数学杂志  2021, Vol. 41 Issue (1): 71-78   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
吴少华
吴迎东
程新
一类带记忆项的非经典热方程的爆破问题
吴少华, 吴迎东, 程新    
武汉大学数学与统计学院, 湖北 武汉 430072
摘要:本文考虑了一类带记忆项的非经典热方程,证明解会在有限时间爆破,而且爆破只会发生在边界.主要结论是:首先利用Green函数与Banach压缩映射定理,建立了问题的经典解;其次,利用经典解,证明了解是有限时间爆破的;最后,证明了一个关于非经典热方程解的性质,利用这个性质,证明了解是在边界上爆破的.
关键词非经典热方程    记忆边界    爆破    
BLOW-UP PROBLEM FOR A CLASS OF NON-CLASSICAL HEAT EQUATION WITH MEMORY TERM
WU Shao-hua, WU Ying-dong, CHENG Xin    
Department of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Abstract: In this article, we consider a non-classical heat equation with a memory boundary condition. We have proved that our solutions blow-up in the finite time, and blow-up only occur on the boundary. Firstly, we construct the classical solution by using the Green function and Banach fixed point theorem.And then we prove the solution blow-up in the finite time. Lastly, we prove the solution only occur on the boundary by using the theorem 2.1.
Keywords: non-classical heat equation     memory boundary condition     blow-up    
1 引言

在本文中, 我们考虑如下模型:

$ \begin{equation} \begin{cases} v_t = \Delta v+\phi(x)+v, & x \in \Omega, |\phi(x)|\leq M, \\ \dfrac{\partial v}{\partial \vec n} = \int_0^t e^{v(x, s)}ds, & x \in \partial{\Omega}, \\ v(x, 0) = 0, & x \in \overline{\Omega}, \end{cases} \end{equation} $ (1.1)

其中$ \Omega $$ \mathbb{R}^{n} $上的有界区域, 它的边界$ \partial\Omega\subset C^{1+\mu}(0<\mu<1) $, $ \vec{n} $是单位法向量, 其指向向外.

在过去几十年中, 抛物型方程的研究取得了丰硕的成果, 其中以美国科学院院士Avner Friedman为首的数学家, 更是将这一领域的研究推向了极高的水平.在文献[1]中, Friedman院士利用先验估计证明了抛物组解的可微性, 随后, 他在文献[2]中证明了, 各种不同的积分增长条件下, 一般抛物组的唯一性定理. Mizohata[3]则用半群的方法给出了Cauchy问题的存在性, Tychonov[4]则对热传导方程首先建立了Cauchy问题解的唯一性.在Friedman的论文[5-8]中, 集中解决了关于抛物型方程的自由边界问题, 即

$ \begin{equation} \begin{cases} u_{xx} = u_t, & 0<x<s(t), t>0, \\ u(0, t) = f(t), & 0\leq f(t), t>0, \\ u(x, 0) = \phi(x), & 0< x\leq b, \phi(b) = 0, \\ u(s(t), t) = 0, &0<t, s(0) = b, \\ u_x(s(t), t) = -\dfrac{ds(t)}{dt}, & 0<t, \end{cases} \end{equation} $ (1.2)

其中$ x = s(t) $不是已经给定的边界, 而是和$ u(x, t) $一起寻找的自由边界.在此基础上, 自由边界的问题得到较为充分的研究, Douglas[9]与Kyner[10]则发展了Friedman研究自由边界的方法, 考虑了非经典的热方程.

近年来, 学者们则开始研究关于热传导方程带记忆项边界问题的研究[11, 12], 记忆项即带有时间积分边界条件.带记忆项的自由边界问题, 有核反应堆动力学相关问题[13], 人口流动问题[14].关于这类模型的局部(或整体)解的存在性, 稳定性, 有限时间爆破都被Y. Yamada, P. Souplet和P. Vernole等人讨论清楚了.

粘弹性模型中也研究了扩散中的记忆项非牛顿流体中的力[15], 还有涉及带有记忆项的Fisher方程形式的模型的研究[16, 17].在这里需要指出的是, 分数阶时间导数作为记忆算子已经在D'Arcy定律和分子传输的记忆形式学中进行了研究[18], 关于气候模型中扩散和反应, 我们也引入了记忆条件[19].

