数学杂志  2021, Vol. 41 Issue (2): 109-114   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
BAO Ai-guo
WU Guo-rong
LOWER BOUND FOR THE BLOW-UP TIME OF THE SOLUTION TO A QUASI-LINEAR PARABOLIC PROBLEM
BAO Ai-guo, WU Guo-rong    
Department of Mathematics and Statistics, School of Science, Inner Mongolia Agricultural University, Inner Mongolia Huhhot 010018 China
Abstract: In this paper, using a delicate application of general Sobolev inequality, we establish the lower bound for the blow-up time of the solution to a quasi-linear parabolic problem, which improves the result of Theorem 2.1, Theorem 3.1 in[1], and the model (4.1) in[2].
Keywords: Quasi-linear parabolic equation     Initial-boundary value problem     lower bound for blow-up time    
一类拟线性抛物型方程解的爆破时间的下界
包爱国, 吴国荣    
内蒙古农业大学理学院数学与统计学系, 内蒙古 呼和浩特 010018
摘要:本文巧妙应用广义Sobolev不等式,研究了一类拟线性抛物型方程解的爆破时间的下界,该结果推广了文献[1]中的定理2.1和定理3.1的结论,同样完善了文献[2]中的模型(4.1)的结论.
关键词拟线性抛物型方程    初边值问题    爆破时间的下界    
1 Introduction

In this paper, we will establish the lower bound for the blow-up time of the solution to the following problems:

$ \begin{equation} \begin{cases} u_t = \triangle u^{m}+au^{p}\int_{\Omega}u^{q}\mathrm{d}x, \; \; \; \; \; \; \; \; \; \; \; \; \; {\rm in }\; \; \Omega\times (0, t^{\ast}), \\ u(x, t) = 0\quad {\rm or }\quad \frac{\partial u}{\partial\nu} = 0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; {\rm on }\; \; \partial\Omega\times (0, t^{\ast}), \\ u(x, 0) = u_{0}(x), \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; {\rm in }\; \; \Omega. \end{cases} \end{equation} $ (1.1)

Here $ a>0 $, $ m>1 $, $ p\geq 0 $ and $ q\geq 0 $, $ \Omega\subset \mathbb{R}^n\; (n\geq 3) $ is a smooth bounded domain, $ \nu $ is the outward norm vector. The initial data $ u_{0}(x) $ is a continuous nonnegative function and satisfies the compatible conditions. In [3], LI and XIE proved that the solution to (1.1) exists globally if $ p+q< m $ or $ p+q = m $ and $ a $ is sufficiently small, while the solution will blow-up in finite time if $ p+q> m $ and the initial data $ u_{0}(x) $ is sufficiently large.

The direct motivation of this paper comes from the papers [1] and [2]. In [1], the authors estimated the lower bounds for the blow-up time of solution to (1.1) subject to Dirichlet boundary condition and Neumann boundary condition in 3-dimension space. In [2], the authors only established the lower bounds for the blow-up time of the solution to (1.1) subject to Dirichlet boundary condition with smooth bounded $ \Omega\subset \mathbb{R}^n $ and $ n\geq 3 $. Naturally, we hope to obtain the lower bound for the blow-up time of the solution to $ (1.1) $ subject to Dirichlet boundary condition and Neumann boundary condition with smooth bounded $ \Omega\subset \mathbb{R}^n $ and $ n\geq 3 $. Inspired by Payne-Schaefer's idea and following the AN and SONG's methods in [4], we will use a delicate application of general Sobolev inequality to deal with both (1.1) subject to Neumann boundary condition and (1.1) subject to Dirichlet boundary condition. There are many results about the estimates of the lower bounds for blow-up time of the solution to parabolic equation. We can refer to [5-13] and the references therein to get more information.

