数学杂志  2021, Vol. 41 Issue (3): 227-236   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
史芳芳
叶国菊
刘尉
赵大方
区间值h-凸函数的整合分数阶积分Hermite-Hadamard型不等式
史芳芳1, 叶国菊1, 刘尉1, 赵大方2    
1. 河海大学 理学院, 江苏 南京 210098;
2. 湖北师范大学 数学与统计学院, 湖北 黄石 435002
摘要:本文研究了区间值函数的整合分数阶积分形式Hermite-Hadamard型不等式的问题.利用区间分析及区间h-凸函数理论,给出了区间值函数的整合分数阶积分概念,讨论了该积分的若干基本性质,并且得到了一类新的分数阶积分的Hermite-Hadamard型不等式,推广了文献[1-3]的结果.
关键词整合分数阶积分    区间值函数    Hermite-Hadamard型不等式    
CONFORMABLE FRACTIONAL INTEGRALS HERMITE-HADAMARD TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
SHI Fang-fang1, YE Guo-ju1, LIU Wei1, ZHAO Da-fang2    
1. College of Science, Hehai University, Nanjing 210098, China;
2. School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China
Abstract: In this paper, we study the problem of comformable fractional integrals for interval-valued functions in the form of Hermite-Hadamard type inequalities. Using interval analysis and the theory of interval h-convex functions, we give the concept of comformable fractional integrals for interval-valued functions, discuss some basic properties of these integrals, and obtain a new class of Hermite-Hadamard type inequalities for fractional integrals, which extend the results in [1-3].
Keywords: conformable fractional integral     interval-valued function     Hermite-Hadamard type inequalities    
1 引言

21世纪以来, 由于分数阶积分理论广泛应用于量子力学、高能物理、水动力学、经济学等众多领域, 彰显了其独特优势和不可替代性, 因此其理论和应用深受国内外众多学者的关注. 2013年, Sarikaya M Z等人将Riemann-Liouville分数阶积分与Hermite-Hadamard不等式结合, 建立一类分数阶积分形式的Hermite-Hadamard型不等式[4]. 随后, 国内外许多数学家对分数阶积分形式的Hermite-Hadamard型不等式从不同凸性和不同定义的分数阶的角度进行了推广和改进以及应用了大量的工作[1, 4-6].

另一方面, 不确定性问题出现在许多确定性的数学或者计算模型中, 因此区间分析作为一种新的解决不确定性问题的重要工具被广泛应用于各个领域, 如计算物理学、误差分析、机器人技术等. 特别地, 一些经典的积分不等式被推广到区间值函数的形式中, 例如Hermite-Hadamard不等式[3]、Ostrowski不等式[7]等. 2019年, Hüseyin引入了区间值函数Riemann-Liouville分数阶积分的定义, 并且证明了一些区间值函数Riemann-Liouville分数阶积分形式的Hermite-Hadamard不等式, 即

$ \begin{equation*} f\left(\frac{a+b}{2}\right) \supseteq\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}}\big[\mathcal{J}^{\alpha}_{a^{+}}{f}(b)+ {\mathcal{J}}^{\alpha}_{b^{-}}{f}(a)\big]\supseteq\frac{f(a)+f(b)}{2}. \end{equation*} $

受此启发, 本文引入了区间值函数整合分数阶积分的概念, 讨论了其若干重要性质. 将文献[1] 中的Hermite-Hadamard型不等式推广到区间值函数整合分数阶积分的形式中, 同时也推广了文献[2, 3] 的相关结果.

2 预备知识

$ \; [a] = [\underline{a}, \overline{a}]\; $$ \; \mathbb{R}\; $上的一个有界闭区间, 这里$ \; \underline{a}, \overline{a}\in\mathbb{R}\; $$ \; \underline{a}\leq\overline{a}.\; $$ \; \underline{a} = \overline{a}\; $时, 区间$ \; [a]\; $称为退化的; 当$ \; \underline{a}>0\; $时, 区间$ \; [a]\; $称为正的; 我们用$ \; \mathbb{R}^{+}\; $表示$ \; \mathbb{R}\; $上所有正数构成的集合; 用$ \; \mathbb{R}_{\mathcal{I}}\; $表示$ \; \mathbb{R}\; $上所有非空闭区间构成的集合; 用$ \; \mathbb{R}_{\mathcal{I}}^{+}\; $表示$ \; \mathbb{R}\; $上所有正闭区间构成的集合. 任取$ \mathbb{R}_{\mathcal{I}} $中的元素$ [\underline{a}, \overline{a}] $, $ [\underline{b}, \overline{b}] $, 对任意$ \lambda\in\mathbb{\mathbb{R}} $, $ \mathbb{R}_{\mathcal{I}} $空间中的区间运算规定如下:

$ \begin{eqnarray*} [\underline{a}, \overline{a}]+[\underline{b}, \overline{b}] = [\underline{a}+\underline{b}, \overline{a}+\overline{b}]; \end{eqnarray*} $
$ \begin{eqnarray*} [\underline{a}, \overline{a}]-[\underline{b}, \overline{b}] = [\underline{a}-\overline{b}, \overline{b}-\underline{a}]; \end{eqnarray*} $
$ \begin{eqnarray*} [\underline{a}, \overline{a}]\cdot[\underline{b}, \overline{b}] = [\min\{\underline{ab}, \underline{a}\overline{b}, \overline{a}\underline{b}, \overline{ab}\}, \max\{\underline{ab}, \underline{a}\overline{b}, \overline{a}\underline{b}, \overline{ab}\}];\; \end{eqnarray*} $
$ \begin{eqnarray*} [\underline{a}, \overline{a}]/[\underline{b}, \overline{b}] = [\min\{\underline{a}/\underline{b}, \underline{a}/\overline{b}, \overline{a}/\underline{b}, \overline{a}/\overline{b}\}, \max\{\underline{a}/\underline{b}, \underline{a}/\overline{b}, \overline{a}/\underline{b}, \overline{a}/\overline{b}\}];\; \end{eqnarray*} $
$ \begin{eqnarray*} \lambda[\underline{a}, \overline{a}] = \left\{\begin{array}{ll} \left[\lambda\underline{a}, \lambda\overline{a}\right], &\lambda\geq 0, \\ \left[\lambda\overline{a}, \lambda\underline{a}\right], &\lambda<0. \end{array}\right. \end{eqnarray*} $

