数学杂志  2021, Vol. 41 Issue (2): 141-150   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
王天祥
李永祥
一类四阶常微分方程周期边值问题的正解
王天祥, 李永祥    
西北师范大学数学与统计学院, 甘肃 兰州 730070
摘要:本文研究了四阶周期边值问题 $\begin{cases} u^{(4)}(t)-\beta u''(t)+\alpha u(t)=f(t,\ u(t),\ u'(t),\ u''(t),\ u'''(t)),\quad t\in [0,1],\\ u^{(i)}(0)=u^{(i)}(1),\quad i=0,1,2,3 \end{cases} $ 正解的存在性,其中$f:[0,1]\times[0,+\infty)\times\mathbb{R}^3\rightarrow[0,+\infty)$连续.利用锥上的不动点指数理论,获得了该问题正解的存在性结果,推广了已有文献的相关结果.
关键词四阶常微分方程    正解        不动点指数理论    
POSITIVE SOLUTIONS OF PERIODIC BOUNDARY VALUE PROBLEMS FOR A CLASS OF FOURTH ORDER ORDINARY DIFFERENTIAL EQUATIONS
WANG Tian-xiang, LI Yong-xiang    
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
Abstract: In this paper, we discuss the existence of positive solution for the fourth-order periodic boundary value problem $\begin{cases} u^{(4)}(t)-\beta u''(t)+\alpha u(t)=f(t,\ u(t),\ u'(t),\ u''(t),\ u'''(t)),\quad t\in [0,1],\\ u^{(i)}(0)=u^{(i)}(1),\quad i=0,1,2,3 \end{cases} $ where $f:[0, 1]\times[0, +\infty)\times\mathbb{R}^3\rightarrow[0, +\infty)$ continuous. By using the fixed point index theory on cone, the existence of positive solution is obtained, and extends some related conclusions on this topic.
Keywords: fourth-order ordinary differential equations     positive solution     cone     fixed point index theory    
1 引言

本文讨论四阶非线性常微分方程

$ \begin{equation} \left\{ \begin{aligned} &u^{(4)}(t)-\beta u''(t)+\alpha u(t) = f(t, \ u(t), \ u'(t), \ u''(t), \ u'''(t)), \quad t\in [0, 1], \\ &u^{(i)}(0) = u^{(i)}(1), \quad i = 0, 1, 2, 3\\ \end{aligned} \right. \end{equation} $ (1.1)

正解的存在性, 其中$ f:[0, 1]\times[0, +\infty)\times\mathbb{R}^3\rightarrow[0, +\infty) $连续. 该问题描述了静态弹性梁在周期边界条件下的形变, $ f $中的未知函数项$ u $表示梁形变的位移, $ u' $表示隅角, $ u'' $表示弯矩, $ u''' $表示剪切力刚度. 而在弹性梁模型中, 只有正解才有实际意义.

四阶常微分方程周期边值问题在非线性振动, 流体力学和非线性弹性现象等诸多领域有着广泛的应用, 因而受到了许多学者的研究[1-16]. 主要应用的非线性分析的工具和方法有锥上的不动点指数理论[1-3, 6, 16], Krasnoselskii不动点定理[6, 7, 15], 单调迭代技巧[4, 5, 9, 12-14], 拓扑度方法[8]等.

对非线性项$ f $不含导数项的简单四阶周期边值问题(PBVP), 文献[1]中作者利用锥上的不动点指数理论获得了四阶周期边值问题

$ \begin{equation} \left\{ \begin{aligned} &u^{(4)}(t)-m^4u(t)+f(t, \, u(t)) = 0, \quad t\in [0, 2\pi], \\ &u^{(i)}(0) = u^{(i)}(2\pi), \quad i = 0, 1, 2, 3, \\ \end{aligned} \right. \end{equation} $ (1.2)

正解的存在性和多重性. 文献[2]在周期边界下对四阶微分算子$ L_{4}u = u^{(4)}-\beta u''+\alpha u $$ F_4 = \{u\in C^4[0, 1]|u^{(i)}(0) = u^{(i)}(1), i = 0, 1, 2;u^{(3)}(0)\geq u^{(3)}(1)\} $中建立了强极大值原理, 并用锥上的不动点指数理论, 在$ \alpha , \beta\in\mathbb{R} $满足条件

$ \begin{equation} 0<\alpha<\left({\frac{\beta}{2}+2{\pi}^2}\right)^2, \; \beta>-2\pi^2, \; \frac{\alpha}{\pi^4}+\frac{\beta}{\pi^2}+1>0 \end{equation} $ (1.3)

时, 获得了四阶周期边值问题(PBVP)

$ \begin{equation} \left\{ \begin{aligned} &u^{(4)}(t)-\beta u''(t)+\alpha u(t) = f(t, \, u(t)), \quad t\in [0, 1]\\ &u^{(i)}(0) = u^{(i)}(1), \quad i = 0, 1, 2, 3, \\ \end{aligned} \right. \end{equation} $ (1.4)

正解的存在性.文献[3]中作者利用锥上的不动点指数理论获得了四阶变系数周期边值问题

$ \begin{equation} \left\{ \begin{aligned} &u^{(4)}(t)-a(t)u(t) = f(t, \ u(t)), \quad t\in [0, \omega]\\ &u^{(i)}(0) = u^{(i)}(\omega), \quad i = 0, 1, 2, 3, \\ \end{aligned} \right. \end{equation} $ (1.5)

正解的存在性.

