设随机变量$ X $的条件密度函数来自如下形式的单参数指数族
其中$ -\infty\leq a<b \leq +\infty $, $ h(x)>0 $, $ C(\theta) = \frac{1}{ \int^{b}_{a}\exp{[\theta T(x)]}h(x)\mathrm{d}x} $, $ \theta $为未知参数, 参数空间为$ \Theta = \big\{\theta;0< \int^{b}_{a}\exp{\{\theta T(x)\}}h(x)\mathrm{d}x<+\infty\big\} $, 利用Holder不等式易知$ \Theta $为一区间. 单参数指数族包括许多重要的分布, 比如指数分布、给定一参数时的正态分布、Gamma分布、Beta分布、Pareto分布、Burr XII分布等, 因此, 研究此分布族的参数估计是有意义的.
视$ \theta $为随机变量, (1.1)为给定$ \theta $时的条件密度函数. 设先验分布$ G(\theta) $为$ \Theta $上的分布函数, 但是无法确定$ G(\theta) $的具体形式, 故此时无法利用通常的贝叶斯方法估计$ \theta $, 因而我们考虑所谓的经验贝叶斯估计.
已有众多学者利用经验贝叶斯方法来对形如(1.1)的单参数指数族的参数进行估计或检验. 在$ T(x) = x $的情况下: (1979)Singh[1]研究了独立样本时该单参数指数族参数的经验贝叶斯估计, 并讨论了其收敛速度, (2006)陈玲等[2]与(2008)王惠亚等[3]分别在NA样本与PA样本下对该单参数指数族参数的经验贝叶斯估计的收敛速度及进行了讨论, (2016)雷庆祝等[4]在样本为平稳且强混合情形下研究了该分布族的经验贝叶斯估计的收敛速度. 在$ T(x) = -x $的情况下: (2007)陈家清等[5]与(2008)严拴航[6]分别在NA与PA样本下利用不同的损失函数分别给出了此分布族经验贝叶斯检验函数的收敛速度. (2013)彭家龙等[7]利用递归核估计构造了Burr XII分布的经验贝叶斯估计, 并在独立样本下给出了收敛速度.
以上论文均基于一条历史样本$ \{X_{1}, \cdots, X_{n}\} $来构造经验贝叶斯估计, 但在某些情况下(比如相同环境下进行的$ m $组同种实验), 可能会出现多条平行的历史样本$ \{X^{(k)}_{1}, \cdots, X^{(k)}_{n}\} $, $ k = 1, \cdots, m $, 此时, 可以考虑利用平均化的思想来构造经验贝叶斯估计. 本文即利用平均化思想, 在出现平行历史样本的情况下, 结合递归核估计来构造经验贝叶斯估计, 同时, 在强混合样本的情况下得到了该经验贝叶斯估计的收敛速度, 并在强混合的特例: $ \beta $混合下对该经验贝叶斯估计与贝叶斯估计的风险差进行模拟.
设历史样本$ \{(X_{i}, \theta_{i}), 1\leq i\leq n\} $来自总体$ (X, \theta) $, $ X_{i} $是可观测样本, $ \theta_{i} $不可观测. 令$ f(x) = \int_{\Theta}f(x|\theta)\mathrm{d}G(\theta) $为$ X $的边缘分布, 其中$ G(\theta) $为$ \theta $的先验分布(未知). 首先考虑单个样本下参数$ \theta $的贝叶斯估计, 损失函数为平方损失$ L(\theta, a) = (\theta-a)^{2} $时, 参数$ \theta $的贝叶斯决策为后验均值, 记为$ \hat{\theta}_{B}(x), $即
由下一节(3.2)知$ f^{'}(x) = T^{'}(x) \int_{\Theta}\theta f(x|\theta)\mathrm{d}G(\theta)+\frac{h^{'}(x)}{h(x)}f(x) $, 再结合上式可得
其中$ \phi_{B}(x) = \frac{f^{'}(x)}{T^{'}(x)f(x)} $. 若从总体$ (X, \theta) $抽样得样本$ (X^{*}, \theta^{*}) $, 其中$ \theta^{*} $不可观测, 则$ \hat{\theta}_{B}(X^{*}) $为$ \theta^{*} $的贝叶斯估计. 现先验分布未知, 从而$ f(x) $及$ f^{'}(x) $无法确定, 此时可以考虑先由历史样本$ \{X_{1}, \cdots, X_{n}\} $来估计(2.1)中的$ f(x) $及$ f^{'}(x) $, 由此构造经验贝叶斯决策$ \hat{\theta}_{EB}(x) $, 再将$ X^{*} $代入$ \hat{\theta}_{EB}(x) $中即得到$ \theta^{*} $的经验贝叶斯估计$ \hat{\theta}_{EB}(X^{*}) $. 利用已有样本来估计密度函数的方法有多种, 本文采用递归核估计的方法, 为统一符号分别记$ f(x) $, $ f^{'}(x) $为$ f^{(0)}(x) $, $ f^{(1)}(x) $, 则其递归核估计[8]分别为
其中$ K_{j}(\cdot) $为核函数, $ h_{i} $为单调递减趋于0的窗宽. $ f^{(j)}_{n}(x) $具有如下递推性质: $ f^{(j)}_{n}(x) = \frac{n-1}{n}f^{(j)}_{n-1}(x)+\frac{1}{nh^{j+1}_{n}}K_{j}\big(\frac{x-X_{n}}{h_{n}}\big) $, 在运算中可利用此性质减少运算量, 另外, 由于递归核估计的窗宽不同, 可防止估计值过度平滑和过度锐化[7].
