设$ \Omega\subset R^N $是具有光滑边界的有界区域, 本文主要研究$ \Omega $上具有变系数非局部高阶Kirchhoff方程的渐近行为:
其中$ \Gamma $为$ \Omega $的光滑边界, $ v $是边界$ \Gamma $上的外法向量, $ m>1 $, $ a(x), b(x) $为关于空间变量$ x $的变系数函数, $ f(x) $是外力项, $ g(x, u) $是满足一定增长条件和耗散条件的关于未知函数$ u $的非线性源项.
一般而言, 整体吸引子是一个具有不变性的非空紧集, 并且能够吸引任何有界集. 对于耗散动力系统, 整体吸引子是解释系统解的长时间动力学的核心概念, 对于自治动力系统, 通常用整体吸引子来刻画其渐近行为.
吸引子包含了系统几乎所有的长时间信息, 因此关于吸引子存在性及结构的研究对整个系统的长时间演变过程有着非常重要的意义. Kirchhoff方程作为一重要的数学物理方程, 研究其吸引子就显得相当重要, 近年来, 得到了许多有关Kirchhoff型方程的长时间动力学行为, I.Chueshov[1]研究了带非线性强阻尼Kirchhoff方程$ u_{tt}-\sigma(\|\nabla u\|^2)\Delta u_t-\phi(\|\nabla u\|^2)\Delta u+f(u) = h(x) $的长时间动力行为. Guoguang Lin, Penghui Lv和Ruijin Lou[2]研究了具阻尼项的广义非线性Kirchhoff-Boussinesq方程的整体动力学, 研究得到了该类方程的整体吸引子和指数吸引子.更多有关低阶波动方程或Kirchhoff方程的研究可见文献[3-5].
随着研究的深入, 学者开始研究高阶波动方程的长时间动力学行为. Salim A. Messaoudia, Belkacem Said Houari[6]研究了具有Dirichlet边界条件的多维高阶Kirchhoff方程, 估计了在正初始能量下解爆破. 林国广, 李卓茜[7]研究了一类非线性非局部且具强阻尼项的高阶Kirchhoff方程的初边值问题, 得到了该类高阶方程的整体解的存在唯一性, 并且得到了该类Kirchhoff方程的整体吸引子族, 且整体吸引子族具有有限的Hausdorff维数和Fractal维数. Fucai Li[8]研究了有界域上具有非线性耗散的高阶Kirchhoff型方程
其中$ m>1, q, p, r>0 $. 当$ p\le r $时, 得到方程的整体解, 同时当$ p>\max\{r, 2q\} $时, 对于所有具负初始能量的初始数据, 解在$ L^{p+2} $范数下将有限时间内爆破.详细的关于更多高阶Kirchhoff方程的相关研究可见文献[9-11].
目前带变系数的高阶Kirchhoff方程的渐近行为见文较少.本文在得到问题(1.1)的渐近行为时, 主要的问题是如何处理变系数, 在变系数情况下如何得到渐近紧性.本文运用合理的假设和莱布尼兹公式克服了变系数带来的困难, 进而得到有界吸收集和渐近紧性.
本文第2部分介绍有关概念和动力系统的相关定义及理论; 第3部分得到问题的先验估计和整体解; 第4部分得到问题(1.1)的整体吸引子族.
本节主要给出动力系统和整体吸引子(族)的相关理论.
首先引进本文需用到的相关记号:
定义$ H = L^2(\Omega) $上的内积和范数分别为$ (\cdot, \cdot) $和$ \|\cdot\| $, $ L^p = L^p(\Omega), \|\cdot\|_p = \|\cdot\|_{L^p} $, 其中$ p\ge1 $. 现令
其相应的内积和范数分别为
同时, 有一般形式的Poincare不等式: $ \lambda_1\|\nabla^ru\|^2\le\|\nabla^{r+1}u\|^2 $, 其中$ \lambda_1 $是$ -\Delta $的第一特征值.文中$ C_i $为正常数, $ C(\cdot) $表示依赖于括号内参数的正常数, $ C^n_m $为对应的组合数.
