Let $ x: M^{2}\rightarrow S^{2+p} $ be a $ 2- $dimensional submanifold in the $ (2+p)- $dimensional unit sphere $ S^{2+p} $ without umbilic points. Let $ \{e_{i}\} $ be a local orthonormal basis for the first fundamental form $ I = d x \cdot d x $ with dual basis $ \{\theta_{i}\} $. Let $ I I = \sum\limits_{i, j, \alpha} h_{i j}^{\alpha} \theta_{i} \theta_{j} e_{\alpha} $ be the Moebius second fundamental form and $ H = \sum\limits_{\alpha} H^{\alpha} e_{\alpha} $ be the mean curvature vector of $ x $, where $ \{e_{\alpha}\} $ is a local orthonormal basis for the normal bundle of $ x $. Define positive function $ \rho^{2} = 2(\sum\limits_{\alpha, i, j}\left(h_{i j}^{\alpha}\right)^{2}-2\|H\|^{2}) $, the g$ = \rho^{2}I $ is Moebius metric and is a Moebius invariant, the normalized scalar curvature of g will be denoted by $ R $ and is called the normalized Moebius scalar curvature. Three basic Moebius invariants of $ x $, Moebius form $ \Phi = \sum\limits_{i, \alpha} C_{i}^{\alpha} \theta_{i} e_{\alpha} $, Blaschke tensor $ A = \rho^{2} \sum\limits_{i, j} A_{i j} \theta_{i} \theta_{j} $ and the Moebius second fundamental form $ B = \rho^{2}\sum\limits_{i, j}B_{ij}\theta_{i}\theta_{j} $, are defined by$ ([1]) $
where $ Hess_{ij} $ and $ \nabla $ are the Hessian-matrix and the gradient with respect to the induced metric $ I = d x \cdot d x $. Let $ \nabla^{\bot} $ be normal connection, and the $ H^{\alpha}_{, i} $ is defined by $ \nabla^{\bot}H = H^{\alpha}_{, i}\theta_{i}e_{\alpha} $. Moreover, we introduce the trace-free Blaschke tensor
$ \|\widetilde{A}\| = 0 $ if and only if $ A $ is isotropic tensor.
Hu and Li studied the dimension of submanifold is $ m\geq3 $, the Moebius form $ \Phi = 0 $, and the constant scalar curvature. In this paper, we proved the dimension of submanifold is $ m = 2 $, the Moebius form $ \Phi = 0 $, and $ \operatorname{Det}A = c(const)>0 $, we get the following theorem.
Theorem 1.1 Let $ x: M^{2}\rightarrow S^{2+p} $ be a $ 2- $dimensional compact submanifold in the $ (2+p)- $dimensional unit sphere $ S^{2+p} $ with vanishing Moebius form $ \Phi $ and $ 0<\operatorname{Det}A = c(const)<\frac{1}{64} $, then
In particular, if $ \operatorname{tr}A\geq\frac{1}{4} $, then either
and $ x(M^{2}) $ is Moebius equivalent to a minimal submanifold with constant curvature in $ S^{2+p} $; or
and $ x(M^{2}) $ is Moebius equivalent to $ S^{1}(r)\times S^{1}(\sqrt{\frac{1}{1+c^{2}}-r^{2}}) $ in $ S^{3}(\frac{1}{\sqrt{1+c^{2}}}) $, where $ r^{2} = \frac{2-\sqrt{1-64c}}{4(1+c^{2})} $.
In this section, we give the Moebius invariants and review its structural equations for surfaces in $ S^{2+p} $, for details we refer to[2].
Let $ R_{1}^{4+p} $ be the Lorentzian space with inner product
where $ x = \left(x_{0}, x_{1}, \cdots, x_{3+p}\right) $, and $ y = \left(y_{0}, y_{1}, \cdots, y_{3+p}\right) $. Let $ x:M^{2}\rightarrow S^{2+p} $ be an umbilic-free surface immersed in $ S^{2+p} $. We define the Moebius position vector $ Y: M^{2} \rightarrow R_{1}^{4+p} $ of $ x $ by
Then we have the following.