假设此时有$ m $条平行的历史样本$ \{X^{(k)}_{1}, \cdots, X^{(k)}_{n}\}, k = 1, \cdots, m $, 则可考虑先由这$ m $组样本分别利用递归核估计得到$ f^{(j)}_{n, k}(x), k = 1, \cdots, m $, 然后对其求平均值得到$ f^{(j)}(x) $的最终估计$ \bar{f}^{(j)}_{n}(x) = \frac{1}{m}\sum\limits^{m}_{k = 1}f^{(j)}_{n, k}(x) $, 并借此构造如下的经验贝叶斯决策
其中$ V = \{X^{(k)}_{1}, \cdots, X^{(k)}_{n}, k = 1, \cdots, m\} $, $ \phi_{EB}(x, V) = \big[\frac{\bar{f}^{(1)}_{n}(x)}{T^{'}(x)\bar{f}^{(0)}_{n}(x)}\big]_{n^{\nu}} $, $ [q]_{L} = qI_{\{|q|\leq L\}}(q) $, $ 0<\nu<1 $为一待定常数. 本文会将$ \tilde{\theta}_{EB}(x, V), \; \phi_{EB}(x, V) $简记为$ \tilde{\theta}_{EB}(x), \phi_{EB}(x) $. 若再抽样得$ X^{*} $, 将其代入(2.3)即得$ \theta^{*} $的经验贝叶斯估计$ \tilde{\theta}_{EB}(X^{*}) $.
在平方损失下, 基于单一样本$ X^{*} $的贝叶斯估计风险为$ R(\hat{\theta}_{B}(X^{*})) = E[(\hat{\theta}_{B}(X^{*})-\theta^{*})^{2}] $, 经验贝叶斯估计的风险为$ R(\tilde{\theta}_{EB}(X^{*})) = E[(\tilde{\theta}_{EB}(X^{*})-\theta^{*})^{2}] $. 设$ G(\theta) $属于某先验分布族$ \mathscr{P} $, 在固定$ m $的情况下, 若对分布族$ \mathscr{P} $中每个$ G(\theta) $, 有$ \lim\limits_{n\rightarrow \infty}R(\tilde{\theta}_{EB}(X^{*})) = R(\hat{\theta}_{B}(X^{*})) $, 则称$ \tilde{\theta}_{EB}(X^{*}) $为先验分布族$ \mathscr{P} $下$ \theta^{*} $的渐近最优经验贝叶斯估计. 若更进一步, 对某个$ q>0 $有$ R(\tilde{\theta}_{EB}(X^{*}))-R(\hat{\theta}_{B}(X^{*})) = O(n^{-q}) $, 则称此估计在先验分布族$ \mathscr{P} $下的收敛速度为$ O(n^{-q}) $. 下面, 本文将在一定的假设条件下给出当历史样本为强混合时$ \tilde{\theta}_{EB}(X^{*}) $的收敛速度.
记$ C, \; C_{1}, \; C_{2} $为非负常数, $ M_{(x, \delta)} $表示只与$ x, \delta $有关的正数, $ T((a, b)) = \{T(x);x\in(a, b)\} $, $ U(x, \delta) = \{x^{'};|x^{'}-x|<\delta\} $.
所谓强混合序列, 也称$ \alpha $混合序列, 定义如下
定义3.1[9] 设$ \{\xi_{i}, i = 1, 2, \cdots\} $为随机变量序列, $ \mathscr{F}^{t}_{z} = \sigma(\xi_{i}, \; z\leq i \leq t) $, 若
则称$ \{\xi_{i}, i = 1, 2, \cdots\} $为强混合序列, $ \alpha(\cdot) $称为混合系数.