有两个原因, 促使我们研究问题(1.1).第一, 在文献[20]中, 模型(1.3)

$ \begin{equation} \begin{cases} u_t = \Delta u, &x\in \Omega , t>0, \\ \dfrac{\partial u}{\partial \vec n} = e^{u}, &x\in \partial \Omega, t>0, \\ u(x, 0) = u_0(x), & x\in \overline{\Omega}, \end{cases} \end{equation} $ (1.3)

已经被证明, 所有非负解都会在有限时间爆破, 爆破只会发生在边界.

第二, 在文献[11]中, 邓铿研究了带记忆边界条件的热方程(1.4), 证明了解的全局存在性与爆破性质.

$ \begin{equation} \begin{cases} u_t = \Delta u, & {\rm{on}} \quad \Omega_T, \\ \nabla u\cdot \vec {n} = u^{q} {\int_{0}^{t}{u^{p}(\cdot, s)ds}}, & {\rm{on}} \quad (\partial{\Omega})_T, \\ u = u_0, & {\rm{on}} \quad \overline{\Omega} \times{\{0\}}, \end{cases} \end{equation} $ (1.4)

式子中, $ p\geqslant0, q\geqslant0 $, and $ \Omega_T = \Omega \times(0, T) $, 其中$ \Omega $$ \mathbb{R}^N $上的有界区域, 具有光滑的边界$ \partial\Omega $, $ \vec{n} $是单位法向量, 指向向外.初始值$ u_0 $是一个在$ \overline{\Omega} $上非负连续的函数.他的主要结论是:如果$ 0\leqslant p+q \leqslant 1 $, 则(1.4)的解是全局的.另一方面, 如果$ p+q>1 $, 则所有非负, 平凡的解是在有限时间爆破的.

2 解的最值性质

在这一节, 我们将证明一个定理, 它将辅助证明定理4.1, 这个定理刻画的是解的最大值属性, 证明主要通过构造两个函数.

定理2.1   如果$ u(x, t) $$ \overline\Omega\times(0, T)(T<1) $上的连续函数, 满足

$ \begin{equation} \begin{cases} u_t = \Delta u+u, & (x, t)\in\Omega\times(0, T), \\ u\leq \dfrac{C}{(T-t)^q}, & (x, t)\in \partial \Omega \times (0, T), q>0, \\ u(x, 0) = 0, & x\in \partial \Omega, \end{cases} \end{equation} $ (2.1)

则对任意的$ \Omega'\subset\subset\Omega $, 我们有$ \sup\{u(x, t);(x, t)\in\Omega'\times(0, T)\}<\infty $.

  不失一般性, 我们认为$ \partial \Omega $是光滑的, 且是$ C^2 $的.

$ d(x) = dist(x, \partial \Omega) $, $ v(x) = d^2(x), 这里 x\in N_ \epsilon (\partial \Omega) $, 其中$ N_\epsilon(\partial \Omega) = \{x\in\Omega, d(x)<\epsilon\} $.因为边界$ \partial\Omega $$ C^2 $的, 所以只要$ \epsilon $充分小, 则函数$ v(x)\in C^2\overline{N_\epsilon(\partial \Omega)} $.由于$ |\nabla d(x)| = 1, |\nabla v|^2 = 4d^2(x)|\nabla d|^2, \Delta v = 2d(x)\Delta d+2(\nabla d(x))^2 $, 从而在边界$ \partial \Omega $$ \Delta v-\frac{(q+1)|\nabla v|^2}{v} = 2-4(q+1) {.} $因为$ v(x)\in C^2\overline{N_\epsilon(\partial \Omega)} $, 如果$ \epsilon_0 $充分小, 则在$ \overline{N_{\epsilon_{0}}(\partial \Omega)} $上, 我们有

$ \begin{equation*} \Delta v-\frac{(q+1)|\nabla v|^2}{v}>-4(q+1) {.} \end{equation*} $

接下来, 我们将$ v(x) $的定义域延拓到$ \overline\Omega $上, 使得$ v\in C^2(\overline \Omega) $, 而且在$ \overline{\Omega\backslash N_{\epsilon_0}{\partial\Omega}} $$ 0<c_0\leq v $.那么, 在$ \overline{\Omega} $上, 对于某些$ C^*>0 $, 我们可以得到,