同时, $ [\underline{a}, \overline{a}] $, $ [\underline{b}, \overline{b}] $之间的包含关系"$ \subseteq $" 定义为:

$ \begin{eqnarray*} [\underline{a}, \overline{a}]\subseteq[\underline{b}, \overline{b}]\Leftrightarrow\underline{b}\leq\underline{a}, \; \overline{a}\leq\overline{b}. \end{eqnarray*} $

在文献[8] 中, Dinghas给出了区间值函数Riemann可积的定义. 我们用$ \mathcal{IR}_{([a, b])} $表示所有Riemann可积的区间值函数构成的集合, 用$ \mathcal{R}_{([a, b])} $表示所有Riemann可积的实函数构成的集合.

引理 1[8]  若$ \; f:[a, b]\rightarrow \mathbb{R}_{\mathcal{I}} $$ \; f = \left[\underline{f}, \overline{f}\right] $, 则$ \; f\in \mathcal{IR}_{([a, b])}\; $当且仅当$ \underline{f}(t), \overline{f}(t)\in \mathcal{R}_{([a, b])}. $进一步, 有

$ \begin{eqnarray*} (\mathcal{IR})\int_{a}^{b}f(t)dt = \left[(\mathcal{R})\int_{a}^{b}\underline{f}(t)dt, (\mathcal{R})\int_{a}^{b}\overline{f}(t)dt\right]. \end{eqnarray*} $

定义 1[3]  设$ \; f:[a, b]\rightarrow \mathbb{R}_{\mathcal{I}}^{+}\; $$ \; f(t) = \left[\underline{f}(t), \overline{f}(t)\right], h:[0, 1]\rightarrow \mathbb{R}^{+} $. 若对任意的$ \; x, y\in[a, b], t\in[0, 1], $

$ \begin{eqnarray} f\left(tx+(1-t)y\right)\supseteq h(t)f(x)+h(1-t)f(y), \end{eqnarray} $ (2.1)

则称$ \; f(t)\; $$ \; [a, b]\; $上的$ h $-凸函数. 我们用$ SX(h, [a, b], \mathbb{R}_{\mathcal{I}}^{+})\; $表示$ \; [a, b]\; $上所有区间$ h $-凸函数的全体. 若(1) 式的包含符号反向, 则称$ f(t) $$ \; [a, b]\; $上的$ h $-凹函数. 类似地, 我们用$ SV(h, [a, b], \mathbb{R}_{\mathcal{I}}^{+})\; $表示$ \; [a, b]\; $上所有区间$ h $-凹函数的全体.

定义 2[9]  设$ f:[a, b]\rightarrow \mathbb{R}_{\mathcal{I}}\; $$ f(t) = \left[\underline{f}(t), \overline{f}(t)\right] $. 若$ f\in\mathcal{IR}_{([a, b])}, $那么区间值Riemann-Liouville分数阶积分定义为:

$ \begin{eqnarray*} \mathcal{J}_{a^{+}}^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)}\int_{a}^{t}(t-\tau)^{\alpha-1}f(\tau)d\tau, \\ \mathcal{J}_{b^{-}}^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)}\int_{t}^{b}(\tau-t)^{\alpha-1}f(\tau)d\tau. \end{eqnarray*} $

其中$ \Gamma $是Gamma函数.

在文献[1] 中, Ahmad推广了Riemann-Liouville积分, 引入了整合分数阶积分. 为进一步推广, 我们定义了区间整合分数阶积分.

定义 3   设$ f:[a, b]\rightarrow \mathbb{R}_{\mathcal{I}}^{+} $$ f(t) = \left[\underline{f}(t), \overline{f}(t)\right] $. 若$ \; f\in\mathcal{IR}_{([a, b])} $, 那么整合分数阶积分在$ a $$ b $的定义为:

$ \begin{eqnarray*} (\mathcal{I}^{a}_{\alpha}f)(t) = \frac{1}{n!}\int_{a}^{t}(t-x)^{n}(x-a)^{\alpha-n-1}f(x)dx, \\ (^{b}\mathcal{I}_{\alpha}f)(t) = \frac{1}{n!}\int_{t}^{b}(x-t)^{n}(b-x)^{\alpha-n-1}f(x)dx. \end{eqnarray*} $

注 1   当$ \; \alpha = n+1 $时, 定义3即为定义2.

推论 1   设$ f:[a, b]\rightarrow \mathbb{R}_{\mathcal{I}}^{+} $$ f = [\underline{f}, \overline{f}] $. 若$ f\in \mathcal{IR}_{([a, b])} $, 那么

$ \begin{equation*} (\mathcal{I}^{a}_{\alpha}f)(t) = \left[(\mathcal{I}^{a}_{\alpha}\underline{f})(t), (\mathcal{I}^{a}_{\alpha}\overline{f})(t)\right] \end{equation*} $
$ \begin{equation*} ({^{b}\mathcal{I}_{\alpha}}f)(t) = \left[{(^{b}\mathcal{I}_{\alpha}}\underline{f})(t), ({^{b}\mathcal{I}_{\alpha}}\overline{f})(t)\right]. \end{equation*} $

  由引理1和定义3即可证得.