本文假设条件为
(ⅰ) $ \forall 1\leq k\leq m $, $ \{X^{(k)}_{i}, i\geq1\} $为强混合序列, 其混合系数为$ \alpha^{(k)}(\cdot) $, 且$ \sum^{\infty}_{l = 1}\alpha^{(k)}(l)< \infty $.
(ⅱ) $ (X^{*}, \theta^{*}) $与$ \{(X^{(k)}_{i}, \theta^{(k)}_{i}), i\geq1, k = 1, \cdots, m\} $相互独立.
(ⅲ) 核函数$ K_{j}(x) $可测, 且在$ [-1, 1] $之外为0, 其中$ j = 0, 1 $, 并满足以下条件
(ⅳ) $ h^{'}(x), T^{'}(x) $在$ (a, b) $上存在, $ T^{'}(x)\neq0 $, 且$ \forall x\in(a, b), \; \exists \delta>0(\delta\; \text{与}\; x\; \text{有关)}, \; \text{使}\; \forall x^{'}\in U(x, \delta) $有
注1 文献[2, 3, 5, 6]均是在当前样本与历史样本独立的条件下进行研究.
注2 $ \rm(iii) $中的核函数可由多项式函数构造[1].
注3 若$ T^{'}(x) $在$ (a, b) $上连续, 则$ \forall x\in(a, b) $取$ \delta>0 $足够小使得$ [x-\delta, x+\delta]\subset(a, b) $, 由中值定理可知$ \forall x^{'}\in U(x, \delta) $有$ |T(x^{'})-T(x)|\leq \sup\limits_{ {z\in[x\!-\!\delta\!, x\!+\!\delta]}}\!|T^{'}(z)|\!\times\!|x^{'}-x| $, 因此可取$ M_{(x, \delta)}\! = \!\sup\limits_{ {z\in[x\!-\!\delta\!, x\!+\!\delta]}}\!|T^{'}(z)| $, 同时还有$ \lim\limits_{\delta\rightarrow0^{+}}M_{(x, \delta)}\delta = 0 $, 如果此时$ T((a, b)) $为开集, 则易见(3.1)成立.
引理3.1 设$ f(x|\theta) $是如$ (1.1) $所示的条件分布密度, 当假设$ \rm(iv) $成立时, 对任意先验分布$ G(\theta) $, 边缘分布$ f(x) = \int_{\Theta}f(x|\theta)\mathrm{d}G(\theta) $在$ (a, b) $上具有一阶导数, 且
证 由假设(ⅳ)可知$ \forall x\in(a, b), \; \exists\delta>0 $使得$ \forall x^{'}\in U(x, \delta) $有
令$ w(x) = \frac{f(x)}{h(x)} = \int_{\Theta}C(\theta)\exp{\{\theta T(x)\}}\mathrm{d}G(\theta) $, 则
由于$ \forall x^{'}\in U(x, \delta) $结合(3.1)有
其中$ T(x)+\delta M_{(x, \delta)} = T(x_{(1)}), \; T(x)-\delta M_{(x, \delta)} = T(x_{(2)}) $, $ x_{(1)}, x_{(2)} $与$ x^{'} $无关, 并且
所以, 结合控制收敛定理知$ w^{'}(x) $在$ (a, b) $上存在, 且$ w^{'}(x)\! = \!T^{'}(x)\!\int_{\Theta}\!\theta C(\theta)\exp{\![\theta T(x)]}\mathrm{d}G(\theta) $, 由$ f(x) = h(x)w(x) $可知在$ (a, b) $上$ f^{'}(x) $存在, 同时(3.2)成立.
引理3.2 设$ \delta\geq1 $, 则当$ \int_{\Theta}|\theta|^{\delta}\mathrm{d}G(\theta)<+\infty $时, 有$ E[|\hat{\theta}_{B}(X^{*})|^{\delta}]<+\infty $. 如果还有$ E\big[\big|\frac{h^{'}(X^{*})}{T^{'}(X^{*})h(X^{*})}\big|^{\delta}\big]<\infty $, 则$ E[|\phi_{B}(X^{*})|^{\delta}]<\infty $.
证 利用Jensen不等式知
再利用$ C_{r} $不等式可得
引理3.3[9] 设$ \{\xi_{i}\}_{i\geq1} $为强混合序列, $ \mathscr{F}^{t}_{z} = \sigma(\xi_{i}, \; z\leq i \leq t), \; \alpha(\cdot)\text{为其混合系数} $. $ \forall w\geq1 $, 若$ \zeta\in\mathscr{F}^{w}_{1}, \eta\in\mathscr{F}^{\infty}_{w+n} $, 且$ |\zeta|\leq C_{1}, |\eta|\leq C_{2} $, 则$ |E(\zeta\eta)-E(\zeta)E(\eta)|\leq 4C_{1}C_{2}\alpha(n) $.
