引理. 已知能量函数(见$ (2.1) $式)
这里$ B = C_{*}/l $ ($ C_{*} $是Sobolev空间$ H_0^1(\Omega) \hookrightarrow L^{p}(\Omega) $的最佳嵌入常数),
且$ G(\lambda) $在$ 0<\lambda<\lambda_0 $时单调递增, 在$ \lambda>\lambda_0 $时单调递减, 在$ \lambda_0 = (B^{p})^{-\frac{1}{p-2}} $处取得最大值, 最大值为$ G_{max} = (\frac{1}{2}-\frac{1}{p})B^{\frac{-2p}{p-2}} = (1-\frac{2}{p})\omega_0 $, 其中$ \omega_0 = \frac{1}{2}\lambda_0^2 $. 令$ E_0 = (\frac{1}{2}-\frac{1}{p})B^{\frac{-2p}{p-2}} = (1-\frac{2}{p})\omega_0. $有
设$ u(x, t) $是问题(1.1)的弱解, 令
引理3.1 设$ u(x, t) $是方程$ (1.1) $的弱解. 若$ J(u_0)<{E}_1 $, 则对任意的$ t\in[0, T) $, 都有$ \omega_2>0, \lambda(t)>\lambda_0, E(t)<{E}_1, E_0<E_1 $.
证明 由引理2.1和$ (3.2) $式可知, 对$ \forall t\in [0, T) $
于是有
由Sobolev嵌入定理, 可得
因此, 可以得到
再结合$ (3.3) $式, 可以得到
引理3.1得证.
接下来给出方程解的爆破性的证明及爆破时间的上界.
证明定理1.2 由$ J(u_0)<{E}_1 $, 定义$ H(t) = E_2-E(t), $其中$ E_2\in([J(u_0)]^{+}, {E}_1) $且$ E_2>0 $, 则有
由$ E_2 $的定义, 可以得出$ {E}_1-E(t)>H(t). $又由$ -E(t)\leq\frac{1}{p}\Vert u\Vert_{L^{p}(\Omega)}^{p}, $可推断
所以
结合$ \omega_2>0, 0<E_2<{E}_1, $取足够小的$ \varepsilon_0>0 $, 使得
这意味着$ \varepsilon_0< p-2. $接下来, 定义加权函数
其中$ M(t) = \frac{1}{2}\Vert u\Vert_{L^{2}(\Omega)}^2 $, 常数$ 0<A<1 $, 并且常数$ K $满足$ {\rm{supp}}(u_0)\subset B_{K}(0) $. 根据方程$ (1.1) $和柯西不等式可知
利用$ (3.1) $式和$ (3.7) $式, 不等式右边加上一项$ -(p-\varepsilon_0)E(t)+(p-\varepsilon_0)E(t) $, 可得
通过$ (3.8) $式和$ (3.9) $式, 可以得到
这里$ \gamma>0 $. 根据$ \omega_2 $和$ {E}_1 $的定义, 则$ (3.6) $式变形为如下形式
现在, 选定$ \gamma = \frac{\varepsilon_0}{2p} $, 可以得到
因此
其中$ \mu = \min\big\{2+\frac{\varepsilon_0}{2p}, \frac{1}{2}+\frac{\varepsilon_0}{4p}, \frac{3\varepsilon_0}{4p}\big\}>0 $, 且有$ \mathcal{K}(0)\geq K^{A}H^{1-\alpha}(0)+\frac{1}{2}\Vert u_0\Vert_{L^{2}(\Omega)}^2>0. $从而有$ \mathcal{K}(t)\geq\mathcal{K}(0)>0, \forall\; t\geq 0. $另一方面, 可以得到
这里$ c_2 = (2H(0))^{\frac{2}{p(1-\alpha)}-1}, c_3 = c_1c_2 $, 并且选取合适的$ \alpha $使得$ \frac{2}{1-\alpha}\leq p $.
再根据$ (3.8) $和$ (3.11) $式, 有
其中$ c_4 = \max\big\{2^{\frac{1}{1-\alpha}}, c_32^{\frac{1}{1-\alpha}}\big\} $, $ A_1 = \max\{A, \frac{n(p-2)}{p}\big\} $. 结合$ (3.10) $式和$ (3.12) $式, 进而有
其中$ c_5 = \frac{\mu}{c_4} $. 缩小$ \alpha $的范围, 使得$ 0<\alpha<1-A_1 $. 令$ 1+\beta = \frac{1}{1-\alpha} $, 对$ (3.13) $式在$ (0, t) $上进行积分, 可以得到$ \mathcal{K}^{-\beta}(t)-\mathcal{K}^{-\beta}(0)\leq -c_5\beta\int_0^{t}(K+s)^{-A_1(1+\beta)}ds, $最后变形得到
即$ t^\nu\leq K^\nu+A_0, $其中
定理1.2证毕.