引理 2   设$ \xi:[a, b]\rightarrow \mathbb{R}_{\mathcal{I}}^{+}\; $$ \xi = [\underline{\xi}, \overline{\xi}] $. 若$ \; \xi\in\mathcal{IR}_{([a, b])}\; $且关于$ \frac{a+b}{2} $对称, 则

$ \begin{equation*} (\mathcal{I}^{a}_{\alpha}\xi)(b) = ({^{b}\mathcal{I}_{\alpha}}\xi)(a) = \frac{1}{2}\left[(\mathcal{I}^{a}_{\alpha}\xi)(b)+({^{b}\mathcal{I}_{\alpha}}\xi)(a)\right]. \end{equation*} $

  由于$ \xi $关于$ \frac{a+b}{2} $对称, 即对任意的$ x\in[a, b] $, $ \xi(a+b-x) = \xi(x) $.因此, 令$ t = a+b-x $, 有

$ \begin{eqnarray*} \begin{split} &\mathcal{I}^{a}_{\alpha}\xi(b) = \frac{1}{n!}\int_{a}^{b}(b-x)^{n}(x-a)^{\alpha-n-1}\xi(x)dx\\ = &\frac{1}{n!}\int_{a}^{b}(b-x)^{n}(x-a)^{\alpha-n-1}\left[\underline{\xi}(x), \overline{\xi}(x)\right]dx\\ = &\left[\frac{1}{n!}\int_{a}^{b}(b-x)^{n}(x-a)^{\alpha-n-1}\underline{\xi}(x)dx, \frac{1}{n!}\int_{a}^{b}(b-x)^{n}(x-a)^{\alpha-n-1}\overline{\xi}(x)dx\right]\\ = &\left[\frac{1}{n!}\int_{a}^{b}(t-a)^{n}(b-t)^{\alpha-n-1}\underline{\xi}(a+b-t)dt, \frac{1}{n!}\int_{a}^{b}(t-a)^{n}(b-t)^{\alpha-n-1}\overline{\xi}(a+b-t)dt\right]\\ = &\left[\frac{1}{n!}\int_{a}^{b}(t-a)^{n}(b-t)^{\alpha-n-1}\underline{\xi}(t)dt, \frac{1}{n!}\int_{a}^{b}(t-a)^{n}(b-t)^{\alpha-n-1}\overline{\xi}(t)dt\right]\\ = &\left[^{b}\mathcal{I}_{\alpha}\underline{\xi}(a), ^{b}\mathcal{I}_{\alpha}\overline{\xi}(a)\right]\\ = &^{b}\mathcal{I}_{\alpha}\xi(a). \end{split} \end{eqnarray*} $

证毕.

3 主要结果

定理 1   设$ f\in SX(h, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $$ f = [\underline{f}, \overline{f}], \; h:[0, 1]\rightarrow \mathbb{R}^{+}. $$ f\in\mathcal{IR}_{([a, b])} $, 那么

$ \begin{eqnarray} \begin{aligned} &\frac{\Gamma(\alpha-n)} {\Gamma(\alpha+1)h(\frac{1}{2})}f\left(\frac{a+b}{2}\right)\\ \supseteq&\frac{1}{(b-a)^{\alpha}}\big[\mathcal{I}_{\alpha}^{a}{f}(b)+{^{b}\mathcal{I}}_{\alpha}{f}(a)\big]\\ \supseteq&\frac{f(a)+f(b)}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\big[h(\nu)+h(1-\nu)\big]d\nu. \end{aligned} \end{eqnarray} $ (3.1)

其中$ \; \alpha\in(n, n+1] $.

  由于$ f\in SX(h, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $, 那么对任意的$ t\in[0, 1] $, 有

$ \begin{eqnarray} \begin{aligned} f\left(\frac{a+b}{2}\right)& = f\left(\frac{ta+(1-t)b+tb+(1-t)b}{2}\right)\\ &\supseteq h\left(\frac{1}{2}\right)\left[{f\left(ta+(1-t)b\right)+f\left(tb+(1-t)a\right)}\right]. \end{aligned} \end{eqnarray} $ (3.2)