引理3.4[1] $ Y, Y^{'} $为随机变量, $ y, y^{'} $为实数, $ L>0, d>0 $, 则
其中$ A = 2^{d+(d-1)^{+}}|y|^{-d}\big\{E|Y^{'}-y^{'}|^{d}+(|\frac{y^{'}}{y}|^{d}+2^{-(d-1)^{+}}L^{d})E|Y-y|^{d}\big\} $.
在接下来我们均令$ \mathscr{F}^{(k)}_{z, t} = \sigma(X^{(k)}_{i}, \; z\leq i \leq t) $, 并指定先验分布族$ \mathscr{P}_{s} $定义如下
其中$ f^{(s)}(x) $表示$ X $的边缘分布$ f(x) $的$ s $阶导数, $ s\geq2 $, $ Z_{G} $为只与$ G(\theta) $有关的非负常数. 注意若$ a\neq-\infty $或$ b\neq+\infty $, 则需要在$ (a, b) $的端点处$ f(x) $的相应阶的右、左导数为零.
引理3.5 设$ G(\theta)\in\mathscr{P}_{s} $, 取$ \rm(2.2) $中的窗宽$ h_{n} = n^{-\frac{1}{2(s+1)}} $, 则$ \forall x\in \mathbb{R}, \; 0<\lambda\leq1, \; k = 1, \cdots, m, \; j = 0, 1 $, 有
其中$ D^{(k)}_{G, s, \lambda} = \max{\{1, 2^{2\lambda-1}\}}\Big[\big(\frac{4(s+1)Z_{G}C}{(s+3)s!}\big)^{2\lambda}+[C^{2}+32C^{2}\sum\limits^{\infty}_{l = 1}\alpha^{(k)}(l)]^{\lambda}\Big] $.
证 首先, 利用$ C_{r} $不等式有
其中$ J_{1} = \big|E[f^{(j)}_{n, k}(x)]-f^{(j)}(x)\big|^{2\lambda} $, $ J_{2} = E\big[|E[f^{(j)}_{n, k}(x)]-f^{(j)}_{n}(x)|^{2\lambda}\big] $, 并且
注意到$ f(x) $在$ \mathbb{R} $上有定义, 可得
由Taylor公式可得
其中$ \eta_{t} $位于$ x, x-h_{i}t $之间. 将(3.5)(3.6)代入(3.4)再结合假设(ⅲ)得到
又因为窗宽$ h_{n}\! = \!n^{-\frac{1}{2(s+1)}} $, 故有$ \frac{1}{n}\sum\limits^{n}_{i = 1}h^{s-j}_{i}\! = \!\frac{1}{n}\sum\limits^{n}_{i = 1}(i^{-\frac{s-1}{2(s+1)}})^{\frac{s-j}{s-1}}\!\leq\!\frac{1}{n}\sum\limits^{n}_{i = 1}i^{-\frac{s-1}{2(s+1)}} \!\leq\!\frac{1}{n} \int^{n}_{0}\!x^{-\frac{s-1}{2(s+1)}}\mathrm{d}x\! = \!\frac{2(s+1)}{s+3}n^{-\frac{s-1}{2(s+1)}} $, 因此可得
即有
接下来考虑$ J_{2} $, 利用Holder不等式有$ J_{2} = E\{|E[f^{(j)}_{n, k}(x)]-f^{(j)}_{n, k}(x)|^{2\lambda}\}\leq \big\{E\big[\big(E[f^{(j)}_{n, k}(x)]-f^{(j)}_{n, k}(x)\big)^{2}\big]\big\}^{\lambda} $, 令
其中$ Z_{i, k}(x)\! = \!E[K_{j}\!(\frac{x-X^{(k)}_{i}}{h_{i}}\!)]\!-\!K_{j}\!(\frac{x-X^{(k)}_{i}}{h_{i}}\!) $, 而且$ \forall x\!\in\!\mathbb{R}, i\!\in\!\mathbb{N} $有$ |Z_{i, k}(x)|\!\leq\! 2C, E[(Z_{i, k}(x))^{2}]\! = E\big[\big(K_{j}\big(\frac{x-X^{(k)}_{i}}{h_{i}}\big)\big)^{2}\big]\!-\!\big\{E\big[K_{j}\big(\frac{x-X^{(k)}_{i}}{h_{i}}\big)\big]\big\}^{2} \!