$ \begin{equation*} \Delta v-\frac{(q+1)|\nabla v|^2}{v}>-C^* {.} \end{equation*} $

$ w(x, t) = \frac{C_1 t}{[v(x)+C^*(T-t)]^q}{, } $于是有

$ \begin{equation*} w_t-\Delta w-w = w(\frac{1}{t}-1)+\frac{C_1 qt}{[v+C^*(T-t)]^{q+1}}(C^*+\Delta v-\frac{(q+1)|\nabla v|^2}{v+C^*(T-t)})>0{.} \end{equation*} $

如果$ C_1 $充分大, 使得$ (C^*)^q\leq C_1 t $, 那么根据比较原理, 我们有$ u(x, t)\leq w(x, t) $, 而且

$ \begin{equation*} \sup\{u(x, t);(x, t)\in\Omega'\times[0, T)\}\leq C_1 \sup \{\frac{1}{v(x)^q};x\in \Omega'\}<\infty{.} \end{equation*} $
3 有限时间爆破

下面, 我们通过格林函数方法构造一个关于$ v(x, t) $的表达式, 然后利用Banach不动点定理, 我们可以证明该表达式是问题(1.1)的局部经典解.

定理3.2   设$ G_N(x, y, t, \tau) $是表示带有齐次Neumann边界条件的热方程的格林函数, 则在问题(1.1)的条件下我们有:

$ \begin{equation} \Gamma[v](x, t) = \int_{0}^{t}\int_{\partial\Omega} G_N(x, y, t, \tau)\int_{0}^{\tau}e^{v(y, s)}dsdS_y d\tau+\int_{0}^{t}\int_{\Omega}G_N(x, y, t, \tau)(\phi(x)+v)dyd\tau \end{equation} $ (3.1)

对较小的$ t $是一个压缩映射.

  根据文献[21], 令

$ \kappa(t) = \sup\limits_{\overline\Omega, 0\leq\tau\leq t}\int_{0}^{\tau}\int_{\partial\Omega}G_N(x, y, \tau, \eta)dS_yd\eta{, }\quad \varpi(t) = \sup\limits_{\overline\Omega, 0\leq\tau\leq t}\int_{0}^{\tau}\int_{\Omega}G_N(x, y, \tau, \eta)dS_yd\eta{.} $

取定$ \widehat{T}<\epsilon_0 $$ M>0 $, 使得

$ \max \left\lbrace e^M\widehat{T}k(\widehat{T}), M^{m}\varpi(\widehat{T})\right\rbrace\leq \frac{M}{3}. $

根据文献[14], 对任意的$ \epsilon_0, \widetilde{C_0}, \widetilde{C}>0 $, 取$ t<\epsilon_0 $, 有$ \kappa(t)\leq2\widetilde{C_0}\sqrt{t}, \varpi(t)\leq\widetilde{C}t $.若$ \left| v\right|\leq M , 0< t\leq \widehat{T}<1 $, 则

$ \begin{align*} \left|\Gamma[v] \right| &\leq\left|\int_{0}^{t}\int_{\partial\Omega}G_N(x, y, t, \tau)\int_{0}^{\tau}e^{v(y, s)}dsdS_yd\tau\right| +\left| \int_{0}^{t}\int_{\Omega}G_N(x, y, t, \tau)(\phi(x)+v)dyd\tau\right|\\ &\leq \frac{M}{3}+\frac{2M}{3} = M{.} \end{align*} $

因此, $ \Gamma $$ \chi $到自身的一个映射, 其中$ \chi = \left\lbrace v\in C(\overline{\Omega}\times[0, \widehat{T}]):\Vert v\Vert_\infty\leq M\right\rbrace {.} $对任意的$ v_1, v_2\in \chi $, 我们有