Our main result in this paper can be stated as follows:

Theorem 1.1 Assume that $ u $ is the blow-up solution of $ (1.1) $, which will blow-up at time $ t = t^{\ast} $. Then the lower bound for the blow-up time of the solution is

$ \begin{equation} t^{\ast}\geq \int_{\phi(0)}^{\infty}\frac{\mathrm{d}\eta}{C_1+C_2\eta^{M}} , \end{equation} $ (1.2)

where $ \phi(t) = \int_{\Omega}u^{nk}\mathrm{d}x, \; \phi(0) = \int_{\Omega}u_{0}^{nk}\mathrm{d}x, $ with $ n\geq3 $, $ k>\max\{\frac{p+q-m}{2}, \frac{1}{n}\} $, and $ M $, $ C_1 $, $ C_2 $ are given by the following section.

We will give the details to proof of Theorem $ 1.1 $ in the next section.

2 Lower Bound for the Blow-Up Time

In this section, using a delicate application of general Sobolev inequality, we will establish the lower bound for the blow-up time of the solution to (1.1).

Proof of Theorem 1.1. Define

$ \begin{equation} \phi(t) = \int_{\Omega}u^{nk}\mathrm{d}x, \end{equation} $ (2.1)

with $ n\geq3 $, $ k>\max\{\frac{p+q-m}{2}, \frac{1}{n}\} $.

Using Green formula, we have

$ \begin{equation} \begin{split} \frac{\mathrm{d}\phi}{\mathrm{d}t}& = \int_{\Omega}nku^{nk-1}u_{t}\mathrm{d}x\\& = \int_{\Omega}nku^{nk-1}(\Delta u^{m}+au^{p}\int_{\Omega}u^{q}\mathrm{d}x)\mathrm{d}x \\& = \int_{\Omega}nku^{nk-1}\Delta u^{m}\mathrm{d}x+nka\int_{\Omega}u^{q}\mathrm{d}x\int_{\Omega}u^{nk+p-1}\mathrm{d}x \\& = -\int_{\Omega}nkm(nk-1)u^{nk+m-3}|\nabla u|^{2}\mathrm{d}x+nka\int_{\Omega}u^{q}\mathrm{d}x\int_{\Omega}u^{nk+p-1}\mathrm{d}x \\& = -\frac{4nkm(nk-1)}{(nk+m-1)^{2}}\int_{\Omega}|\nabla u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x+nka\int_{\Omega}u^{q}\mathrm{d}x\int_{\Omega}u^{nk+p-1}\mathrm{d}x. \end{split} \end{equation} $ (2.2)

Using Hölder inequality to the last term in the right of $ (2.2) $, we get

$ \begin{equation} \begin{split} \frac{\mathrm{d}\phi}{\mathrm{d}t} \leq-\frac{4nkm(nk-1)}{(nk+m-1)^{2}}\int_{\Omega}|\nabla u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x+nka|\Omega|\int_{\Omega}u^{nk+p+q-1}\mathrm{d}x, \end{split} \end{equation} $ (2.3)

where $ |\Omega| $ denotes the measure of $ \Omega $.We denote that $ C(\Omega) $ is the best constant in general Sobolev's inequality

$ \begin{equation*} (\int_{\Omega}w^{\frac{2n}{n-2}}\mathrm{d}x)^{\frac{n-2}{2n}}\leq C(\Omega)(\int_{\Omega}|w|^{2}+|\nabla w|^{2}\mathrm{d}x)^{\frac{1}{2}} \end{equation*} $

for any $ w\in H^{1}(\Omega) $.