在(3.2) 式两边同乘以$ \frac{1}{n!}\nu^{n}(1-\nu)^{\alpha-n-1} $并在$ [0, 1] $上关于$ t $取积分,

$ \begin{equation*} \begin{split} & \frac{\Gamma(\alpha-n)} {\Gamma(\alpha+1)h(\frac{1}{2})}f\left(\frac{a+b}{2}\right)\\ = &\frac{1} {h(\frac{1}{2})} f \left(\frac{a+b}{2}\right)\frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}d\nu\\ \supseteq & \left[\frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}f(\nu a+(1-\nu) b)d\nu+\frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}f((1-\nu)a+\nu b)d\nu \right]\\ = &\left[\frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}(\underline{f}(\nu a+(1-\nu) b)+\underline{f}((1-\nu) a+\nu b))d\nu, \right.\\& \; \left.\frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}(\overline{f}(\nu a+(1-\nu) b)+\overline{f}((1-\nu) a+\nu b))d\nu\right]\\ = & \left[\frac{1}{n!}\int_{b}^{a}\left(\tau(\mu)\right)^{n}\left(1-\tau(\mu)\right)^{\alpha-n-1}\underline{f}(\mu)\frac{d\mu}{a-b}+ \frac{1}{n!}\int_{a}^{b}\left(1-\tau(\mu)\right)^{n}\left(\tau(\mu)\right)^{\alpha-n-1}\underline{f}(\mu)\frac{d\mu}{b-a}, \right.\\ & \; \left.\frac{1}{n!}\int_{b}^{a}\left(\tau(\mu)\right)^{n}\left(1-\tau(\mu)\right)^{\alpha-n-1}\overline{f}(\mu)\frac{d\mu}{a-b}+ \frac{1}{n!}\int_{a}^{b}\left(1-\tau(\mu)\right)^{n}\left(\tau(\mu)\right)^{\alpha-n-1}\overline{f}(\mu)\frac{d\mu}{b-a}\right]\\ = &\frac{1}{(b-a)^{\alpha}} \left[\mathcal{I}_{\alpha}^{a}{\underline{f}}(b)+{^{b}\mathcal{I}}_{\alpha}{\underline{f}}(a), \mathcal{I}_{\alpha}^{a}{\overline{f}}(b)+{^{b}\mathcal{I}}_{\alpha}{\overline{f}}(a)\right].\\ = & \frac{1}{(b-a)^{\alpha}}\big[\mathcal{I}_{\alpha}^{a}{f}(b), {^{b}\mathcal{I}}_{\alpha}{f}(a)\big]. \end{split} \end{equation*} $

其中$ \tau(\mu) = \frac{b-\mu}{b-a}. $

因此

$ \begin{equation*} \frac{\Gamma(\alpha-n)} {\Gamma(\alpha+1)h(\frac{1}{2})}f\left(\frac{a+b}{2}\right)\supseteq\frac{n!}{(b-a)^{\alpha}}\big[\mathcal{I}_{\alpha}^{a}{f}(b)+{^{b}\mathcal{I}}_{\alpha}{f}(a)\big]. \end{equation*} $

即证得(3.1) 式中的第一个不等式.

类似地, 我们有

$ \begin{eqnarray} f\left(ta+(1-t)b\right)+f\left(tb+(1-t)a\right)\supseteq \left[h(t)+h(1-t)\right]f(a)+f(b). \end{eqnarray} $ (3.3)

在(3.3) 式两边同时乘以$ \frac{1}{n!}\nu^{n}(1-\nu)^{\alpha-n-1} $并在$ [0, 1] $上关于$ t $取积分,

$ \begin{equation*} \begin{split} \frac{1}{(b-a)^{\alpha}}\big[\mathcal{I}_{\alpha}^{a}{f}(b)+ {^{b}\mathcal{I}}_{\alpha}{f}(a)\big] \supseteq \frac{f(a)+f(b)}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\big[h(\nu)+h(1-\nu)\big]d\nu. \end{split} \end{equation*} $

证毕.

推论 2   设$ f\in SV(h, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $$ f = [\underline{f}, \overline{f}], \; h:[0, 1]\rightarrow \mathbb{R}^{+}. $$ f\in\mathcal{IR}_{([a, b])} $, 那么

$ \begin{eqnarray*} \begin{aligned} &\frac{\Gamma(\alpha-n)} {\Gamma(\alpha+1)h(\frac{1}{2})}f\left(\frac{a+b}{2}\right)\\ \subseteq&\frac{1}{(b-a)^{\alpha}}\big[\mathcal{I}_{\alpha}^{a}{f}(b)+{^{b}\mathcal{I}}_{\alpha}{f}(a)\big]\\ \subseteq&\frac{f(a)+f(b)}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\big[h(\nu)+h(1-\nu)\big]d\nu. \end{aligned} \end{eqnarray*} $

注 2   若定理1中$ \; h(t) = t $, 则

$ \begin{eqnarray*} \begin{aligned} f\left(\frac{a+b}{2}\right) \supseteq\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}\Gamma(\alpha-n)}\big[\mathcal{I}_{\alpha}^{a}{f}(b)+{^{b}\mathcal{I}}_{\alpha}{f}(a)\big]\supseteq\frac{f(a)+f(b)}{2}. \end{aligned} \end{eqnarray*} $

注 3   若定理1中$ \; \alpha = n+1, h(t) = t $, 则得到文献[2] 中的定理2.

注 4   若定理1中$ \; n = 1, \; \alpha = 2 $, 则得到文献[3] 中的定理4.1.

注 5   若定理1中$ \; \underline{f} = \overline{f} $$ h(t) = t $, 则得到文献[1] 中的定理2.1.

定理 2   设$ f\in SX(h, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $$ f = [\underline{f}, \overline{f}] $, $ \xi:[a, b]\rightarrow \mathbb{R}_{\mathcal{I}}^{+} $关于$ \frac{a+b}{2} $对称, $ \; h:[0, 1]\rightarrow \mathbb{R}^{+}. $$ f\xi\in\mathcal{IR}_{([a, b])} $, 那么

$ \begin{eqnarray} \begin{aligned} &\frac{n!}{2h\left(\frac{1}{2}\right)(b-a)^{\alpha}}f\left(\frac{a+b}{2}\right)\left[\mathcal{I}^{a}_{\alpha}\xi(b)+{^{b}\mathcal{I}_{\alpha}}\xi(a)\right]\\ \supseteq&\frac{n!}{(b-a)^{\alpha}}\left[\mathcal{I}^{a}_{\alpha}(f\xi)(b)+{^{b}\mathcal{I}_{\alpha}}(f\xi)(a)\right]\\ \supseteq&\left[f(a)+f(b)\right]\int_{0}^{1}\left[h(t)+h(1-t)\right]t^{n}(1-t)^{\alpha-n-1}\xi(tb+(1-t)a)dt, \end{aligned} \end{eqnarray} $ (3.4)