Theorem 2.1(see[2]) Two submanifolds $ x $, $ \widehat{x} $ : $ M \rightarrow S^{n} $ are Moebius equivalent if and only if there exists T in the Lorentz group $ O(n+1, 1) $ in $ R^{4+p}_{1} $ such that $ Y = \widehat{Y} T $.
From Theorem 2.1, we know that the 2-form
is a Moebius invariant(see[1]). Let $ \Delta $ be the Laplace operator with respect to g. Then we have $ \langle\Delta Y, \Delta Y\rangle = 1+4 K, $ where $ K $ is the sectional curvature of g ([1]). By defining
then we have([1])
Let $ \left\{E_{1}, E_{2}\right\} $ be a local orthonormal basis for $ (M^{2}, \rm{g}) $ with dual basis $ \left\{\omega_{1}, \omega_{2}\right\} $, write $ Y_{i} = E_{i}(Y) $, then
Let $ V $ be the orthogonal complement of $ \operatorname{span}\left\{Y, N, Y_{1}, Y_{2}\right\} $ in $ R_{1}^{4+p} $. Then we have the orthogonal decomposition
Let $ \{E_{\alpha}\} $ be an orthonormal basis of $ V $, where
Then $ \left\{Y, N, Y_{1}, Y_{2}, E_{3}, \cdots, E_{2+p}\right\} $ forms a moving frame in $ R_{1}^{4+p} $ along $ M^{2} $. The structure equations are given by
where the coefficients $ \omega_{ij} $ belong to the connection form of the Moebius metric g, and we have the symmetries $ A_{ij} = A_{ji}, \, B_{ij} = B_{ji} $. It is clear that
are Moebius invariants, and
Define the covariant derivatives of $ A $, $ B $ and $ \Phi $ by ([1])
The integrability conditions for the structure equations $ (2.10)-(2.14) $ are given by ([1])
where $ R_{1212} $ and $ R_{\alpha\beta 12} $ denote the sectional curvature of g and the normal curvature of the normal connection. Set $ K = R_{1212} $. The second covariant derivative of $ A_{ij} $ and $ B_{ij}^{\alpha} $ are defined by ([1])
Let $ x: M^{2}\rightarrow S^{2+p} $ be a submanifold in $ S^{2+p} $ without umbilic points, the Moebius metric is $ \rm{g} = \rho^{2}dx\cdot dx $, and so the canonical lift of $ x $ is given by $ Y = \rho(k, x)([1]) $. Then along with $ M^{2} $, we can choose a moving frame $ \left\{Y, N, Y_{1}, Y_{2}, E_{3}, \cdots, E_{2+p}\right\} $ in $ R_{1}^{4+p} $, and we replace $ E_{\alpha} $ in $ (2.9) $ by $ E_{\alpha} = \left(H^{\alpha} k, e_{\alpha}+H^{\alpha} x\right) $. For the Moebius invariants $ A $, $ B $ and $ \Phi $ appearing in the structure equation $ (2.11)-(2.14) $, by calculation, we can get the expression $ (1.1) $ for $ \Phi $, $ (1.3) $ for $ B $ and $ (1.2) $ should be changed to([3])
Lemma 3.1 For any positive constants $ k>a>0 $, the torus $ x_{a, k}: M_{a, k} = S^{1}(a) \times S^{1}(b) \rightarrow S^{3}(k) $, $ a^{2}+b^{2} = k^{2} $, choose unit frame field $ \{e_{1}\} $ and $ \{e_{2}\} $ in $ S^{1}(a) $ and $ S^{1}(b) $ respectively, the Moebius invariants components of the torus are as follows:
Proof We write $ R^{4} = R^{2}\times R^{2} $ and let $ x_{1}:S^{1}\rightarrow R^{2} $ and $ x_{2}:S^{1}\rightarrow R^{2} $ be standard embeddings of the unit sphere, then $ x = a(x_{1}, 0)+b(0, x_{2}) $. The unit normal vector of $ M_{a, k} = S^{1}(a) \times S^{1}(b) $ in $ S^{3}(k) $ is given by $ e_{3} = \frac{b}{k}\left(x_{1}, 0\right)-\frac{a}{k}\left(0, x_{2}\right) $; the second fundamental form of $ M_{a, k} $ is given by $ I I = -d x d e_{3} = \frac{ab}{k}\left(-d x_{1} \cdot d x_{1}+d x_{2}\cdot d x_{2}\right) $; the Euclidean induced metric of $ M^{2} $ is given by $ I = a^{2} d x_{1} \cdot d x_{1}+b^{2} d x_{2}\cdot d x_{2} $. Choose an orthonormal frame $ \{e_{1}, e_{2}\} $ on $ TM^{2} $ with dual frame $ \{\theta_{1}, \theta_{2}\} $ such that $ d(ax_{1}) = \theta_{1}e_{1} $ and $ d(bx_{2}) = \theta_{2}e_{2}, $ then we have
From $ (3.7) $ we see that
The Moebius metric g is given by
and
From $ (3.1), (3.8), (3.9) $ and $ (3.10) $, we have
where
Then we have
from $ \operatorname{tr}A = \frac{1}{4}(1+4K) $, thus
So the conclusion holds.