In convenience, we denote

$ \begin{equation*} \begin{split} &m_{1} = \frac{n(2k+m-1)}{n(2k+m-1)-(n-2)(p+q-1)}, \; \; \; \; m_{2} = \frac{n(2k+m-1)}{(n-2)(p+q-1)}, \\ &m_{3} = \frac{2k+m}{2k+m-(p+q)}, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; m_{4} = \frac{2k+m}{p+q}. \end{split} \end{equation*} $

Then using Hölder inequality and Young's inequality, we have

$ \begin{equation} \begin{split} \int_{\Omega}u^{nk+p+q-1}\mathrm{d}x &\leq \left(\int_{\Omega}u^{nk}\mathrm{d}x\right)^{\frac{1}{m_{1}}} \left(\int_{\Omega}u^{\frac{nk+m-1}{2}\cdot \frac{2n}{n-2}}\mathrm{d}x\right)^{\frac{1}{m_{2}}} \\ &\leq C(\varepsilon)\left(\int_{\Omega}u^{nk}\mathrm{d}x\right)^{\frac{m_{3}}{m_{1}}} +\varepsilon\left(\int_{\Omega}u^{\frac{nk+m-1}{2}\cdot \frac{2n}{n-2}}\mathrm{d}x\right)^{\frac{m_{4}}{m_{2}}}. \end{split} \end{equation} $ (2.4)

Here $ \varepsilon $ will be chosen later, while

$ \begin{equation*} C(\varepsilon) = \frac{(\varepsilon m_{4})^{-\frac{m_{3}}{m_{4}}}}{m_{3}} = \frac{2k+m-(p+q)}{2k+m}\left(\frac{\varepsilon(2k+m)}{p+q}\right)^{-\frac{p+q}{2k+m-(p+q)}}. \end{equation*} $

Using general Sobolev's inequality and Young's inequality to the last term in the right of $ (2.4) $, we get

$ \begin{equation} \begin{split} &\varepsilon\left(\int_{\Omega}u^{\frac{nk+m-1}{2}\cdot \frac{2n}{n-2}}\mathrm{d}x\right)^{\frac{m_{4}}{m_{2}}}\\ \leq&\varepsilon \left[(C(\Omega))^{\frac{2n}{n-2}}\left(\int_{\Omega}|u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x+ \int_{\Omega}|\nabla u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x\right)^{\frac{n}{n-2}}\right]^{\frac{m_{4}}{m_{2}}}\\ \leq &\varepsilon \left[1-\frac{nm_{4}}{(n-2)m_{2}}\right] (C(\Omega))^{\frac{2nm_{4}}{(n-2)m_{2}}\cdot\frac{1}{1-\frac{nm_{4}}{(n-2)m_{2}}}}\\ &+\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\left(\int_{\Omega}|u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x+ \int_{\Omega}|\nabla u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x\right)\\ = &\varepsilon \left[1-\frac{nm_{4}}{(n-2)m_{2}}\right] (C(\Omega))^{\frac{2(2k+m)(p+q-1)}{2k+m-(p+q)}}\\ &+\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\int_{\Omega}|\nabla u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x+\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\int_{\Omega}|u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x. \end{split} \end{equation} $ (2.5)

By Young's inequality to the last term in the right of $ (2.5) $, we get

$ \begin{equation} \begin{split} &\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\int_{\Omega}|u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x = \int_{\Omega}\frac{nm_{4}\varepsilon}{(n-2)m_{2}}u^{nk+m-1}\mathrm{d}x \\ \leq& \int_{\Omega}\left[\frac{nk+m-1}{nk+p+q-1}(u^{nk+m-1})^{\frac{nk+p+q-1}{nk+m-1}} +\frac{p+q-m}{nk+p+q-1}\left(\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\right)^{\frac{nk+p+q-1}{p+q-m}}\right]\mathrm{d}x \\ = &\frac{nk+m-1}{nk+p+q-1} \int_{\Omega}u^{nk+p+q-1}\mathrm{d}x +|\Omega|\frac{p+q-m}{nk+p+q-1}\left(\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\right)^{\frac{nk+p+q-1}{p+q-m}}. \end{split} \end{equation} $ (2.6)