其中$ \alpha\in(n, n+1]. $

  由于$ f\in SX(h, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $, 那么在(3.2) 式两边同乘以$ \frac{1}{h\left(\frac{1}{2}\right)}t^{n}(1-t)^{\alpha-n-1}\xi(tb+(1-t)a) $且在$ [0, 1] $上关于$ t $取积分,

$ \begin{equation*} \begin{split} &\frac{1}{h\left(\frac{1}{2}\right)}f\left(\frac{a+b}{2}\right)\int_{0}^{1}t^{n}(1-t)^{\alpha-n-1}\xi(tb+(1-t)a)dt\\ \supseteq&\int_{0}^{1}t^{n}(1-t)^{\alpha-n-1}\left[f\left(ta+(1-t)b\right)+f\left(tb+(1-t)a\right)\right]\xi(tb+(1-t)a)dt\\ = &\int_{0}^{1}t^{n}(1-t)^{\alpha-n-1}f\left(ta+(1-t)b\right)\xi(tb+(1-t)a)dt\\ &\; +\int_{0}^{1}t^{n}(1-t)^{\alpha-n-1}f\left(tb+(1-t)a\right)\xi(tb+(1-t)a)dt. \end{split} \end{equation*} $

$ x = tb+(1-t)a $, 我们有

$ \begin{equation*} \begin{split} &\frac{1}{{h\left(\frac{1}{2}\right)}(b-a)^{\alpha}}f\left(\frac{a+b}{2}\right)\int_{a}^{b}(x-a)^{n}(b-x)^{\alpha-n-1}\xi(x)dx\\ \supseteq&\frac{1}{(b-a)^{\alpha}}\left\{\int_{a}^{b}(x-a)^{n}(b-x)^{\alpha-n-1}f\left(a+b-x\right)\xi(x)dx+\int_{a}^{b}(x-a)^{n}(b-x)^{\alpha-n-1}f(x)\xi(x)dx\right\}\\ = &\frac{1}{(b-a)^{\alpha}}\left\{\int_{a}^{b}(x-a)^{n}(b-x)^{\alpha-n-1}f(x)\xi\left(a+b-x\right)dx+\int_{a}^{b}(x-a)^{n}(b-x)^{\alpha-n-1}f(x)\xi(x)dx\right\}\\ = &\frac{1}{(b-a)^{\alpha}}\left\{\int_{a}^{b}(x-a)^{n}(b-x)^{\alpha-n-1}f(x)\xi(x)dx+\int_{a}^{b}(x-a)^{n}(b-x)^{\alpha-n-1}f(x)\xi(x)dx\right\}. \end{split} \end{equation*} $

由引理2, 有

$ \begin{equation*} \frac{n!}{2{h\left(\frac{1}{2}\right)}(b-a)^{\alpha}}f\left(\frac{a+b}{2}\right)\left[\mathcal{I}^{a}_{\alpha}\xi(b)+{^{b}\mathcal{I}_{\alpha}}\xi(a)\right]\supseteq\frac{n!}{(b-a)^{\alpha}}\left[\mathcal{I}^{a}_{\alpha}(f\xi)(b)+{^{b}\mathcal{I}_{\alpha}}(f\xi)(a)\right], \end{equation*} $

即证得(3.4) 式中的第一个不等式. 类似地,

$ \begin{eqnarray} f\left(ta+(1-t)b\right)+f\left(tb+(1-t)a\right)\supseteq \left[h(t)+h(1-t)\right]\left[f(a)+f(b)\right]. \end{eqnarray} $ (3.5)

在(3.5) 式两边同乘以$ t^{n}(1-t)^{\alpha-n-1}\xi(tb+(1-t)a) $并在$ [0, 1] $上关于$ t $取积分, 得

$ \begin{equation*} \begin{split} &\int_{0}^{1}t^{n}(1-t)^{\alpha-n-1}f(ta+(1-t)b)\xi(tb+(1-t)a)dt\\ &\; \; \; +\int_{0}^{1}t^{n}(1-t)^{\alpha-n-1}f(tb+(1-t)a)\xi(tb+(1-t)a)dt\\ \supseteq&\left[f(a)+f(b)\right]\int_{0}^{1}\left[h(t)+h(1-t)\right]t^{n}(1-t)^{\alpha-n-1}\xi(tb+(1-t)a)dt. \end{split} \end{equation*} $

因此,

$ \begin{equation*} \begin{split} &\frac{n!}{(b-a)^{\alpha}}\left[\mathcal{I}^{a}_{\alpha}(f\xi)(b)+{^{b}\mathcal{I}_{\alpha}}(f\xi)(a)\right]\\ \supseteq&\left[f(a)+f(b)\right]\int_{0}^{1}\left[h(t)+h(1-t)\right]t^{n}(1-t)^{\alpha-n-1}\xi(tb+(1-t)a)dt. \end{split} \end{equation*} $

证毕.