Now, we suppose that $ \Phi = 0, $ $ K = 0 $ and $ \operatorname{tr}A = \frac{1}{4}>0 $, then we have
From $ (1.4) $, we see $ \tilde{A}_{i j} = A_{i j}-\frac{1}{2} \operatorname{t r} A \delta_{i j}, $ and define
then we have
Choose a basis $ \{E_{i}\} $ such that $ (A_{ij}) $ is diagonalized, i.e.,
Proposition 3.2 Let $ x: M^{2}\rightarrow S^{2+p} $ be a compact submanifold in the unit sphere $ S^{2+p} $ with vanishing Moebius form $ \Phi $, $ \|\nabla A\|^{2} = \sum\limits_{i, j, k}A^{2}_{ij, k} $, we have the following equation
Proof
then
From $ \Phi = 0 $, we obtain
Lemma 3.3 Let $ x: M^{2}\rightarrow S^{2+p} $ be a compact submanifold in the unit sphere $ S^{2+p} $ with vanishing Moebius form $ \Phi $, we have
where equality holds if and only if $ B^{\alpha} = \lambda_{\alpha}\widetilde{A} (\widetilde{A}\neq0) $.
Proof Let $ L:C^{\infty}(M)\rightarrow C^{\infty}(M) $ be $ L $ operator([5]), and $ L(f) $ is defined by $ L(f): = (A_{ij}-\operatorname{tr}A\delta_{ij})f_{, ij} $, from$ (3.18) $ we have
thus, $ L^{2} $ self-adjointness, i.e., $ (\rm{g}, L(f)) = (f, L(\rm{g})) $. In particular, $ (L(f), 1) = 0, $ i.e., $ \int_{M} L(f) = 0 $. Then
Integrating both sides of the above equation, according to the properties of $ \Delta $ and L, we get
From Cauchy-Schwarz Inequality, we see
where the equality holds in $ (3.39) $ if and only if $ B^{\alpha} = \lambda_{\alpha}\widetilde{A} (\widetilde{A}\neq0) $. It is clear that $ \|A\|^{2}-2\operatorname{Det}A = 2\|\widetilde{A}\|^{2} $. Thus, we have
Lemma 3.4 Let $ x: M^{2}\rightarrow S^{2+p} $ be a compact submanifold in the unit sphere $ S^{2+p} $ with vanishing Moebius form $ \Phi $, $ \operatorname{Det}A = c>0 $, we have
where equality holds if and only if $ \nabla A = 0 $.
i.e.,
Take the derivative of the left hand side of the equation, we have
Take the derivative of the right hand side of the equation, we have
thus
Square both ends of the above equation, we have
On the left hand side, we use the Cauchy-Schwarz inequality to get
taking $ (3.47) $ in $ (3.46) $, we have
where the equality holds if and only if $ \nabla A = 0 $.