对非线性项$ f $含有$ u'' $项的四阶周期边值问题(PBVP)

$ \begin{equation} \left\{ \begin{aligned} &u^{(4)}(t) = f(t, \, u(t), \, u''(t)), \quad t\in [0, 1]\\ &u^{(i)}(0) = u^{(i)}(1), \quad i = 0, 1, 2, 3, \\ \end{aligned} \right. \end{equation} $ (1.6)

文献[12]在上下解存在的情形下, 利用Banach压缩原理, 获得了周期解的存在性与唯一性. 文献[13]应用单调迭代方法在$ f(t, u, v) $关于$ u, \ v $满足单边Lipschitz条件时, 获得了PBVP(1.6)解的存在性结果. 文献[14]利用建立的新极大值原理和Fredholm抉择, 用上下解方法获得了PBVP(1.6) 解的存在性结果. 文献[16]推广了文献[2]中的结果, 用锥上的不动点指数理论获得了四阶周期边值问题(PBVP)

$ \begin{equation} \left\{ \begin{aligned} &u^{(4)}(t)-\beta u''(t)+\alpha u(t) = f(t, \, u(t), \, u''(t)), \quad t\in [0, 1]\\ &u^{(i)}(0) = u^{(i)}(1), \quad i = 0, 1, 2, 3, \\ \end{aligned} \right. \end{equation} $ (1.7)

正解的存在性. 以上工作讨论的均是非线性项$ f $不含未知函数的导数项或仅含二阶导数项$ u'' $的特殊情形, 而在较为复杂的弹性梁模型中, 非线性项中可能会出现$ u' $$ u''' $. 对非线性项$ f $含有$ u', u'', u''' $的完全四阶周期边值问题(1.1), 未见有人研究. 本文利用锥上的不动点指数理论, 在允许非线性项$ f(t, x_0, x_1, x_2, x_3) $关于$ x_0, \; x_1, \; x_2, \; x_3 $超线性增长的不等式条件下, 获得了四阶周期边值问题(1.1) 正解的存在性.

2 预备知识

$ I = [0, 1], \ \mathbb{R}^{+} = [0, +\infty) $, $ C(I) $表示定义在$ I $上的全体连续函数按范数$ \|u\|_{C} = {\max\limits_{t\in[0, 1]}}|u(t)| $构成的Banach空间.$ C^{+}(I) $表示$ C(I) $中全体非负连续函数. 对$ n\in\mathbb{N}, \ C^{n}(I) $表示定义在$ I $上的全体$ n $阶连续可微函数按范数$ \|u\|_{C^n} = {\max\limits_{t\in I}}\{\|u\|_C, \|u'\|_C, $ $ \cdots, \|u^{(n)}\|_C\} $构成的Banach空间.

根据文献[2]中的引理3, 微分算子$ Lu = u^{(4)}(t)-\beta u''(t)+\alpha u(t) $在周期边界条件下满足极大值原理, 且有下面引理.

引理1 [2]  设$ \alpha , \beta\in\mathbb{R} $满足条件(1.3), 则四阶线性边值问题

$ \begin{equation} \left\{ \begin{aligned} &u^{(4)}(t)-\beta u''(t)+\alpha u(t) = 0, \quad t\in [\; 0, 1\; ], \\ &u^{(i)}(0) = u^{(i)}(1), \quad i = 0, 1, 2, \\ &u^{(3)}(0)-u^{(3)}(1) = 1 \end{aligned} \right. \end{equation} $ (2.1)

存在唯一解$ r(t)\in C^4(I) $, 且$ r(t)>0 $$ I $.

引理2 [2]  设$ \alpha , \beta\in\mathbb{R} $满足条件(1.3), 则对$ \forall\ h \in C(I) $, 四阶线性边值问题

$ \begin{equation} \left\{ \begin{aligned} &u^{(4)}(t)-\beta u''(t)+\alpha u(t) = h(t), \quad t\in [\; 0, 1\; ], \\ &u^{(i)}(0) = u^{(i)}(1), \quad i = 0, 1, 2, 3, \\ \end{aligned} \right. \end{equation} $ (2.2)

存在唯一解

$ \begin{equation} u(t) = \int_{0}^{1}G(t, s)h(s)ds: = Sh(t), \quad \forall\ t\in [0, 1], \end{equation} $ (2.3)

且解算子$ S:C(I)\rightarrow C^3(I) $为线性全连续算子, 其中

$ G(t, s) = \begin{cases} r(t-s), \quad 0\leq s\leq t\leq 1, \\ r(1+t-s), \quad 0\leq t< s\leq 1.\\ \end{cases} $