\leq\!C^{2} $, 即$ Z_{i, k}(x), E[(Z_{i, k}(x))^{2}] $对$ \forall x\in \mathbb{R}\!, i\in \mathbb{N} $一致有界. 又对$ 1\!\leq\! i\!<\!t\!\leq\! n $有$ Z_{i, k}(x)\in\mathscr{F}^{(k)}_{1, i}, Z_{t, k}(x)\in\mathscr{F}^{(k)}_{t, \infty} = \mathscr{F}^{(k)}_{i+(t-i), \infty} $, 并且$ E[Z_{i, k}(x)] = 0 $, 由引理3.3知$ \forall x\in \mathbb{R}, 1\leq i<t\leq n $有$ |E[Z_{i, k}(x)Z_{t, k}(x)]|\leq 16C^{2}\alpha^{(k)}(t-i) $, 从而有
由上式与(3.8)可得$ E[(E[f^{(j)}_{n, k}(x)]\!-\!f^{(j)}_{n, k}(x))^{2}]\! = \!\frac{E[(S_{n, k}(x))^{2}]}{nh^{2(j+1)}_{n}}\!\leq\! \big(C^{2}\!+\!32C^{2}\sum^{\infty}_{l = 1}\alpha^{(k)}(l)\big)n^{\frac{j+1}{s+1}-1} $, 即$ J_{2}\leq \big(C^{2}+8C^{2}\sum^{\infty}_{l = 1}\alpha^{(k)}(l)\big)^{\lambda}n^{(\frac{j+1}{s+1}-1)\lambda} $, 结合此式与(3.3)(3.7)可得
引理3.6 设$ G(\theta)\in\mathscr{P}_{s} $, 取$ \rm(2.2) $中窗宽$ h_{n} = n^{-\frac{1}{2(s+1)}} $, 则$ \forall x\in \mathbb{R}, \; 0\!<\!\lambda\!\leq\!1, j = 0, 1 $, 有
其中$ D_{G, m, s, \lambda} = \frac{\max{\{1, m^{2\lambda-1}\}}}{m^{2\lambda}}\sum\limits^{m}_{k = 1}D^{(k)}_{G, s, \lambda} $.
证 首先易得$ E\big[|\bar{f}^{(j)}_{n}(x)-f^{(j)}(x)|^{2\lambda}\big] \leq E\big[\frac{1}{m^{2\lambda}}\big(\sum\limits^{m}_{k = 1}|f^{(j)}_{n, k}(x)-f^{(j)}(x)|\big)^{2\lambda}\big] $, 再利用$ C_{r} $不等式可得$ \frac{1}{m^{2\lambda}}\big(\sum\limits^{m}_{k = 1}|f^{(j)}_{n, k}(x)-f^{(j)}(x)|\big)^{2\lambda}\leq \frac{\max{\{1, m^{2\lambda-1}\}}}{m^{2\lambda}}\sum\limits^{m}_{k = 1}|f^{(j)}_{n, k}(x)-f^{(j)}(x)|^{2\lambda} $, 结合引理3.5即证.
引理3.7[10] 设$ \zeta $为定义在概率空间$ (\Omega, \mathscr{F}, P) $上的可积随机变量, $ \mathscr{A}, \mathscr{D} $为$ \mathscr{F} $的两个子$ \sigma $代数, 如果有$ \mathscr{D} $与$ \sigma(\zeta)\vee\mathscr{A} $相独立, 则有$ E[\zeta|\mathscr{D}\vee\mathscr{A}] = E[\zeta|\mathscr{A}] $.
利用类似于文献[1]中引理2.1的证明方法并结合引理3.7可证明如下的引理3.8, 但[1]中样本是独立的.
引理3.8 若$ R(\hat{\theta}_{B}(X^{*}))<+\infty $, $ E\big[(\tilde{\theta}_{EB}(X^{*})-\hat{\theta}_{B}(X^{*}))^{2}\big]<+\infty $, $ E[\theta^{*}]<+\infty $, 则$ R(\tilde{\theta}_{EB}(X^{*}))-R(\hat{\theta}_{B}(X^{*})) = E\big[(\tilde{\theta}_{EB}(X^{*})-\hat{\theta}_{B}(X^{*}))^{2}\big] $.