From the above lemma, we can get the following theorem:
Lemma 3.5 Let $ x: M^{2}\rightarrow S^{2+p} $ be a compact submanifold in the unit sphere $ S^{2+p} $ with vanishing Moebius form $ \Phi $, $ \operatorname{Det}A = c(const)>0 $, we have the following inequality
In particular, when $ \operatorname{tr}A\geq\frac{1}{4} $, then either $ \widetilde{A} = 0 $ or $ \operatorname{tr}A = \frac{1}{4} $, and we have $ B^{\alpha} = \lambda_{\alpha}\widetilde{A}, \, \, \nabla A = 0. $
Theorem 4.1 Let $ x: M^{2}\rightarrow S^{2+p} $ be a $ 2- $dimensional compact submanifold in the $ (2+p)- $dimensional unit sphere $ S^{2+p} $ with vanishing Moebius form $ \Phi $, and $ 0<\operatorname{Det}A = c(const)<\frac{1}{64} $, then
and $ x(M^{2}) $ is Moebius equivalent to $ S^{1}(r)\times S^{1}(\sqrt{\frac{1}{1+c^{2}}-r^{2}}) $ in $ S^{3}(\frac{1}{\sqrt{1+c^{2}}}) $, where $ r^{2} = \frac{4+\sqrt{1-64c}}{8} $.
Lemma 4.2 Let $ x: M^{2}\rightarrow S^{2+p} $ be a $ 2- $dimensional compact submanifold in the $ (2+p)- $dimensional unit sphere $ S^{2+p} $ with vanishing Moebius form $ \Phi $, if $ \|\widetilde{A}\|\neq0, \operatorname{tr}A = \frac{1}{4} $ and $ 0<\operatorname{Det}A = c(const)<\frac{1}{64} $, then the $ x(M^{2}) $ is Moebius equivalent to $ S^{1}(r)\times S^{1}(\sqrt{\frac{1}{1+c^{2}}-r^{2}}) $ in $ S^{3}(\frac{1}{\sqrt{1+c^{2}}}) $, where $ r^{2} = \frac{2-\sqrt{1-64c}}{4(1+c^{2})} $.
Proof From $ \operatorname{tr}A = \frac{1}{4}, \, \, \operatorname{Det}A = c $, we have
Which implies
then we get
From Lemma 3.5, we have
i.e,
by use of $ (2.18) $, we see
We claim that we can choose the normal frame field $ \{E_{\alpha}\} $, such that
In fact, we can choose a new orthonormal frame $ \{\bar{e}_{\alpha}\} $ in the normal bundle $ N(M^{2}) $ such that $ \bar{e}_{3} = \frac{\sum\limits_{\alpha}\lambda_{\alpha}e_{\alpha}}{\sqrt{\sum\limits_{\alpha}\lambda_{\alpha}^{2}}} $, and then define a new orthonormal frame $ \{\bar{E}_{\alpha}\} $ in the Moebius normal bundle by $ \bar{E}_{\alpha} = \left(\bar{H}_{\alpha}, \bar{H}^{\alpha} x+\bar{e}_{\alpha}\right) $, where $ \sum\limits_{\alpha} H^{\alpha} e_{\alpha} = \sum\limits_{\alpha} \bar{H}^{\alpha} \bar{e}_{\alpha} = H $ is the mean curvature vector of $ M^{2} $, then $ \bar{E}_{3} = \frac{\sum\limits_{\alpha} \lambda_{\alpha} E_{\alpha}}{\sqrt{\sum\limits_{\beta} \lambda_{\beta}^{2}}} $ and with respect to $ {\bar{E}_{\alpha}} $. If $ \{e_{\alpha}\} $, $ \{\bar{e}_{\alpha}\} $ are two orthonormal frames in the normal bundle with $ e_{\alpha} = \sum\limits \sigma_{\alpha \beta} \bar{e}_{\beta} $, where $ (\sigma_{\alpha\beta}) $ is an orthogonal matrix, then we have $ E_{\alpha} = \sum\limits_{\beta} \sigma_{\alpha \beta} \bar{E}_{\beta} $. From $ B_{i j}^{\alpha} = \rho^{-1}\left(h_{i j}^{\alpha}-H^{\alpha} \delta_{i j}\right) $, when $ \alpha\geq4 $, we have
that means that $ \operatorname{span}\left\{e_{4}, e_{5}, \cdots, e_{2+p}\right\} $ is totally umbilical in the normal bundle $ N(M^{2}) $. From $ (4.10) $ we have
where $ \theta_{\alpha\beta} $ is the Euclidean normal connection of $ N(M^{2})([1]) $.