定义正常数$ \sigma, \ C_{i} $

$ \begin{equation} \sigma = \frac{ {\min\limits_{t\in [0, 1]}}r(t)}{ {\max\limits_{t\in [0, 1]}}r(t)}, \ \ C_{i} = \frac{ {\max\limits_{t\in [0, 1]}}|r^{(i)}(t)|}{ {\min\limits_{t\in [0, 1]}}r(t)}, \quad i = 1, \ 2, \ 3. \end{equation} $ (2.4)

$ C^3(I) $中取闭凸锥

$ \begin{equation} K = \{u \in C^3(I)\; |\; \; u(t)\geq \sigma \|u\|_C, \ \ |u^{(i)}(t)|\leq C_{i}u(t), \ \ i = 1, \ 2, \ 3, \ t\in\mathbb{R}\}. \end{equation} $ (2.5)

引理3  设$ \alpha , \beta\in{R} $满足条件(1.3)), 则对$ \forall\ h \in C^{+}(I) $, 四阶线性周期边值问题(2.2) 的解$ u = Sh\in K $, 即$ S(C^+(I))\subset K $.

  对$ \forall \ t\in I $, 由线性边值问题(2.2) 解的表达式(2.3), 有

$ u(t) = \int_0^1G(t, s)h(s)ds\leq \max\limits_{t\in [0, 1]}r(t)\int_0^1h(s)ds, \quad t\in I, $

所以

$ \|u\|_C\leq \max\limits_{t\in [0, 1]}r(t)\int_0^1h(s)ds, \quad t\in I. $

再由(2.3)式, 有

$ u(t) = \int_0^1G(t, s)h(s)ds\geq \min\limits_{t\in [0, 1]}r(t)\int_0^1h(s)ds\geq\sigma\|u\|_C. $

$ G(t, s) $的定义, 有

$ u(t) = \int_0^tr(t-s)h(s)ds+\int_t^1r(1+t-s)h(s)ds, \quad t\in I, $

对上式两端关于$ t $求导, 有

$ u^{(i)}(t) = \int_0^tr^{(i)}(t-s)h(s)ds+\int_t^1r^{(i)}(1+t-s)h(s)ds, \quad t\in I, $

因此, 有

$ \begin{eqnarray*} |u^{(i)}(t)|&\leq&|\int_0^tr^{(i)}(t-s)h(s)ds|+|\int_t^1r^{(i)}(1+t-s)h(s)ds|\\ &\leq&\max\limits_{t\in [0, 1]}r^{(i)}(t)\int_0^th(s)ds+\max\limits_{t\in [0, 1]}r^{(i)}(t)\int_t^1h(s)d\\ &\leq&\max\limits_{t\in [0, 1]}r^{(i)}(t)\int_0^1h(s)ds\\ & = &C_i\min\limits_{t\in [0, 1]} r(t)\int_0^1h(s)ds\\ &\leq&C_iu(t)\quad i = 1, \ 2, \ 3. \end{eqnarray*} $

因此, $ u\in K $, 即$ S(C^+(I))\subset K $. 对$ u\in K $, 如果$ u\ \neq 0 $, 那么$ \|u\|_C> 0 $. 由锥$ K $的定义,

$ u(t)\geq\sigma \|u\|_C>0, \quad \forall \; t \in I. $

$ \begin{equation} F(u)(t) = f(t, u(t), u'(t), u''(t), u'''(t)), \ \ t \in I, \end{equation} $ (2.6)

$ F:K\rightarrow C^+(I) $连续. 定义锥$ K $上的积分算子$ A:K\rightarrow K $

$ \begin{equation} Au(t) = S(F(u)) = \int _0^1G(t, s)f(s, u(s), u'(s), u''(s), u'''(s))ds. \end{equation} $ (2.7)

引理4 $ A:K\rightarrow K $是全连续算子.

按算子$ S $的定义, 方程(1.1) 的正解等价于$ A $的非零不动点. 下面将用锥上的不动点指数理论寻找$ A $的非零不动点. 设$ E $是Banach空间, $ K\subset E $$ E $中的闭凸锥. 设$ \Omega\subset E $为有界开集, 其边界为$ \partial\Omega $, 且满足$ K\cap \Omega\neq\varnothing $. 设$ A:K\cap \overline{\Omega}\rightarrow K $为全连续映射, 若对$ \forall u\in K\cap \partial\Omega $, 都有$ Au\neq u $, 则不动点指数$ i(A, \; K\cap \Omega, \; K) $有定义. 特别地, 若$ i(A, \; K\cap \Omega, \; K)\neq 0 $, 则$ A $$ K\cap \Omega $中有不动点.

引理5 [17]  设$ \Omega \subset E $是有界开集, $ \theta \in \Omega $, 且$ A:\overline{\Omega}\cap K\rightarrow K $为全连续映射. 若$ \mu Au\neq u, \ \ \forall \ u \in \partial \Omega \cap K, \ \ 0<\mu \leq 1 $, 则$ i(A, \Omega \cap K, K) = 1 $.