证 首先由$ E\big[(\tilde{\theta}_{EB}(X^{*}, V)-\hat{\theta}_{B}(X^{*}))^{2}\big]<+\infty $, 及
知$ E\Big[\big(\hat{\theta}_{B}(X^{*})-\theta^{*}\big)^{2} +2\big(\hat{\theta}_{B}(X^{*})-\theta^{*}\big)\big(\tilde{\theta}_{EB}(X^{*}, V)-\hat{\theta}_{B}(X^{*})\big)\Big] $存在, 由积分存在可知相关的条件期望存在[11], 并且有
再由$ R(\hat{\theta}_{B}(X)) = E\big[(\hat{\theta}_{B}(X^{*})-\theta^{*})^{2}\big]<+\infty $, $ E[\theta^{*}]<+\infty $得$ E[\hat{\theta}_{B}(X^{*})]<+\infty $, 与前面同理可知相关的条件期望存在, 所以(3.9)等号右边第一项可表示为
由假设(ⅱ)结合引理3.7得$ E[\theta^{*}|X^{*}, V]\! = \!E[\theta^{*}|X^{*}]\! = \!\hat{\theta}_{B}(X^{*}) $, 结合(3.10), (3.9)再取期望即证.
引理3.9 设$ A, B, L\in \mathbb{R} $, 若$ |B|\leq \frac{L}{2} $, 则$ |[A]_{L}-B|\leq \mathrm{min}\big\{|A-B|, \frac{3}{2}L\big\} $.
证 当$ L<|A| $时, 有$ |[A]_{L}-B| = |B|<\frac{3}{2}L $, $ |B|\leq\frac{L}{2}<|A|-|B|\leq|A-B| $. 当$ L\geq|A| $时, 有$ |[A]_{L}-B| = |A-B|\leq|A|+|B|\leq\frac{3}{2}L $, 因此引理成立.
下面的定理4.1是本文的主要结果, 其在相应的假设与条件下给出了$ \tilde{\theta}_{EB}(X^{*}) $在先验分布族$ \mathscr{P}_{s} $下的收敛速度.
定理4.1 设先验分布$ G(\theta)\in\mathscr{P}_{s} $, 假设$ \rm(i)–(iv) $成立, 且存在$ \frac{1}{2s}<r<1 $使得$ \int_{\Theta}\theta^{4rs}\mathrm{d}G(\theta)<\!+\infty $, $ E\big[\big|\frac{h^{'}(X^{*})}{T^{'}(X^{*})h(X^{*})}\big|^{4rs}\big]<\!+\infty $, $ E\big[|T^{'}(X^{*})f(X^{*})|^{-2r}\big]<\!+\infty $, $ E\big[(f(X^{*}))^{-2r}\big]<\!+\infty $. 取(2.2)中窗宽$ h_{n} = n^{-\frac{1}{2(s+1)}} $, (2.3)中的$ \nu = \frac{s-1}{4s(s+1)} $, 则有
其中
即当$ n\rightarrow \infty $时$ R(\tilde{\theta}_{EB}(X^{*}))-R(\hat{\theta}_{B}(X^{*})) = O(n^{-\frac{(s-1)(2rs-1)}{2s(s+1)}}) $.
证 由于$ 4rs>2 $, 根据引理3.2可得$ R(\hat{\theta}_{B}(X^{*}))\leq 2\{E[(\hat{\theta}_{B}(X^{*}))^{2}]+E[(\theta^{*})^{2}]\}<+\infty $. 若令$ A_{n} = \{x^{*};|\phi_{B}(x^{*})|\leq \frac{n^{\nu}}{2}\} $, 则当$ x^{*}\in A_{n} $时$ |\phi_{EB}(x^{*})-\phi_{B}(x^{*})|\leq \frac{3}{2}n^{\nu} $, 且
其中(4.2)(4.3)(4.4)分别由引理3.9、引理3.4、引理3.6得到. 再利用(4.5)可得
(4.6)处是因为$ X^{*} $与$ V $相独立, 因此有
其中$ F_{V}(u), \; F_{X^{*}}(x^{*}) $分别为$ V, X^{*} $的分布函数. 再令$ B_{n} = (a, b)-A_{n} $, 则当$ x^{*}\in B_{n} $时$ |\phi_{EB}(x^{*})-\phi_{B}(x^{*})|<3|\phi_{B}(x^{*})| $, 从而
由引理3.2知$ E[(\phi_{B}(X^{*}))^{4rs}]<\infty $, 结合(4.7)(4.8), 代入$ \nu = \frac{s-1}{4s(s+1)} $可得
最后由引理3.8即得(4.1).
注4 文献[4]在比本文更强的假设下得到类似结论. 相比文献[4], 本文由递归核估计构造经验贝叶斯估计, 且未对样本的概率密度函数附加更多的限制, 也未对样本平稳性做要求.