From $ (2.18) $, we have $ B^{3}_{11}+B^{3}_{22} = 0, \frac{1}{2} = (B^{3}_{11})^{2}+(B^{3}_{22})^{2}, $ which implies
From $ (2.19) $ and $ \nabla A = 0 $, we have
thus, we have
Hence, by [1, Theorem 1] and $ (4.11), (4.12) $, we can conclude that $ x(M^{2}) $ is located in some sphere $ S^{3}(\frac{1}{\sqrt{1+c^{2}}}) $ which are totally umbilical submanifold of $ S^{n} $.
Since a Riemannian universal coverage is locally equidistant and not general, we can assume that $ M^{2} $ is simply connected. From above, $ TM^{2} $ has the following decomposition $ TM^{2} = V_{1}\oplus V_{2}, $ where $ V_{1} $ and $ V_{2} $ are the 1-dimensional eigenspace of the Blaschke tensor $ A $ with eigenvalues $ a_{1} $ and $ a_{2} $.
Form (4.17), we can get that the eigenspaces $ V_{1} $ and $ V_{2} $ are both integrable. We can write $ M = M_{1}\times M_{2} $, where $ M_{1} $ and $ M_{2} $ are both $ 1- $dimensional submanifold. We can define $ \rm{g}_{1} = \omega_{1}^{2} $ and $ \rm{g}_{2} = \omega_{2}^{2} $, then we have
From $ (2.12) $ and $ (4.16) $, we have
Since $ M^{2} $ is compact submanifold, $ M_{1} $ and $ M_{2} $ are also compact submanifold.
Then we consider $ \bar{x}:S^{1}(r_{1})\times S^{1}(r_{2})\rightarrow S^{3}(\frac{1}{\sqrt{1+c^{2}}}) $ being a torus, where $ r_{1}^{2} = \frac{2-\sqrt{1-64c}}{4(1+c^{2})}, \, \, r_{2}^{2} = \frac{2+\sqrt{1-64c}}{4(1+c^{2})} $. Let $ \widetilde{x}:M^{2}\rightarrow S^{3}(\frac{1}{\sqrt{1+c^{2}}}) $, from $ (3.13), (3.15), (4.5), (4.13) $, $ \widetilde{x} $ and $ \bar{x} $ have the same Moebius shape. From the proof of Lemma 3.1 we see that the Moebius metric $ \bar{\rm{g}} $ of $ \bar{x} $ is given by $ \bar{\rm{g}} = \bar{\rho}^{2}d\bar{x}\cdot d\bar{x} = \bar{\rm{g}}_{1}+\bar{\rm{g}}_{2} $, where for $ \bar{x} = r_{1}\overline{(x_{1}, 0)}+r_{2}\overline{(0, x_{2})}, $
From $ (4.21)-(4.23) $, we have a $ 1- $dimensional manifold with the same curvature as $ (S^{1}(r_{1}), \bar{\rm{g}}_{1}) $ and $ (M_{1}, \rm{g}_{1}) $, $ (s^{1}(r_{2}), \bar{\rm{g}}_{2}) $ and $ (M_{2}, \rm{g}_{2}) $ are also $ 1- $dimensional manifolds with the same curvature. Thus there exist isometries $ \psi_{1}:(M_{1}, \rm{g}_{1})\rightarrow (S^{1}(r_{1}), \bar{\rm{g}}_{1}) $ and $ \psi_{2}:(M_{2}, \rm{g}_{2})\rightarrow (S^{1}(r_{2}), \bar{\rm{g}}_{2}) $, let $ \psi = (\psi_{1}, \psi_{2}) $, then $ \psi:M^{2}\rightarrow S^{1}(r_{1})\times S^{1}(r_{2}) $ holds the Moebius metric and the Moebius shape operator. $ (M^{2}, \rm{g}) $ and $ (S^{1}(r_{1})\times S^{1}(r_{2}), \bar{\rm{g}}) $ have the same Moebius metric, Moebius second fundamental form, Moebius shape operator, Blaschke tensor, so the $ x(M^{2}) $ is Moebius equivalent to $ S^{1}(r)\times S^{1}(\sqrt{\frac{1}{1+c^{2}}-r^{2}}) $ in $ S^{3}(\frac{1}{\sqrt{1+c^{2}}}) $, where $ r^{2} = \frac{2-\sqrt{1-64c}}{4(1+c^{2})} $.
This completes the proof of the main theorem.