引理6 [17]  设$ \Omega \subset E $是有界开集, $ A:\overline{\Omega}\cap K\rightarrow K $为全连续映射. 若$ \exists \ v \in K\backslash \{\theta\} $, 使得$ u-Au\neq \tau v, \ \ \forall\ u \in \partial \Omega \cap K, \quad \tau\geq 0 $, 则$ i(A, \Omega \cap K, K) = 0 $.

3 主要结果

定理1  设$ \alpha , \beta\in\mathbb{R} $满足条件(1.3), $ f:I\times\mathbb{R}^{+}\times\mathbb{R}^{3}\rightarrow\mathbb{R}^{+} $连续, 且满足下列条件

(H1)   $ \exists\ \delta >0 $$ \ a_{0}, \ a_{1}, \ a_{2}, \ a_{3}\geq 0, \ a_{0}+a_{1}C_{1}+a_{2}C_{2}+a_{3}C_{3}<\alpha $, 使得

$ f(t, \ x_{0}, \ x_{1}, \ x_{2}, \ x_{3})\leq a_{0}x_{0}+a_{1}|x_{1}|+a_{2}|x_{2}|+a_{3}|x_{3}|, \ |(x_0, x_1, x_2, x_3)|<\delta, \ x_0\geq 0, \ t\in I; $

(H2)   $ \exists\ H >0 $$ \ b_{0}>\alpha $, 使得

$ f(t, \ x_{0}, \ x_{1}, \ x_{2}, \ x_{3})\geq b_{0}x_{0}, \ |(x_0, x_1, x_2, x_3)|>H, \ x_0\geq 0, \ t\in I. $

则四阶周期边值问题(1.1) 至少存在一个正解.

  取工作空间$ E = C^3(I) $.$ K\subset C^3(I) $为(2.5) 定义的$ C^3(I) $中的闭凸锥, $ A:K\rightarrow K $是(2.7) 式所定义的全连续算子, 则方程(1.1) 的正解等价于算子$ A $的非零不动点. 取$ 0<r< R< +\infty $, 令

$ \begin{equation} \Omega_1 = \{u \in C^3(I)|\; \|u\|_{C^{3}}<r\}, \quad \Omega_2 = \{u \in C^3(I)|\; \|u\|_{C^{3}}<R\}. \end{equation} $ (3.1)

下证当$ r $充分小, $ R $充分大时, 算子$ A $$ (\Omega_2\backslash \overline{\Omega}_1)\cap K $中有不动点.

$ r\in (0, \frac{\delta}{2}) $, 下证$ A $$ \partial\Omega_1\cap K $中满足引理5的条件, 即

$ \begin{equation} \mu Au\neq u, \quad 0<\mu\leq 1, \quad u\in \partial \Omega_1\cap K. \end{equation} $ (3.2)

反设(3.2) 式不成立, 即$ \exists\ u_0\in\partial \Omega_1\cap K $$ 0<\mu_0\leq1 $, 使得$ \mu_0Au_0 = u_0 $. 因为$ u_0 = S(\mu_0F(u_0)) $, 按$ S $的定义, $ u_0 $$ h = \mu_0F(u_0)\in C^{+}(I) $相应线性边值问题(2.2) 的解. 因此, $ u_0\in C^4(I) $满足微分方程

$ \begin{equation} \left\{ \begin{aligned} &u_0^{(4)}(t)-\beta u_0''(t)+\alpha u_0(t) = \mu_0f(t, u_0(t), u_0'(t), u_0''(t), u_0'''(t)), \quad t\in [\; 0, 1\; ], \\ &u_0^{(i)}(0) = u_0^{(i)}(1), \quad i = 0, 1, 2, 3.\\ \end{aligned} \right. \end{equation} $ (3.3)

因为$ u_0\in\partial \Omega_1\cap K $, 由锥$ K $的定义, 对$ \forall\; t\in I $, 有

$ \|u_0\|_{C^{3}} = r, \quad |u_0^{(i)}(t)|\leq \|u_0^{(i)}\|_{C}\leq\|u_0\|_{C^{3}} = r, \quad i = 1, \ 2, \ 3, $

所以

$ |(u_0(t), u_0'(t), u_0''(t), u_0'''(t))| = ( \sum\limits_{i = 0}^3|u^{(i)}_{0}(t)|^2)^{\frac{1}{2}}\leq2r<\delta. $

由条件(H1), 有

$ \begin{equation} f(t, u_0(t), u_0'(t), u_0''(t), u_0'''(t))\leq a_{0}u_{0}(t)+a_{1}|u_{0}'(t)|+a_{2}|u_{2}''(t)|+a_{3}|u_{3}'''(t)|, \quad \forall\; t \in I. \end{equation} $ (3.4)