推论 3   设$ f\in SV(h, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $$ f = [\underline{f}, \overline{f}] $, $ \varphi:[a, b]\rightarrow \mathbb{R}_{\mathcal{I}}^{+} $关于$ \frac{a+b}{2} $对称, $ \; h:[0, 1]\rightarrow \mathbb{R}^{+}. $$ f\varphi\in\mathcal{IR}_{([a, b])} $, 那么

$ \begin{equation*} \begin{split} &\frac{n!}{2h\left(\frac{1}{2}\right)(b-a)^{\alpha}}f\left(\frac{a+b}{2}\right)\left[\mathcal{I}^{a}_{\alpha}g(b)+{^{b}\mathcal{I}_{\alpha}}g(a)\right]\\ \subseteq&\frac{n!}{(b-a)^{\alpha}}\left[\mathcal{I}^{a}_{\alpha}(fg)(b)+{^{b}\mathcal{I}_{\alpha}}(fg)(a)\right]\\ \subseteq&\left[f(a)+f(b)\right]\int_{0}^{1}\left[h(t)+h(1-t)\right]t^{n}(1-t)^{\alpha-n-1}g(tb+(1-t)a)dt. \end{split} \end{equation*} $

注 6   若定理2中$ h(t) = t $, 则

$ \begin{equation*} \begin{split} f\left(\frac{a+b}{2}\right)\left[\mathcal{I}^{a}_{\alpha}g(b)+{^{b}\mathcal{I}_{\alpha}}g(a)\right]&\supseteq\left[\mathcal{I}^{a}_{\alpha}(fg)(b)+{^{b}\mathcal{I}_{\alpha}}(fg)(a)\right]\\ &\supseteq\frac{\left[f(a)+f(b)\right]}{2}\left[\mathcal{I}^{\alpha}_{a}\varphi(b)+{\mathcal{I}^{\alpha}_{b}}\varphi(a)\right]. \end{split} \end{equation*} $

注 7   若定理2中$ \underline{f} = \overline{f} $$ h(t) = t $, 则得到文献[5] 中的定理2.1.

注 8   若定理1中$ \; \alpha = n+1, h(t) = t $, 则得到文献[10] 中的定理3.3.

定理 3   设$ f\in SX(h_{1}, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $$ f = [\underline{f}, \overline{f}] $, $ g\in SX(h_{2}, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $$ g = [\underline{g}, \overline{g}], \; h:[0, 1]\rightarrow \mathbb{R}^{+} $. 若$ fg\in\mathcal{IR}_{([a, b])} $, 则

$ \begin{eqnarray} \begin{aligned} &\frac{n!}{(b-a)^{\alpha}}\big[\mathcal{J}_{\alpha}^{a}{f}(b)g(b)+ {^b\mathcal{J}}_{\alpha}{f}(a)g(a)\big]\\ \supseteq &\mathcal{M}(a, b)\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\big[h_1(\nu)h_2(\nu)+h_1(1-\nu)h_2(1-\nu)\big]d\nu\\ &+\mathcal{N}(a, b)\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\big[h_1(\nu)h_2(1-\nu)+h_1(1-\nu)h_2(\nu)\big]d\nu, \end{aligned} \end{eqnarray} $ (3.6)

$ \begin{eqnarray} \begin{aligned} &\frac{n!\Gamma(\alpha-n)}{\Gamma(\alpha+1) h_1(\frac{1}{2})h_2(\frac{1}{2})}f\Big(\frac{a+b}{2}\Big)g\Big(\frac{a+b}{2}\Big)\\ \supseteq&\frac{n!}{(b-a)^{\alpha}}\big[\mathcal{J}_{\alpha}^{a}{f}(b)g(b)+ {^{b}\mathcal{J}}_{\alpha}{f}(a)g(a)\big]\\ &+\mathcal{M}(a, b)\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\left[h_1(\nu)h_2(1-\nu)+h_1(1-\nu)h_2(\nu)\right]d\nu\\ &+\mathcal{N}(a, b)\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\left[h_1(\nu)h_2(\nu)+h_1(1-\nu)h_2(1-\nu)\right]d\nu. \end{aligned} \end{eqnarray} $ (3.7)

其中,

$ \begin{equation*} \mathcal{M}(a, b) = f(a)g(a)+f(b)g(b), \; \mathcal{N}(a, b) = f(a)g(b)+f(b)g(a). \end{equation*} $

  由于$ f\in SX(h_{1}, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $, $ g\in SX(h_{2}, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $, 则

$ \begin{equation*} \begin{split} f\left(ta+(1-t)b\right)g\left(ta+(1-t)b\right)\supseteq &h_{1}(t)h_{2}(t)f(a)g(a)+h_{1}(1-t)h_{2}(1-t)f(b)g(b)\\ &+h_{1}(t)h_{2}(1-t)f(a)g(b)+h_{1}(1-t)h_{2}(t)f(b)g(a). \end{split} \end{equation*} $
$ \begin{equation*} \begin{split} f\left((1-t)a+tb\right)g\left((1-t)a+tb\right)\supseteq &h_{1}(1-t)h_{2}(1-t)f(a)g(a)+h_{1}(t)h_{2}(t)f(b)g(b)\\ &+h_{1}(1-t)h_{2}(t)f(a)g(b)+h_{1}(t)h_{2}(1-t)f(b)g(a). \end{split} \end{equation*} $

因此,

$ \begin{eqnarray} \begin{aligned} &f\left(ta+(1-t)b\right)g\left(ta+(1-t)b\right)+f\left((1-t)a+tb\right)g\left((1-t)a+tb\right)\\ \supseteq&\left[h_{1}(t)h_{2}(t)+h_{1}(1-t)h_{2}(1-t)\right]\mathcal{M}(a, b)\\ &+\left[h_{1}(t)h_{2}(1-t)+h_{1}(1-t)h_{2}(t)\right]\mathcal{N}(a, b). \end{aligned} \end{eqnarray} $ (3.8)