定义 2.1[7] 设$ X $是完备度量空间, $ S(t):X\to X, t\in R^+ $是连续算子, 若对任意$ s, t\in R^+, S(t) $满足$ S(0) = I, S(t+s) = S(t)S(t) $.则称$ \{S(t)\}_{t\ge0} $是$ X $上的算子半群, 称$ (S(t), X) $构成连续动力系统, $ X $称为该动力系统的相空间.
定义 2.2(整体吸引子)[11] 设$ X $是Banach空间, $ \{S(t)\}_{t\ge0} $为连续的算子半群, 如果紧集$ A_0\subset X $满足:
(1) 不变性 在半群$ \{S(t)\}_{t\ge0} $作用下为不变集, 即$ S(t)A_0 = A_0(\forall t\ge0) $;
(2) 吸引性 $ A_0 $吸引$ X $中一切有界集, 即$ \forall B\subset X $为$ X $中的有界集, 有
特别地, 当$ t\to\infty $时, 从$ u_0 $出发的一切轨道$ S(t)u_0 $收敛于$ A_0 $内, 即有dist$ (S(t)u_0, A_0)\to0(t\to\infty) $, 则称紧集$ A_0 $为半群$ \{S(t)\}_{t\ge0} $的整体吸引子.
引理 2.3[7] 设$ X $是Banach空间, 连续的算子半群$ \{S(t)\}_{t\ge0} $满足
(1) 半群$ \{S(t)\}_{t\ge0} $在$ X $中一致有界, 即$ \forall R>0 $存在正常数$ C(R) $使得$ \|u\|_X\le R $, 有
(2) 存在$ X $中有界吸收集$ B_0 $, 则任意一个有界集$ B\subset X $, 存在一个时刻$ t_0 $, 使得
(3) 对$ t>0, S(t) $是全连续算子;
则半群$ \{S(t)\}_{t\ge0} $具有紧的整体吸引子$ A_0 $.
定义 2.4 (整体吸引子族) 设$ X_k, k = 1, 2, \cdots, m $, 是Banach空间, $ \{S(t)\}_{t\ge0} $为连续的算子半群, 如果紧集$ A_k\subset X_k $满足
(1) 不变性 在半群$ \{S(t)\}_{t\ge0} $作用下为不变集, 即$ S(t)A_k = A_k(\forall t\ge0) $;
(2) 吸引性 $ A_k $吸引$ X_k $中一切有界集, 即$ \forall B_k\subset X_k $为$ X_k $中的有界集, 有
特别地, 当$ t\to\infty $时, 从$ u_0 $出发的一切轨道$ S(t)u_0 $收敛于$ A_k $内, 即有dist$ (S(t)u_0, A_k)\to0(t\to\infty) $, 则称紧集$ A_k $为半群$ \{S(t)\}_{t\ge0} $的整体吸引子族.
引理 2.5 设$ X_k, k = 1, 2, \cdots, m $, 是Banach空间, 连续的算子半群$ \{S(t)\}_{t\ge0} $满足
(1) 半群$ \{S(t)\}_{t\ge0} $在$ X_k $中一致有界, 即$ \forall R>0 $存在正常数$ C_k(R_k) $使得$ \|u\|_{X_k}\le R_k $, 有
(2) 存在$ X_k $中有界吸收集$ B_{0k} $, 则任意一个有界集$ B\subset X_k $, 存在一个时刻$ t_{0k} $, 使得
则半群$ \{S(t)\}_{t\ge0} $具有紧的整体吸引子族$ A_k $.