将((3.3) 式中的方程在$ I $上积分, 并利用(3.4) 式可得

$ \begin{eqnarray*} \alpha\int_0^1u_0(t)dt& = &\mu_0\int_0^1f(t, u_0(t), u_0'(t), u_0''(t), u_0'''(t))dt\\ &\leq&(a_{0}+a_{1}C_{1}+a_{2}C_{2}+a_{3}C_{3})\int_0^1u_0(t)dt. \end{eqnarray*} $

由于$ \int_0^1u_0(t)dt\geq \sigma \|u_0\|_C>0 $. 由上式, $ \alpha\leq a_{0}+a_{1}C_{1}+a_{2}C_{2}+a_{3}C_{3} $, 与(H1) 中的条件矛盾. 故算子$ A $满足(3.2) 式, 由引理5知

$ \begin{equation} i(A, \Omega_1\cap K, K) = 1. \end{equation} $ (3.5)

另一方面, 取$ v_0(t)\equiv 1 $, 则$ v_0 = S(\alpha) $. 下证$ A $$ \partial\Omega_2\cap K $上满足引理6的条件, 即

$ \begin{equation} u-Au\neq\tau v_0, \; \; \forall\; u\in \partial\Omega_2\cap K, \; \tau\geq 0. \end{equation} $ (3.6)

反设(3.6) 式不成立, 则$ \exists\; u_1\in \partial\Omega_2\cap K $$ \tau_0\geq 0 $, 使得

$ u_1-Au_1 = \tau_0 v_0, \; \; \forall\; u_1\in \partial\Omega_2\cap K, \; \tau_0\geq 0. $

$ u_1 = Au_1+\tau_0v_0 = S(F(u_1))+S(\tau_0\alpha) = S(F(u_1)+\tau_0\alpha) $. 按$ S $的定义, $ u_1 $$ h = F(u_1)+\tau_0\alpha\in C^{+}(I) $相应线性边值问题(2.2) 的解. 因此, $ u_0\in C^4(I) $满足微分方程

$ \begin{equation} \left\{ \begin{aligned} &u_1^{(4)}(t)-\beta u_1''(t)+\alpha u_1(t) = f(t, u_1(t), u_1'(t), u_1''(t), u_1'''(t))+\tau_0\alpha, \quad t\in [\; 0, 1\; ], \\ &u_1^{(i)}(0) = u_1^{(i)}(1), \quad i = 0, 1, 2, 3.\\ \end{aligned} \right. \end{equation} $ (3.7)

因为$ u_1\in \partial\Omega_2\cap K $, 由$ K $的定义, 有

$ \begin{equation} u_1(t)\geq\sigma\|u_1\|_C, \quad |u_1^{(i)}(t)|\leq C_{i}u_1(t), \ \ t\in\mathbb{R}, \ \ i = 1, \ 2, \ 3. \end{equation} $ (3.8)

$ C_0 = \max\{|f(t, \ x_{0}, \ x_{1}, \ x_{2}, \ x_{3})-b_0x_0|:t\in I, \ |(x_{0}, \ x_{1}, \ x_{2}, \ x_{3})|\leq H\}+1 $, 则由(F2) 式, 有

$ \begin{equation} f(t, \ x_{0}, \ x_{1}, \ x_{2}, \ x_{3})\geq b_0x_0-C_0, \ \ t\in\mathbb{R}, \ \ x_0\geq 0. \end{equation} $ (3.9)

将(3.7) 式中的方程在$ I $上积分, 并利用(3.9) 式可得

$ \begin{eqnarray*} \alpha\int_0^1u_1(t)dt& = &\int_0^1f(t, u_1(t), u_1'(t), u_1''(t), u_1'''(t))dt+\tau_0\alpha\\ &\geq&\int_0^1(b_{0}u_1(t)-C_{0})dt\\ & = &b_0\int_0^1u_1(t)dt-C_0, \end{eqnarray*} $

所以$ \int_0^1u_1(t)dt\leq\frac{C_0}{b_0-\alpha} $. 因此, 由(3.8) 式, 有

$ \|u_1\|_C\leq \frac{C_0}{\sigma(b_0-\alpha)}: = R_0, \ \ \ \|u_1^{(i)}\|_C\leq C_{i}\|u_1\|_C\leq C_{i}R_0, \ \ i = 1, \ 2, \ 3. $

所以

$ \begin{equation} \|u_1\|_{C^3} = \max\{1, \ C_1, \ C_2, \ C_3\}R_0: = R_1. \end{equation} $ (3.10)

$ R>\max\{R_1, \ \frac{\delta}{2}\} $, 则当$ u_1\in \partial \Omega_2\cap K $时,

$ \|u_1\|_{C^3} = R>R_1, $

与(3.10) 式矛盾. 因此, (3.6)式成立, 由引理6, 有

$ \begin{equation} i(A, \Omega_2\cap K, K) = 0. \end{equation} $ (3.11)

故由不动点指数的区域可加性及(3.5) 与(3.11), 有

$ i(A, K\cap(\Omega_2\backslash\overline{\Omega}_1), K) = i(A, K\cap\Omega_2, K)-i(A, K\cap\Omega_1, K) = -1 $

从而由可解性知, $ A $$ K\cap(\Omega_2\backslash\overline{\Omega}_1) $上存在不动点, 该不动点为方程(1.1) 的正解.