在(3.8) 式两边同时乘以$ \frac{1}{n!}\nu^{n}(1-\nu)^{\alpha-n-1} $并且在$ [0, 1] $上关于$ t $取积分,

$ \begin{eqnarray} \begin{split} &\frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}f\big(\nu a+(1-\nu) b\big)g\big(\nu a+(1-\nu) b\big)d\nu\\ &+\frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}f\big((1-\nu)a+\nu b\big)g\big((1-\nu)a+\nu b\big)d\nu\\ \supseteq &\frac{\mathcal{M}(a, b)}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\big[h_1(\nu)h_2(\nu)+h_1(1-\nu)h_2(1-\nu)\big]d\nu\\ &+\frac{\mathcal{N}(a, b)}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\big[h_1(1-\nu)h_2(\nu)+h_1(\nu)h_2(1-\nu)\big]d\nu. \end{split} \end{eqnarray} $ (3.9)

由定义3, 我们有

$ \begin{eqnarray} \frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}f\big(\nu a+(1-\nu) b\big)g\big(\nu a+(1-\nu) b\big)d\nu = \frac{1}{(b-a)^{\alpha}}\mathcal{J}^{a}_{\alpha}f(b)g(b), \end{eqnarray} $ (3.10)
$ \begin{eqnarray} \frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}f\big((1-\nu)a+\nu b\big)g\big((1-\nu)a+\nu b\big)d\nu = \frac{1}{(b-a)^{\alpha}}{^{b}\mathcal{J}_{\alpha}}f(a)g(a). \end{eqnarray} $ (3.11)

将不等式(3.10)–(3.11) 式代入到(3.9) 式, 即证得(3.6) 式.

类似地,

$ \begin{eqnarray} \begin{aligned} &f\Big(\frac{a+b}{2}\Big)g\Big(\frac{a+b}{2}\Big)\\ = &f\Big(\frac{\nu a+(1-\nu)b}{2}+\frac{(1-\nu)a+\nu b}{2}\Big)g\Big(\frac{\nu a+(1-\nu)b}{2}+\frac{(1-\nu)a+\nu b}{2}\Big)\\ \supseteq & h_1(\frac{1}{2})h_2(\frac{1}{2})\left[f\big(\nu a+(1-\nu)b\big)g\big(\nu a+(1-\nu)b\big)+f\big((1-\nu)a+\nu b\big)g\big((1-\nu)a+\nu b\big)\right]\\ &+h_1(\frac{1}{2})h_2(\frac{1}{2})\left\{\left[h_1(\nu)h_2(1-\nu)+h_1(1-\nu)h_2(\nu)\right]\mathcal{M}(a, b)\right.\\ &\left.+\left[h_1(\nu)h_2(\nu)+h_1(1-\nu)h_2(1-\nu)\right]\mathcal{N}(a, b)\right\}. \end{aligned} \end{eqnarray} $ (3.12)

在(3.12) 式两边同时乘以$ \frac{1}{n!}\nu^{n}(1-\nu)^{\alpha-n-1} $并且在$ [0, 1] $上关于$ t $取积分,

$ \begin{equation*} \begin{split} &\frac{\Gamma(\alpha-n)}{\Gamma(\alpha+1)}f\Big(\frac{a+b}{2}\Big)g\Big(\frac{a+b}{2}\Big)\\ \supseteq & h_1(\frac{1}{2})h_2(\frac{1}{2})\frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\left[f\big(\nu a+(1-\nu)b\big)g\big(\nu a+(1-\nu)b\big)\right.\\ &\left.+f\big((1-\nu)a+\nu b\big)g\big((1-\nu)a+\nu b\big)\right]d\nu\\ &+h_1(\frac{1}{2})h_2(\frac{1}{2})\frac{1}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\left\{\left[h_1(\nu)h_2(1-\nu)+h_1(1-\nu)h_2(\nu)\right]\mathcal{M}(a, b)\right.\\ &\left.+\left[h_1(\nu)h_2(\nu)+h_1(1-\nu)h_2(1-\nu)\right]\mathcal{N}(a, b)\right\}d\nu\\ \end{split} \end{equation*} $
$ \begin{equation*} \begin{split} = &\frac{h_1(\frac{1}{2})h_2(\frac{1}{2})}{(b-a)^{\alpha}}\big[\mathcal{J}_{\alpha}^{a}{f}(b)g(b)+ {^{b}\mathcal{J}}_{\alpha}{f}(a)g(a)\big]\\ &+\frac{\mathcal{M}(a, b)h_1(\frac{1}{2})h_2(\frac{1}{2})}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\left[h_1(\nu)h_2(1-\nu)+h_1(1-\nu)h_2(\nu)\right]d\nu\\ &+\frac{\mathcal{N}(a, b)h_1(\frac{1}{2})h_2(\frac{1}{2})}{n!}\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\left[h_1(\nu)h_2(\nu)+h_1(1-\nu)h_2(1-\nu)\right]d\nu.\\ \end{split} \end{equation*} $

上式两边同时乘以$ \frac{n!}{ h_1(\frac{1}{2})h_2(\frac{1}{2})} $, 即证得(3.7) 式.证毕.