$ \begin{align*} &\Vert\Gamma[v_1]-\Gamma[v_2]\Vert_\infty\\ \leq& \left|\int_{0}^{t}\int_{\partial\Omega}G_N(x, y, t, \tau)\int_{0}^{\tau}e^{v_1(y, s)}dsdS_yd\tau-\int_{0}^{t}\int_{\partial\Omega}G_N(x, y, t, \tau)\int_{0}^{\tau}e^{v_2(y, s)}dsdS_yd\tau\right| \\ &+\left| \int_{0}^{t}\int_{\Omega}G_N(x, y, t, \tau)(v_1(y, \tau)-v_2(y, \tau))dyd\tau \right| \\ = &\left|\int_{0}^{t}\int_{\partial\Omega}G_N(x, y, t, \tau)\int_{0}^{\tau}(v_1(y, \tau)-v_2(y, \tau))e^{v(y_0, s)}dsdS_yd\tau\right|\\& +\left| \int_{0}^{t}\int_{\Omega}G_N(x, y, t, \tau)(v_1(y, \tau)-v_2(y, \tau))dyd\tau \right| \\ \leq&(\widetilde C\widehat{T} +2\widetilde{C_0}\widehat{T}e^M) \Vert v_1-v_2\Vert_\infty{.} \end{align*} $

$ \widehat{T}<\min\left\lbrace 1/(\widetilde C+2\widetilde{C_0}e^M), 1, \epsilon_0\right\rbrace $, 则存在$ 0<\alpha<1 $, 使得$ \Vert\Gamma[v_1]-\Gamma[v_2]\Vert_\infty \leq \alpha\Vert v_1-v_2\Vert_\infty $, 所以$ \Gamma $是一个压缩映射.于是, 我们可以得到一个局部的经典解:

$ \begin{eqnarray} v(x, t) = & \int_{0}^{t}\int_{\partial\Omega} G_N(x, y, t, \tau)\int_{0}^{\tau}e^{v(y, s)}dsdS_y d\tau\\ &+ \int_{0}^{t}\int_{\Omega}G_N(x, y, t, \tau)(\phi(x)+v)dyd\tau. \end{eqnarray} $ (3.2)

定理3.3   问题(1.1)的非负, 非平凡解在有限时间内爆破.

  后文中, 在不引起任何混淆的情况下.我们使用$ c_i $$ C_i (i = 0, 1, 2, ...) $表示各种正常数.如文献[22]中所示, 我们有

$ \begin{equation} \int_{\partial\Omega}G_N(x, y, t, \tau)dS_x\geq c_0\quad \text{其中} y\in \overline{\Omega}, t>\tau\geq0. \end{equation} $ (3.3)

根据(3.2), (3.3)和詹森不等式得到

$ \begin{align} \int_{\partial\Omega}v(x, t)dS_x&\geq\int_{\partial\Omega}\left( \int_{0}^{t}\int_{\partial\Omega}G_N(x, y, t, \tau)\int_{0}^{\tau}e^{v(y, s)}dsdS_yd\tau\right)dS_x \\&\geq c_0\int_{0}^{t}\int_{0}^{\tau}\int_{\partial\Omega}e^{v(y, s)} dS_ydsd\tau\\ &\geq c_1\int_{0}^{t}\int_{0}^{\tau}e^{\int_{\partial\Omega}v(y, s)dS_y} dsd\tau{.} \end{align} $ (3.4)

另一方面, 根据(3.2), (3.3), 我们有

$ \begin{align} & \int_{\partial\Omega}v(x, t)dS_x\\ \geq&\int_{\partial\Omega}\left( \int_{0}^{t}\int_{\Omega}G_N(x, y, t, \tau)\phi(y)dyd\tau\right)dS_x = \int_{0}^{t}\int_{\Omega}\phi(y)\left(\int_{\partial\Omega}G_N(x, y, t, \tau) dS_x\right) dyd\tau\\ \geq& c_0\int_{0}^{t}\int_{\Omega}\phi(y) dyd\tau = c_0t\int_{\Omega}\phi(y) dy \geq c_2t{, } \end{align} $ (3.5)
$ \begin{align} & \int_{\partial\Omega}v(x, t)dS_x\\ \geq &\int_ {\partial\Omega}\left( \int_{0}^{t}\int_{\Omega}G_N(x, y, t, \tau)v(y, \tau)dyd\tau\right)dS_x = \int_{0}^{t}\int_{\Omega}v(y, \tau)\left(\int_{\partial\Omega}G_N(x, y, t, \tau) dS_x\right) dyd\tau\\ \geq& c_0\int_{0}^{t}\int_{\Omega}v(y, \tau) dyd\tau \geq c_3tK(t) {, } \end{align} $ (3.6)