固定方差为$ \sigma^{2}_{0} $, 均值为未知参数$ \theta $的正态分布显然满足假设条件(ⅳ). 取先验分布族$ \mathscr{G}_{1} = \{G(\theta);G(\theta)\; \text{均匀分布}\} $, 设$ g(\theta) = \frac{\mathrm{d}G(\theta)}{\mathrm{d}\theta} = \frac{1}{K-T}I_{(T, K)}(\theta) $, 以$ \Psi(x), \psi(x) $分别表示标准正态分布的分布与密度, 此时$ f(x) = \frac{\Psi(\frac{K-x}{\sigma_{0}})-\Psi(\frac{T-x}{\sigma_{0}})}{K-T} $, 易知$ f(x) $存在无限阶有界导数, 因此$ \mathscr{G}_{1}\subset\bigcap_{s\geq2}\mathscr{P}_{s} $. 对任意$ s\geq2 $, 令$ \frac{1}{2s}<r<\frac{1}{2} $, 下面验证定理4.1的条件. 首先$ E\big[|T^{'}(X^{*})f(X^{*})|^{-2r}\big] = \sigma^{4r}_{0}E\big[(f(X^{*}))^{-2r}\big] = \frac{\sigma^{4r}_{0}}{(K-T)^{1-2r}}\! \int^{+\infty}_{-\infty}\!\big(\int^{\frac{K-x}{\sigma_{0}}}_{\frac{T-x}{\sigma_{0}}}\!\frac{1}{\sqrt{2\pi}}\exp{\big\{\!-\!\frac{t^{2}}{2}\big\}}\mathrm{d}t\big)^{1-2r}\!\mathrm{d}x $, 记$ I_{1}\! = \! \int^{T}_{-\infty}\!\big(\int^{\frac{K-x}{\sigma_{0}}}_{\frac{T-x}{\sigma_{0}}}\!\frac{1}{\sqrt{2\pi}}\exp{\big\{\!-\!\frac{t^{2}}{2}\big\}}\mathrm{d}t\big)^{1-2r}\!\mathrm{d}x, \; I_{2}\! = \!\int^{K}_{T}\!\big(\!\int^{\frac{K-x}{\sigma_{0}}}_{\frac{T-x}{\sigma_{0}}}\!\frac{1}{\sqrt{2\pi}}\exp{\big\{\!-\!\frac{t^{2}}{2}\big\}}\mathrm{d}t\big)^{1-2r}\!\mathrm{d}x, \; $ $ I_{3}\! = \! \int^{+\infty}_{K}\big(\!\int^{\frac{K-x}{\sigma_{0}}}_{\frac{T-x}{\sigma_{0}}}\!\frac{1}{\sqrt{2\pi}}\exp{\big\{\!-\!\frac{t^{2}}{2}\big\}}\mathrm{d}t\big)^{1-2r}\!\mathrm{d}x $.
因为
所以$ E\big[|T^{'}(X^{*})f(X^{*})|^{-2r}\big]<+\infty, \; E\big[(f(X^{*}))^{-2r}\big]<+\infty $. 又因为$ E\big[\big|\frac{h^{'}(X^{*})}{T^{'}(X^{*})h(X^{*})}\big|^{4rs}\big] = E[(X^{*})^{4rs}] $, 而
其中$ Y\sim N(0, 1) $, 易见$ E\big[\big|\frac{h^{'}(X^{*})}{T^{'}(X^{*})h(X^{*})}\big|^{4rs}\big]<+\infty $. 而$ \int_{\Theta}\theta^{4rs}\mathrm{d}G(\theta)<+\infty $是显然的, 即定理4.1中条件均成立.
再取分布族$ \mathscr{G}_{2} = \{G(\theta);G(\theta)\; \text{为正态分布}\} $. 设$ g(\theta)\! = \!\frac{\mathrm{d}G(\theta)}{\mathrm{d}\theta}\! = \!\frac{1}{\sqrt{2\pi}\sigma}\exp{\{\!-\!\frac{(\theta-\mu)^{2}}{2\sigma^{2}}\}} $, 由于
因此$ f(x) $为$ N(\mu, \sigma^{2}+\sigma^{2}_{0}) $的概率密度, 易知$ \mathscr{G}_{2}\subset\bigcap_{s\geq2}\mathscr{P}_{s} $. $ \forall s\geq2 $, 令$ \frac{1}{2s}<r<\frac{1}{2} $, 首先由
知$ E\big[|T^{'}(X^{*})f(X^{*})|^{-2r}\big] $与$ E\big[(f(X^{*}))^{-2r}\big] $有限, 同时由于正态分布各阶矩存在, 因此其余条件也成立, 所以定理4.1中条件均成立. 注意当$ G(\theta)\in\mathscr{G}_{1}\bigcup\mathscr{G}_{2} $时, 理论上可取足够大的$ s $及$ r\uparrow\frac{1}{2} $和满足条件的核函数使得经验贝叶斯估计的收敛速度趋向$ O(n^{-\frac{1}{2}}) $.