定理2  设$ \alpha , \beta\in\mathbb{R} $满足条件(1.3), $ f:I\times\mathbb{R}^{+}\times\mathbb{R}^{3}\rightarrow\mathbb{R}^{+} $连续, 且满足下列条件

(H3)   $ \exists\ \delta >0 $$ \ b_{0}>\alpha $, 使得

$ f(t, \ x_{0}, \ x_{1}, \ x_{2}, \ x_{3})\geq b_{0}x_{0}, \ |(x_0, x_1, x_2, x_3)|<\delta, \ x_0\geq 0, \ t\in I; $

(H4)   $ \exists\ H >0 $$ \ a_{0}, \ a_{1}, \ a_{2}, \ a_{3}\geq 0, \ a_{0}+a_{1}C_{1}+a_{2}C_{2}+a_{3}C_{3}<\alpha $, 使得

$ f(t, \ x_{0}, \ x_{1}, \ x_{2}, \ x_{3})\leq a_{0}x_{0}+a_{1}|x_{1}|+a_{2}|x_{2}|+a_{3}|x_{3}|, \ |(x_0, x_1, x_2, x_3)|>H, \ x_0\geq 0, \ t\in I, $

则四阶周期边值问题(1.1) 至少存在一个正解.

  设$ \Omega_1, \Omega_2 $是(3.1) 定义的集合, $ K\subset C^3(I) $为(2.5) 定义的闭凸锥, $ A:K\rightarrow K $是(2.7) 式所定义的全连续算子. 下证当$ r $充分小, $ R $充分大时, 算子$ A $$ (\Omega_2\backslash \overline{\Omega}_1)\cap K $中有不动点.

$ r\in (0, \frac{\delta}{2}) $, $ v_0(t)\equiv 1 $. 下证$ A $$ \partial\Omega_1\cap K $中满足引理6的条件, 即

$ \begin{equation} u-Au\neq\tau v_0, \; \; \forall\; u\in \partial\Omega_1\cap K, \; \tau\geq 0. \end{equation} $ (3.12)

反设上式不成立, 即$ \exists\; u_0\in\partial \Omega_1\cap K $$ \tau_0\geq 0 $, 使得$ u_0-Au_0 = \tau_0 v_0 $, 所以$ u_0 = Au_0+\tau_0 v_0 $, 即$ u_0 = S(F(u_0))+S(\tau_0 \alpha) = S(F(u_0)+\tau_0 \alpha) $, 由$ S $的定义, $ u_0 $$ h = F(u_0)+\tau_0M\in C^{+}(I) $相应线性边值问题(2.2) 的解. 因此, $ u_0\in C^4(I) $满足微分方程

$ \begin{equation} \left\{ \begin{aligned} &u_0^{(4)}(t)-\beta u_0''(t)+\alpha u_0(t) = f(t, u_0(t), u_0'(t), u_0''(t), u_0'''(t))+\tau_0\alpha, \quad t\in [\; 0, 1\; ], \\ &u_0^{(i)}(0) = u_0^{(i)}(1), \quad i = 0, 1, 2, 3.\\ \end{aligned} \right. \end{equation} $ (3.13)

因为$ u_0\in\partial \Omega_1\cap K $, 由锥$ K $的定义, 对$ \forall\; t\in I $, 有

$ \|u_0\|_{C^{3}} = r, \quad |u_0^{(i)}(t)|\leq \|u_0^{(i)}\|_{C}\leq\|u_0\|_{C^{3}} = r, \quad i = 1, \ 2, \ 3, $

所以

$ |(u_0(t), u_0'(t), u_0''(t), u_0'''(t))| = ( \sum\limits_{i = 0}^3|u^{(i)}_{0}(t)|^2)^{\frac{1}{2}}\leq2r. $

由条件(H3), 有

$ \begin{equation} f(t, u_0(t), u_0'(t), u_0''(t), u_0'''(t))\geq b_{0}u_{0}(t), \quad \forall\; t \in I. \end{equation} $ (3.14)

将(3.13) 式中的方程在$ I $上积分, 并利用(3.14) 式可得

$ \begin{eqnarray*} \alpha\int_0^1u_0(t)dt& = &\int_0^1f(t, u_0(t), u_0'(t), u_0''(t), u_0'''(t))dt\\ &\geq&b_{0}\int_0^1u_0(t)dt. \end{eqnarray*} $

由于$ \int_0^1u_0(t)dt\geq \sigma \|u_0\|_C>0 $, 由上式, $ \alpha\geq b_{0} $, 与(H3)中的条件矛盾. 故算子$ A $满足(3.12) 式, 由引理6知

$ \begin{equation} i(A, \Omega_1\cap K, K) = 0. \end{equation} $ (3.15)

另一方面, 取$ R>\max\{\frac{\max\{1, C_1, C_2, C_3\}}{\sigma}H, \delta\} $, 下证$ A $$ \partial\Omega_2\cap K $上满足引理5的条件, 即