其中$ K(t) = \int_{\partial\Omega}v(x, t)dS_x. $结合(3.2), (3.4), (3.5), (3.6)得到

$ K(t)\geq \frac{c_2t}{1-c_3t}+\frac{c_1}{1-c_3t}\int_{0}^{t}\int_{0}^{\tau}e^{K(s)}dsd\tau\quad t>0 , $

$ \widetilde{c_2}(t) = \dfrac{c_2}{1-c_3t} , \widetilde{c_1}(t) = \dfrac{c_1}{1-c_3t} $, 现在用反证法证明.

假设问题(1.1)有全局解$ v $, 则对任意的正数$ T $, 有$ K(t)\geq \widetilde{c_2}(T)T+\widetilde{c_1}(T) \int_{T}^{t} \int_{T}^{\tau}e^{K(s)}dsd\tau, $ $ T\leq t\leq2T. $因此, 在区间$ [T, 2T] $$ K(t)\geq k(t) $, 其中

$ k(t) = \widetilde{c_2}(T)T+\widetilde{c_1}(T)\int_{T}^{t} \int_{T}^{\tau}e^{k(s)}dsd\tau, \quad \quad T\leq t\leq2T . $

显然, $ k(t) $满足

$ \begin{equation} \begin{cases} k^{''}(t) = \widetilde{c_1}(T)e^{k(t)}, \quad &T<t<2T, \\ k(T) = \widetilde{c_2}(T)T, &k^{'}(T) = 0. \end{cases} \end{equation} $ (3.7)

将(3.7)中的方程乘以$ k^{'}(t) $并从$ T $$ t $积分, 我们得到

$ k^{'}(t) = \sqrt{\dfrac{2c_1}{1-c_3T}} \left[e^{k(t)}-e^{k(T)} \right]^{1/2} . $

$ c = \ln 2+\widetilde{c_2}(T)T, c_4 = \sqrt{\dfrac{2c_1}{1-c_3T}} $, 将上述等式在区间$ [T, 2T] $上积分, 得到

$ \begin{align*} c_4T& = \int_{k(T)}^{k(2T)}\frac{dz}{\sqrt{e^z-e^{k(T)}}} \leq \int_{\widetilde{c_2}(T)T}^{c} \frac{dz}{\sqrt{e^z-e^{\widetilde{c_2}(T)T}}}+ \int_{c}^{\infty}\frac{dz}{\sqrt{e^z-e^{\widetilde{c_2}(T)T}}}\\ &\leq \frac{1}{\sqrt{e^{\widetilde{c_2}(T)T}}} \int_{\widetilde{c_2}(T)T}^{c}\frac{dz}{\sqrt{z-\widetilde{c_2}(T)T}} +\sqrt{2}\int_{c}^{\infty}\frac{dz}{\sqrt{e^z}}\\ & = \frac{2}{\sqrt{e^{\widetilde{c_2}(T)T}}}\sqrt{\ln 2}+\frac{2\sqrt{2}}{\sqrt{e^c}} = \frac{2}{\sqrt{e^{\widetilde{c_2}(T)T}}}\left( \sqrt{\ln 2}+1\right), \end{align*} $

或等价的

$ \begin{equation} \sqrt{\dfrac{2c_1}{1-c_3T}}T\sqrt{e^{\widetilde{c_2}(T)T}}\leq2\left( \sqrt{\ln 2}+1\right). \end{equation} $ (3.8)

对于足够大的T, 不等式(3.8)产生矛盾.

4 边界爆破

在文献[10]中表明, 对于带有记忆边界条件的热方程$ \partial u/\partial \vec{n} = \int_{0}^{t}u^p(x, s)ds\quad (p>1) $, 仅在边界上发生爆破.基于更一般的思想, 在本节中, 我们证明了对于问题(1.1), 在区域的内部不会发生爆破.为了确定起见, 我们假定$ T $为爆破时间.

定理4.4   对于任何非平凡, 非负的初始值, 问题(1.1)的解只可能在边界上爆破.