本文参考文献[12]的模拟方式, 在$ \beta $混合样本下($ \beta $混合的定义及与强混合的关系可见[13]), 模拟平均化经验贝叶斯估计的贝叶斯风险差. 首先, 按如下方法可得到一个Gibbs Markov链$ \{(X_{i}, \theta_{i})\}_{1\leq i\leq n} $
(a) 先从先验分布$ g(\theta) = \frac{\mathrm{d}G(\theta)}{\mathrm{d}\theta} $中抽取样本$ \theta_{1} $.
(b) 再从条件分布$ f(x|\theta_{1}) $中取得样本$ X_{1} $.
(c) 再从条件分布$ g(\theta|X_{1}) $中取得样本$ \theta_{2} $.
(d) 重复步骤(a)–(c).
由[14]的推论3.6及[15]的推论13可知$ \{(X_{i}, \theta_{i})\}_{1\leq i\leq n} $为$ \beta $混合的[12], 从而也是强混合的, 因此可以提出以下模拟方案:
(1) 重复$ m $次抽取Gibbs Markov链的方法抽取$ n $个样本, 得$ \{\!X^{(k)}_{i}, \!1\leq i\leq n\!\}, 1\!\leq\! k\!\leq\! m $.
(2) 利用(1)中$ m $个$ \{X^{(k)}_{i}, 1\leq i\leq n\} $构造$ f^{(j)}_{n, k}(x)(j = 0, 1.\; k = 1, \cdots, m) $, 并求其平均值$ \bar{f}^{(j)}_{n}(x) $, 再将$ \bar{f}^{(j)}_{n}(x) $代入(2.3)中得到平均化的经验贝叶斯决策$ \tilde{\theta}_{EB}(x) $.
(3) 从总体抽取1个样本, 得到$ (X^{*}, \theta^{*}) $, 同时计算$ (\tilde{\theta}_{EB}(X^{*})-\theta^{*})^{2} $与$ (\hat{\theta}_{B}(X^{*})-\theta^{*})^{2} $.
(4) 重复步骤(1)-(3) $ Q $次, 求平均值, 得到$ \hat{R}(\tilde{\theta}_{EB}(X^{*})) = \frac{1}{Q}\sum(\tilde{\theta}_{EB}(X^{*})-\theta^{*})^{2} $与$ \hat{R}(\hat{\theta}_{B}(X^{*})) = \frac{1}{Q}\sum(\hat{\theta}_{B}(X^{*})-\theta^{*})^{2} $, 并将$ \hat{R}(\tilde{\theta}_{EB}(X^{*}))-\hat{R}(\hat{\theta}_{B}(X^{*})) $作为$ R(\tilde{\theta}_{EB}(X^{*}))-R(\hat{\theta}_{B}(X^{*})) $的估计值.
取$ f(x|\theta) $为方差$ \sigma^{2}_{0} = 1 $, 均值为参数$ \theta $的正态分布, 考虑先验分布$ g_{1}(\theta) = \frac{1}{10}I_{(-5, 5)}(\theta) $, $ g_{2}(\theta) = \frac{1}{\sqrt{2\pi}}\exp{(-\frac{\theta^{2}}{2})} $, $ g_{3}(\theta) = \frac{1}{\sqrt{2\pi}}\exp{(-\frac{(\theta-1)^{2}}{2})} $. 令$ s = 2 $, 取核函数$ K_{0}(x) = \frac{15}{16}(1-x^{2})^{2}I_{[-1, 1]}(x) $, $ K_{1}(x) = -\frac{15}{4}(1-x^{2})xI_{[-1, 1]}(x) $, 易知$ K_{0}(X) $, $ K_{1}(x) $满足假设(ⅲ). 取$ Q = 200 $, 考虑$ n = 50, \; 100, \; 200 $, $ m = 5, \; 10, \; 20 $, 得出模拟结果见表 1. 由表 1可见, 在固定$ m $的情况下, 随着$ n $增大, 总体而言, $ R(\tilde{\theta}_{EB}(X^{*}))-R(\hat{\theta}_{B}(X^{*})) $的估计值缩小, 这与定理4.1结论相符.