Substituting $ (2.6) $ into $ (2.5) $, we obtain

$ \begin{equation} \begin{split} &\varepsilon\left(\int_{\Omega}u^{\frac{nk+m-1}{2}\cdot \frac{2n}{n-2}}\mathrm{d}x\right)^{\frac{m_{4}}{m_{2}}}\\ \leq&\varepsilon \left[1-\frac{nm_{4}}{(n-2)m_{2}}\right] (C(\Omega))^{\frac{2(2k+m)(p+q-1)}{2k+m-(p+q)}}+\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\int_{\Omega}|\nabla u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x\\ &+\frac{nk+m-1}{nk+p+q-1} \int_{\Omega}u^{nk+p+q-1}\mathrm{d}x +|\Omega|\frac{p+q-m}{nk+p+q-1}\left(\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\right)^{\frac{nk+p+q-1}{p+q-m}}. \end{split} \end{equation} $ (2.7)

Substituting $ (2.7) $ into $ (2.4) $, we have

$ \begin{equation} \begin{split} &\frac{p+q-m}{nk+p+q-1}\int_{\Omega}u^{nk+p+q-1}\mathrm{d}x\\ \leq& C(\varepsilon)\left(\int_{\Omega}u^{nk}\mathrm{d}x\right)^{\frac{m_{3}}{m_{1}}} +\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\int_{\Omega}|\nabla u^{\frac{nk+m-1}{2}}|^{2}\mathrm{d}x +\left[1-\frac{nm_{4}}{(n-2)m_{2}}\right]\varepsilon (C(\Omega))^{\frac{2(2k+m)(p+q-1)}{2k+m-(p+q)}}\\ &+|\Omega|\frac{p+q-m}{nk+p+q-1}\left(\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\right)^{\frac{nk+p+q-1}{p+q-m}}. \end{split} \end{equation} $ (2.8)

Substituting $ (2.8) $ into $ (2.3) $, we get

$ \begin{equation*} \begin{split} \frac{\mathrm{d}\phi}{\mathrm{d}t}\leq&-\left[\frac{4nkm(nk-1)}{(nk+m-1)^{2}}-\frac{nm_{4}\varepsilon}{(n-2)m_{2}} \frac{|\Omega|ank(nk+p+q-1)}{p+q-m}\right]\int_{\Omega}|\nabla u^{\frac{nk+m-1}{2}}|^2\mathrm{d}x\\ &+\frac{|\Omega|ank(nk+p+q-1)}{p+q-m}C(\varepsilon)\phi^{\frac{m_{3}}{m_{1}}} +|\Omega|^{2}ank\left(\frac{nm_{4}\varepsilon}{(n-2)m_{2}}\right)^{\frac{nk+p+q-1}{p+q-m}}\\ &+\frac{|\Omega|ank(nk+p+q-1)}{p+q-m}\left[1-\frac{nm_{4}}{(n-2)m_{2}}\right]\varepsilon (C(\Omega))^{\frac{2(2k+m)(p+q-1)}{2k+m-(p+q)}}. \end{split} \end{equation*} $

Now we can choose

$ \begin{equation*} \varepsilon = \frac{4m(p+q)(nk-1)(p+q-m)(2k+m-1)}{a|\Omega|(nk+m-1)^{2}(nk+p+q-1)(2k+m)(p+q-1)} \end{equation*} $

to make the coefficient of $ \int_{\Omega}|\nabla u^{\frac{nk+m-1}{2}}|^2\mathrm{d}x $ vanishes. Then we have