$ \begin{equation} \mu Au\neq u, \quad 0<\mu\leq 1, \ u\in \partial \Omega_2\cap K. \end{equation} $ (3.16)

反设(3.16) 式不成立, 则$ \exists\ u_1\in \partial\Omega_2\cap K $$ 0<\mu_0\leq1 $, 使得$ \mu_0 Au_1 = u_1 $, 即$ u_1 = S(F(u_1)) $. 由$ S $的定义, $ u_1 $$ h = \mu_0F(u_1)\in C^{+}(I) $相应线性边值问题(2.2) 的解. 因此, $ u_1\in C^4(I) $满足微分方程

$ \begin{equation} \left\{ \begin{aligned} &u_1^{(4)}(t)-\beta u_1''(t)+\alpha u_1(t) = \mu_0f(t, u_1(t), u_1'(t), u_1''(t), u_1'''(t)), \quad t\in [\; 0, 1\; ], \\ &u_1^{(i)}(0) = u_1^{(i)}(1), \quad i = 0, 1, 2, 3.\\ \end{aligned} \right. \end{equation} $ (3.17)

因为$ u_1\in \partial\Omega_2\cap K $, 由$ K $的定义, $ u_{1} $满足(3.8) 式, 则有

$ \begin{equation} \|u_1\|_{C^{2}} = \max\limits_{t\in I}\{\|u_1\|_C, \|u'_1\|_C, \|u''_1\|_C, \|u'''_1\|_C \} = \max\{1, C_1, C_2, C_3\}\|u_1\|_{C}. \end{equation} $ (3.18)

所以有

$ \begin{eqnarray*} |(u_1(t), u'_1(t), u''_1(t), u'''_1(t))|&\geq& |u_1(t)| \geq \sigma\|u_1\|_{C}\\ &\geq&\frac{\sigma}{\max\{1, C_1, C_2, C_3\}}\|u_1\|_{C^{2}}\\ & = &\frac{\sigma R}{\max\{1, C_1, C_2, C_3\}}>H, \quad t\in I. \end{eqnarray*} $

从而由(H4), 有

$ \begin{equation} f(t, \ x_{0}, \ x_{1}, \ x_{2}, \ x_{3})\leq a_{0}x_{0}+a_{1}|x_{1}|+a_{2}|x_{2}|+a_{3}|x_{3}|, \ \ t\in I, \ \ x_0\geq 0. \end{equation} $ (3.19)

将(3.17) 式中的方程在$ I $上积分, 并利用(3.19) 式可得

$ \begin{eqnarray*} \alpha\int_0^1u_1(t)dt& = &\mu_0\int_0^1f(t, u_1(t), u_1'(t), u_1''(t), u_1'''(t))dt\\ &\leq&(a_{0}+a_{1}C_{1}+a_{2}C_{2}+a_{3}C_{3})\int_0^1u_1(t)dt. \end{eqnarray*} $

由于$ \int_0^1u_1(t)dt\geq \sigma \|u_1\|_C>0 $. 由上式, $ a_{0}+a_{1}C_{1}+a_{2}C_{2}+a_{3}C_{3}>\alpha $, 与(H4)中的条件矛盾. 故算子$ A $满足$ (3.16) $式, 由引理5知

$ \begin{equation} i(A, \Omega_2\cap K, K) = 1. \end{equation} $ (3.20)

故由不动点指数的区域可加性及(3.15) 与(3.20), 有

$ \begin{equation*} i(A, K\cap(\Omega_2\backslash\overline{\Omega}_1), K) = i(A, K\cap\Omega_2, K)-i(A, K\cap\Omega_1, K) = 1 \end{equation*} $

从而由可解性知, $ A $$ K\cap(\Omega_2\backslash\overline{\Omega}_1) $上存在不动点, 该不动点为方程(1.1) 的正解.

例1  考虑如下的超线性四阶周期边值问题

$ \begin{equation} \left\{ \begin{aligned} &u^{(4)}(t)-u''(t)+u(t) = a_0(t)u^2(t)+a_1(t)(u'(t))^2+a_2(t)(u''(t))^2+a_3(t)(u'''(t))^2, \quad t\in [0, 1], \\ &u^{(i)}(0) = u^{(i)}(1), \quad i = 0, 1, 2, 3, \\ \end{aligned} \right. \end{equation} $ (3.21)

其中$ a_{i}(t)\in C^+(I), \quad i = 0, \ 1, \ 2, \ 3, \ t\in I $. 显然$ \alpha = 1, \ \beta = 1 $满足条件(1.3). 若$ a_0(t)>1 $, 则相应的非线性项$ f(t, x_0, x_1, x_2, x_3) = a_0(t)x_0^2+a_1(t)x_1^2+a_2(t)x_2^2+a_3(t)x_3^2 $满足条件(H1) 及(H2), 由定理1知, 方程(3.21) 至少有一个正解.