首先给出问题(1.1)的假设条件:
$ (H) $变系数$ a(x), b(x), a(x) = c(x)\cdot b(x) $, 满足$ a\in C_0^{\infty}(\Omega), a(x)\ge a_{00}>0, \frac{\partial^ia}{\partial^iv}|_{\Gamma} = 0, a_0 = \|a(x)\|_{\infty} $, $ b\in C_0^{\infty}(\Omega), b(x)\ge b_{00}>0, \frac{\partial^ib}{\partial^iv}|_{\Gamma} = 0, b_0 = \|b(x)\|_{\infty} $, $ c\in C_0^{\infty}(\Omega), c(x)\ge c_{00}>0, \frac{\partial^ic}{\partial^iv}|_{\Gamma} = 0, c_0 = \|c(x)\|_{\infty}, c_i = \|\nabla^ic(x)\|_{\infty} $, 且$ \mu(x) = b(x)^{-1}\ge \mu_{00}>0, \mu\in C_0^{\infty}(\Omega), \mu_i = \|\nabla^i\mu(x)\|_{\infty} $;
$ (M)M\in C^1(R^+) $, 且$ 0<M_0\le M(s)\le M_1, \forall s\in R^+, x\in\Omega, k = 0, 1, \cdots, m $, 非线性项$ g(x, u) $满足下列条件: 存在正常数$ \beta_1, \beta_2, \beta_3, \beta_4, \beta_5>0 $, 对$ \forall u\in R, x\in\Omega $, 满足
当$ N = 1, 2 $时, $ 1\le p<+\infty $, 当$ N = 3, 4 $时, $ 1\le p<\frac N{N-2} $, 其中$ G(x, u) = \int^u_0g(x, s)\mathrm{d}s $.由方程(3.1)和(3.2)可得
定义相空间$ X_k = V_{m+k}\times V_k, k = 0, 1, \cdots, m $, 当$ k = 0 $时, $ V_0 = L^2 $, 则定义范数为$ \|(u, v)\|_{X_k}^2 = \|u\|_{V_{m+k}}^2+\|v\|_{V_k}^2 $.
设$ \varepsilon>0 $足够小, 且$ c_{00} $及$ \varepsilon $满足
引理 3.1 设$ (H) $成立, $ M $满足$ (M) $, $ f\in H $, (3.1)–(3.5)成立, $ (u_0, u_1)\in X_0 $, 由问题(1.1)确定的$ (u, v) $满足
其中$ v = u_t+\varepsilon u $.且存在一个正常数$ R_0 $和$ t_0>0 $, 使得
证 将$ v $与方程组(1.1)在$ L^2(\Omega) $中作内积, 得
分别处理(3.9)中各项:
当$ \frac{\mathrm{d}}{\mathrm{d}t}\|\nabla^{m}u\|^2+2\varepsilon\|\nabla^{m}u\|^2\ge0 $时,
当$ \frac{\mathrm{d}}{\mathrm{d}t}\|\nabla^{m}u\|^2+2\varepsilon\|\nabla^{m}u\|^2<0 $时,
又有
又根据内插不等式, 得
则
将(3.10)–(3.19)代入(3.9), 得到
根据(3.2), 得
由$ (c(x)\nabla^mu, \nabla^mu)\le\|c(x)\|_{\infty}\|\nabla^mu\|^2, 2(c(x)\nabla^mv, \nabla^mv)\le2c_{0}\|\nabla^mv\|^2 $, (3.7), (3.21), 可得适当小的$ \sigma_1 = \frac{\varepsilon}2 $, 则
由Gronwall不等式, (3.22)可得
由$ (\mu(x)v, v)\le\mu_{0}\|v\|^2 $, (3.3), 则
并且
因此, 存在一个正常数$ R_0 $和$ t_0>0 $, 使得
引理3.1证毕.