$ \begin{equation} \frac{\mathrm{d}\phi}{\mathrm{d}t}\leq C_1+C_2\phi^{M}, \end{equation} $ (2.9)

where

$ \begin{equation} \begin{split} M = &\frac{(2k+m)[n(2k+m-1)-(n-2)(p+q-1)]}{n[2k+m-(p+q)](2k+m-1)}, \\ C_{1} = &\frac{|\Omega|ank(nk+p+q-1)[2k+m-(p+q)]}{(p+q-m)(2k+m)}\\ &\times\left(\frac{4m(nk-1)(p+q-m)(2k+m-1)}{|\Omega|a(nk+m-1)^{2}(nk+p+q-1)(p+q-1)}\right)^{-\frac{p+q}{2k+m-(p+q)}}, \\ C_{2} = &|\Omega|^{2}ank\left(\frac{4m(nk-1)(p+q-m)}{(nk+m-1)^{2}(nk+p+q-1)}\right)^{\frac{nk+p+q-1}{p+q-m}}\\ &+\frac{4nkm[2k+m-(p+q)](nk-1)}{(nk+m-1)^{2}(2k+m)(p+q-1)}(C(\Omega))^{\frac{2(2k+m)(p+q-1)}{2k+m-(p+q)}}. \end{split} \end{equation} $ (2.10)

Integrating (2.9), we have

$ \begin{equation} t^{\ast}\geq \int_{\phi(0)}^{\infty}\frac{\mathrm{d}\eta}{C_1+C_2\eta^{M}} \end{equation} $ (2.11)

with

$ \phi(0) = \int_{\Omega}u_{0}^{nk}\mathrm{d}x. $

By the analysis above, we can get the proof of Theorem 1.1.

References
[1]
Liu Dengming, Mu Chunlai, Xin Qiao. Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation[J]. Acta Mathematica Scientia, 2012, 32B(3): 1206-1212.
[2]
Bao A G, Song X F. Bounds for the blowup time of the solutions to quasi-linear parabolic problems[J]. Z. Angew. Math. Phys., 2014, 65: 115-123. DOI:10.1007/s00033-013-0325-1
[3]
Li F C, Xie C H. Global existence and Blow-up for a nonlinear porous medium equation[J]. Applied Mathematics Letters, 2003, 16: 185-192. DOI:10.1016/S0893-9659(03)80030-7
[4]
An Xiaowei, Song Xianfa. The lower bound for the blowup time of the solution to a quasi-linear parabolic problem[J]. Applied Mathematics Letters, 2017, 69: 82-86. DOI:10.1016/j.aml.2017.01.004
[5]
Enache C. Lower bounds for blow-up time in some non-linear parabolic problems under Neumann boundary conditions[J]. Glasg Math J, 2011, 53: 569-575. DOI:10.1017/S0017089511000139
[6]
Jumpen W, Sawangtong P. Lower and upper bounds for blow-up time in a degenerate semilinear parabolic problem[J]. J. Math. Sci. Adv. Appl., 2010, 5: 209-219.
[7]
Payne L E, Philippin G A, Schaefer P W. Blow-up phenomena for some nonlinear parabolic problems[J]. Nonlinear Anal., 2008, 69: 3495-3502. DOI:10.1016/j.na.2007.09.035
[8]
Payne L E, Philippin G A, Schaefer P W. Bounds for blow-up time in nonlinear parabolic problems[J]. J Math Anal Appl, 2008, 338: 438-447. DOI:10.1016/j.jmaa.2007.05.022
[9]
Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Neumann conditions[J]. Appl. Anal., 2006, 85: 1301-1311.
[10]
Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions[J]. J. Math. Anal. Appl., 2007, 328: 1196-1205. DOI:10.1016/j.jmaa.2006.06.015
[11]
Payne L E, Schaefer P W. Bounds for blow-up time for the heat equation under nonlinear boundary conditions[J]. Proc. Roy. Soc. Edinburgh Sect. A, 2009, 139: 1289-1296. DOI:10.1017/S0308210508000802
[12]
Payne L E, Song J C. Lower bounds for the blow-up time in a nonliner parabolic problem[J]. J. Math. Anal. Appl., 2009, 354: 394-396. DOI:10.1016/j.jmaa.2009.01.010
[13]
Schaefer P W. Lower bounds for blow-up time in some porous medium problems[J]. Dynamic Systems and Applications, 2008, 5: 442-445.