例2  考虑如下的次线性四阶周期边值问题

$ \begin{equation} \left\{ \begin{aligned} &u^{(4)}(t)+u''(t)+u(t) = b_0(t)\sqrt[3]{u(t)}+b_1(t)\sqrt[3]{u'(t)}+b_1(t)\sqrt[3]{u''(t)}+b_1(t)\sqrt[3]{u'''(t)}, \quad t\in [0, 1], \\ &u^{(i)}(0) = u^{(i)}(1), \quad i = 0, 1, 2, 3.\\ \end{aligned} \right. \end{equation} $ (3.22)

其中$ a_{i}(t)\in C^+(I), \quad i = 0, \ 1, \ 2, \ 3, \ t\in I $. 显然$ \alpha = 1, \ \beta = -1 $满足条件(1.3)). 若$ b_0(t)>1 $, 则相应的非线性项$ f(t, x_0, x_1, x_2, x_3) = b_0(t)\sqrt[3]{x_0}+b_1(t)\sqrt[3]{x_1}+b_1(t)\sqrt[3]{x_2}+b_1(t)\sqrt[3]{x_3} $满足条件(H3) 及(H4), 由定理2知, 方程(3.22) 至少有一个正解.

参考文献
[1] Kong Lingbin, Jiang Daqing. Multiple positive solutions of a nonlinear fourth order periodic boundary value problem[J]. Ann. Polon. Math, 1998, 69(3): 265–270. DOI:10.4064/ap-69-3-265-270
[2] Li Yongxiang. Positive periodic solutions of fourth order periodic boundary value problems[J]. Nonlinear Analysis, 2003, 54(6): 1069–1078. DOI:10.1016/S0362-546X(03)00127-5
[3] Bouteraa N, Benaicha S. Positive periodic solutions for a class of fourth order nonlinear differential equations[J]. Numerical Analysis and Applications, 2019, 12(1): 1–14. DOI:10.1134/S1995423919010014
[4] Cabada A, Lois S. Maximum principles for fourth and sixth order periodic boundary value problems[J]. Nonlinear Analysis, 1997, 29(10): 1161–1171. DOI:10.1016/S0362-546X(96)00086-7
[5] Cabada A. The method of lower and upper solutions for second, third, fourth and higher order boundary value problems[J]. Mathematical Analysis and Applications, 1994, 185(2): 302–320. DOI:10.1006/jmaa.1994.1250
[6] Yao Qingliu. Existence of multiplicity and infinite solvability of positive solutions to a nonlinear fourth order periodic boundary value problems[J]. Nonlinear Analysis, 2005, 63(2): 237–246. DOI:10.1016/j.na.2005.05.009
[7] 刘仁义. 一类四阶周期边值问题的正解存在性与多解性[J]. 兰州大学学报, 2005, 41(1): 112–114. DOI:10.3321/j.issn:0455-2059.2005.01.023
[8] Bereanu C. Periodic solutions of some fourth order nonlinear differential equations[J]. Nonlinear Analysis, 2009, 71(1): 53–57.
[9] Zuo Wenjie, Jiang Daqing. A monotone method for fourth order periodic boundary value problems and periodic solutions of functional differential equations[J]. Methods and Applications of Analysis, 2005, 12(1): 53–57. DOI:10.4310/MAA.2005.v12.n1.a2
[10] Ma Ruyun, Dai Guowei. Periodic solutions of nonlocal semilinear fourth-order differential equations[J]. Nonlinear Analysis, 2011, 74(15): 5023–5029. DOI:10.1016/j.na.2011.04.068
[11] Li Wei, Zhang Meirong. Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations[J]. Applied Mathematics Letters, 2009, 22(3): 314–319. DOI:10.1016/j.aml.2008.03.027
[12] Jiang Daqing, Gao Wenjie, Wan Aying. A monotone method for constructing extremal solutions to fourth-order periodic boundary value problems[J]. Com Appl Math, 2002, 132(2): 411–421. DOI:10.1016/S0096-3003(01)00201-6
[13] Weng Shiyou, Gao Haiyin, Jiang Daqing, Hou Xuezhang. Upper and lower solutions method for fourth-order periodic boundary value problems[J]. Journal of Applied Analysis, 2008, 14(1): 53–61. DOI:10.1515/JAA.2008.53
[14] Bai Zhanbing. Iterative solutions for some fourth-order periodic boundary value problems[J]. Taiwanese Journal of Mathematics, 2008, 12(7): 1681–1690. DOI:10.11650/twjm/1500405079
[15] Jiang Daqing, Liu Zhaoli, Zhang Lili. Optimal existence theory for single and multiple positive solutions to fourth order periodic boundary value problems[J]. Nonlinear Analysis, 2006, 7(4): 841–852. DOI:10.1016/j.nonrwa.2005.05.003
[16] Li Yongxiang. Existence of positive solutions for a fourth-order periodic boundary value problems[J]. Abstract and Applied Analysis, 2011, Article ID 829783.
[17] Guo D, Lakshmikantham V. Nonlinear problems in abstract cones[M]. New York: Academic Press, 1988.