引理 3.2 设$ (H) $成立, $ M $满足$ (M) $, $ f\in V_k $, (3.1)-(3.5)成立, $ (u_0, u_1)\in X_k, k = 1, 2, \cdots, m $, 由问题(1.1)确定的$ (u, v) $满足
其中$ v = u_t+\varepsilon u $.且存在一个正常数$ R_k $和$ t_k>0 $, 使得
证 将$ (-\Delta)^kv, k = 1, 2, \cdots, m-1 $与方程组(1.1)在$ L^2(\Omega) $中作内积, 得
分别处理(3.28)中各项:
结合(3.29)–(3.38), (3.28)得到
当$ \frac{\mathrm{d}}{\mathrm{d}t}(b(x)\nabla^{m+k}u, \nabla^{m+k}u)+2\varepsilon(b(x)\nabla^{m+k}u, \nabla^{m+k}u)\ge0 $时,
当$ \frac{\mathrm{d}}{\mathrm{d}t}(b(x)\nabla^{m+k}u, \nabla^{m+k}u)+2\varepsilon(b(x)\nabla^{m+k}u, \nabla^{m+k}u)<0 $时,
则(3.39)变换为
由$ 2(a(x)\nabla^{m+k}v, \nabla^{m+k}v)\ge2a_{00}\|\nabla^{m+k}v\|^2, (b(x)\nabla^{m+k}u, \nabla^{m+k}u)\ge b_{00}\|\nabla^{m+k}u\|^2 $, (3.7),
令$ \sigma_2 = \min\{\frac{\varepsilon}2, \frac{4-\varepsilon}8a_{00}\lambda^m_1-\varepsilon\} $, 则有
当时$ k = m $时, (3.41)亦成立, 此处不再详述.
利用Gronwall不等式, 可得
由假设$ (H) $, 得
因此, 存在一个正常数$ R_k $和$ t_k>0 $, 使得
引理3.2证毕.
引理 3.3 (整体解的存在唯一性) 在引理3.1和引理3.2假设条件下, $ (u_0, u_1)\in X_k, k = 0, 1, \cdots, m $, 则初边值问题(1.1)存在唯一的整体解$ (u, v)\in L^{\infty}([0, +\infty), X_k) $.
证 存在性 利用Galerkin方法证明整体解的存在性.
第一步, 近似解构造
设$ (-\Delta)^{m+k}w_j = \lambda^{m+k}_jw_j, k = 0, 1, 2, \cdots, m $, 其中$ \lambda_j $是$ -\Delta $在$ \Omega $上带有齐次Dirichlet边界的特征值, $ w_j $为特征值$ \lambda_j $的特征函数, 由特征值理论知$ w_1, w_2, \cdots, w_n $构成$ H $的标准正交基.
设问题(1.1)的近似解是$ u_n(t) = \sum\limits^n_{j = 1}h_j(t)w_j $, 其中$ h_j(t) $由下面非线性常微分方程组确定
满足初始条件$ u_n(0) = u_{n0}, u_{nt}(0) = u_{n1} $, 当$ n\to+\infty $时, 在$ X_k $中$ (u_{n0}, u_{n1})\to(u_0, u_1) $, 由常微分方程的基本理论可知近似解$ u_n(t) $在$ (0, t_n) $存在.
第二步, 先验估计
现需证明$ X_k(k = 0, 1, \cdots, m) $空间解的存在在性, 故在(3.45)两端同时乘以$ \lambda^k_j(h'_j(t)+\varepsilon h_j(t)) $, 并对$ j $求和, 令$ v_n(t) = u_{nt}(t)+\varepsilon u_n(t) $.
由引理3.1和引理3.2得
当$ k = 0 $时, 得到$ X_0 $空间中解的先验估计
当$ k = 1, 2, \cdots, m $时, 得到$ X_k $空间中解的先验估计
由此可知, $ (u_n, v_n) $在$ L^{\infty}([0, +\infty);X_0) $中有界, $ (u_n, v_n) $在$ L^{\infty}([0, +\infty);X_k) $中有界.
第三步, 极限过程
在$ X_k, k = 0, 1, \cdots, m $空间中, 从序列$ u_n $中选取子列, 仍用$ u_n $表示, 则
在$ L^{\infty}([0, +\infty);X_k) $中弱*收敛.