推论 4   设$ f\in SV(h_{1}, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $$ f = [\underline{f}, \overline{f}] $, $ g\in SV(h_{2}, [a, b], \mathbb{R}_{\mathcal{I}}^{+}) $$ g = [\underline{g}, \overline{g}], \; h:[0, 1]\rightarrow \mathbb{R}^{+} $. 若$ fg\in\mathcal{IR}_{([a, b])} $. 那么

$ \begin{eqnarray*} \begin{aligned} &\frac{n!}{(b-a)^{\alpha}}\big[\mathcal{J}_{\alpha}^{a}{f}(b)g(b)+ {^b\mathcal{J}}_{\alpha}{f}(a)g(a)\big]\\ \subseteq &\mathcal{M}(a, b)\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\big[h_1(\nu)h_2(\nu)+h_1(1-\nu)h_2(1-\nu)\big]d\nu\\ &+\mathcal{N}(a, b)\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\big[h_1(\nu)h_2(1-\nu)+h_1(1-\nu)h_2(\nu)\big]d\nu, \end{aligned} \end{eqnarray*} $

$ \begin{eqnarray*} \begin{aligned} &\frac{n!\Gamma(\alpha-n)}{\Gamma(\alpha+1) h_1(\frac{1}{2})h_2(\frac{1}{2})}f\Big(\frac{a+b}{2}\Big)g\Big(\frac{a+b}{2}\Big)\\ \subseteq&\frac{n!}{(b-a)^{\alpha}}\big[\mathcal{J}_{\alpha}^{a}{f}(b)g(b)+ {^{b}\mathcal{J}}_{\alpha}{f}(a)g(a)\big]\\ &+\mathcal{M}(a, b)\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\left[h_1(\nu)h_2(1-\nu)+h_1(1-\nu)h_2(\nu)\right]d\nu\\ &+\mathcal{N}(a, b)\int_{0}^{1}\nu^{n}(1-\nu)^{\alpha-n-1}\left[h_1(\nu)h_2(\nu)+h_1(1-\nu)h_2(1-\nu)\right]d\nu. \end{aligned} \end{eqnarray*} $

注 9   若定理1中$ \alpha = n+1 $, 则得到文献[2] 中的定理3和定理4.

注 10   若定理1中$ n = 1, \alpha = 2 $, 则得到文献[3] 中的定理4.5和定理4.6.

注 11   若定理3中$ h(t) = t $, 则

$ \begin{eqnarray*} \begin{aligned} &\frac{1}{(b-a)^{\alpha}}\big[\mathcal{J}_{\alpha}^{a}{f}(b)g(b)+ {^b\mathcal{J}}_{\alpha}{f}(a)g(a)\big]\\ \supseteq &\frac{\Gamma(\alpha-n)}{\Gamma(\alpha+3)}\left[\mathcal{M}(a, b)\left[(n+2)(n+1)+(\alpha-n+1)(\alpha-n)\right]\right.\\ &\left.+2\mathcal{N}(a, b)(n+1)(\alpha-n)\right]\\ \end{aligned} \end{eqnarray*} $

$ \begin{eqnarray*} \begin{aligned} &\frac{\Gamma(\alpha-n)}{\Gamma(\alpha+1) h_1(\frac{1}{2})h_2(\frac{1}{2})}f\Big(\frac{a+b}{2}\Big)g\Big(\frac{a+b}{2}\Big)\\ \supseteq&\frac{1}{(b-a)^{\alpha}}\big[\mathcal{J}_{\alpha}^{a}{f}(b)g(b)+ {^{b}\mathcal{J}}_{\alpha}{f}(a)g(a)\big]+\frac{\Gamma(\alpha-n)}{\Gamma(\alpha+3)}\left[\mathcal{M}(a, b)\left[(n+2)(n+1)\right.\right.\\ &\left.\left.+(\alpha-n+1)(\alpha-n)\right]+2\mathcal{N}(a, b)(n+1)(\alpha-n)\right]\\ \end{aligned} \end{eqnarray*} $
参考文献
[1] Set E, Akdemir A O, Mumcu I. The Hermite-Hadamar's inequality and its extensions for conformable fractional integrals of any order α > 0[J]. Creat Math. Inf., 2016, 27: 197–206.
[2] Shi F F, Ye G J, Zhao D F, Liu W. Some Fractional Hermite-Hadamard Type Inequalities for Interval-Valued Functions[J]. Mathematics, 2020, 8(4): 534–543. DOI:10.3390/math8040534
[3] Zhao D F, An T Q, Ye G J, Liu W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions[J]. J. Inequal Appl., 2018, 302: 1–14.
[4] Sarikaya M Z, Set E, Yaldiz H, Başak N. Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities[J]. Math. Comput. Model, 2013, 57(9-10): 2403–2407. DOI:10.1016/j.mcm.2011.12.048
[5] Set E, Mumcu I. Hermite-Hadamar-Fejér type inequalities for conformable fractional integrals[J]. Miskolc Mathematics Notes, 2019, 20(1): 475–488. DOI:10.18514/MMN.2019.2421
[6] Katugampola U N. A new approach to generalized fractional derivatives[J]. Bull. Math. Anal. Appl., 2014, 6(4): 1–15.
[7] Chalco-Cano Y, Flores-Franulic A, Román-Flores H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative[J]. Comput. Appl. Math., 2012, 31(3): 457–472.
[8] Dinghas A. Zum Minkowskischen Integralbegriff abgeschlossener Mengen[J]. Math. Z., 1956, 66(1): 173–188. DOI:10.1007/BF01186606
[9] Büdak H, Tunc T, Sarikaya M Z. Fractional Hermite-Hadamard type inequalities for interval-valued functions[J]. Proc. Amer. Math. Soc., 2020, 148(2): 705–718.
[10] Liu X L, Ye G J, Zhao D F, Liu W. Fractional Hermite-Hadamard type inequalities for interval-valued functions[J]. J. Inequal. Appl., 2019, 2019(1): 1–11. DOI:10.1186/s13660-019-1955-4