由Rellich-Kohdrachov紧嵌入定理知$ X_k(k = 1, 2, \cdots, m) $紧嵌入$ X_0 $, 有$ (u_n, v_n)\to(u, v) $在$ X_0 $中几乎处处强收敛.
由(3.48)得
故$ (u_{nt}, (-\Delta)^kw_j)\to(v, \lambda^k_jw_j)-(\varepsilon u, \lambda^k_jw_j) $在$ L^{\infty}[0, +\infty) $中弱*收敛.
由
故$ (u_{ntt}, (-\Delta)^kw_j)\to(u_{tt}, \lambda^k_jw_j) $在$ D'[0, +\infty) $中收敛, $ D'[0, +\infty) $是$ D[0, +\infty) $无穷可微空间的共轭空间.
由于
故
在$ L^{\infty}[0, +\infty) $中弱*收敛.
根据假设可知$ (g(x, u_n), (-\Delta)^kw_j)\to(g(x, u), \lambda^k_jw_j) $在$ L^{\infty}[0, +\infty) $中弱*收敛.
易得$ (u_n(0), u_{nt}(0))\to(u_0, u_1) $在$ X_k $中弱收敛.当$ j\to+\infty $及$ n\to+\infty $时, 可得
因此得到问题(1.1)解的存在性.
下证解的唯一性
设$ u_1 $和$ u_2 $是方程的两个解, 令$ w = u_1-u_2 $, 则将$ w_t $与问题(1.1)在$ L^2(\Omega) $中作内积, 得
类似于引理3.1处理方法, 得
其中$ \xi_1 = \theta\|\nabla^mu_1\|^2+(1-\theta)\|\nabla^mu_2\|^2, \theta\in(0, 1) $,
其中$ \xi_2 = \theta u_1+(1-\theta)u_2, \theta\in(0, 1) $,
当$ \frac{\mathrm{d}}{\mathrm{d}t}(b(x)\nabla^{m}w, \nabla^{m}w)\ge0 $时,
当$ \frac{\mathrm{d}}{\mathrm{d}t}(b(x)\nabla^{m}w, \nabla^{m}w)<0 $时,
结合(3.55)–(3.65), (3.54)化为
由Gronwall不等式得
由此可得
从而解的唯一性得证.
定理 4.1 在引理3.1和3.2的假设条件下及引理3.3, 问题(1.1)存在整体吸引子族:
其中$ B_{0k} = \{(u, v)\in X_k:\|(u, v)\|^2_{X_k} = \|\nabla^{m+k}u\|^2+\|\nabla^kv\|^2\le R_k\} $是$ X_k $中的有界吸收集,
(1) $ S(t)A_k = A_k, (\forall t\ge0) $,
(2) $ A_k $吸引$ X_k $中一切有界集, 即$ \forall B_k\subset X_k $为$ X_k $中的有界集, 有
$ \{S(t)\}_{t\ge0} $是问题(1.1)生成的解半群.
证 根据引理2.5, 由引理3.3, 可知问题(1.1)生成半群$ S(t):X_k\to X_k $.
由引理3.1和引理3.2可得, $ \forall B_k\subset X_k $且是包含在球$ \{\|(u, v)\|^2_{X_k}\le R_k\} $的有界集, 则
表明$ \{S(t)\}_{t\ge0} $在$ X_k $上一致有界.
进一步, 对$ \forall(u_0, v_0)\in X_k $, 有
因此, $ B_{0k} = \{(u, v)\in X_k:\|(u, v)\|^2_{X_k} = \|\nabla^{m+k}u\|^2+\|\nabla^kv\|^2\le R_k\} $是半群$ \{S(t)\}_{t\ge0} $中的有界吸收集. 因为$ X_k\hookrightarrow\hookrightarrow X_0 $是紧嵌入, 即$ X_k $中的有界集是$ X_0 $中的紧集, 因此解半群$ \{S(t)\}_{t\ge0} $是全连续算子. 综上, 得到解半群$ \{S(t)\}_{t\ge0} $的整体吸引子族:
定理4.1证毕.