  令$ J(t) = \int_{0}^{t}\int_{0}^{\tau}\int_{\partial\Omega}e^{v(y, s)} dS_ydsd\tau, $由(3.4), 有$ \int_{\partial\Omega}v(y, t) dS_y\geq c_0J(t), $由詹森不等式推出$ J^{''}(t) = \int_{\partial\Omega}e^{v(y, t)} dS_y\geq c_4e^{c_0J(t)}. $将上述不等式乘以$ J^{'}(t) $, 并在$ (0, t) $上积分, 我们得到

$ J^{'}(t)\geq c_5\sqrt{e^{c_0J(t)}-1}. $

将上式在$ (t, T) $上积分, 得到

$ \int_{c_0J(t)}^{\infty}\frac{dz}{\sqrt{e^z-1}} \geq c_6(T-t). $

$ e^z-1\geq z^4/24, $ $ \frac{1}{c_0J(t)} = \int_{c_0J(t)}^{\infty}\frac{dz}{z^2}\geq c_7(T-t), $或等价的

$ \begin{equation} J(t) = \frac{C_0}{T-t}. \end{equation} $ (4.1)

$ \Omega^{'}\subset\subset \Omega $, 满足$ d(\partial\Omega, \Omega^{'}) = \epsilon>0 $, 对于这样的$ \Omega^{'} $, 我们再取$ \Omega^{''}\subset\subset \Omega $, 满足$ \Omega^{'}\subset\subset \Omega^{''}, d(\partial\Omega^{''}, \Omega^{'})\geq\epsilon/3, d(\partial\Omega, \Omega^{'}) \geq\epsilon/3 $, 对$ \forall\epsilon>0 $, 下式成立

$ \begin{equation} 0\leq G_N(x, y, t, \tau)\leq C_\epsilon, \quad \left|x-y \right|\geq\frac{\epsilon}{3}, x, y\in \overline{\Omega}, 0<\tau<t<T . \end{equation} $ (4.2)

根据(3.2), (4.1), (4.2)得到

$ \max\limits_{\overline{\Omega^{''}}}v(x, t)\leq C_1T+C_\epsilon J(t)\leq\frac{C_2}{T-t}. $

根据定理2.1, 我们得到

$ \begin{equation} v(x, t)\leq\frac{C_3}{[\psi(X)+C_4(T-t)]}, \quad\overline{\Omega^{''}}\times[ 0, T ) . \end{equation} $ (4.3)

对于某些$ C_4>0 $, 我们的$ \psi\in C_2(\overline{\Omega^{''}}) $满足

$ \begin{align} \begin{cases} \psi>0, \quad & x\in \Omega^{''}, \\ \psi = 0, \quad & x\in \partial\Omega^{''}, \\ \Delta\psi-\frac{2\left|\nabla\psi \right|^2 }{\psi}\geq- C_4, \quad & x\in \Omega^{''} . \end{cases} \end{align} $ (4.4)

不等式(4.3)表明在$ \overline{\Omega^{*}}\times( 0, T ) $内, $ v(x, t) $不会发生爆破.其中$ \Omega^{*}\subset\subset \Omega^{''} $, 满足$ \Omega^{'}\subset\subset \Omega^{*} , d(\partial\Omega^{*}, \Omega^{'})\geq\epsilon/9, d(\partial\Omega^{''}, \Omega^{*})\geq\epsilon/9 $, 特别的

$ \begin{equation} v(x, t)\leq C_5, \quad x \in \partial{\Omega}^*, \quad 0<t<T. \end{equation} $ (4.5)
参考文献
[1] Friedman Avner. Interior estimates for parabolic systems of partial differential equations[J]. Journal of Mathematics and Mechanics, 1958, 7(3): 393–417.
[2] Friedman Avner. On the uniqueness of the cauchy problem for parabolic equations[J]. American Journal of Mathematics, 1959, 81(2): 503–511. DOI:10.2307/2372754
[3] Mizohata Sigeru. Le problème de cauchy pour les équations paraboliques[J]. Journal of the Mathematical Society of Japan, 1956, 8(4): 269–299. DOI:10.2969/jmsj/00840269
[4] Tychonoff A N. A uniqueness theorem for the heat equation[J]. Mat. Sb., 1935, 42(1): 199–216.
[5] Friedman Avner. Free boundary problems for parabolic equations i. melting of solids[J]. Journal of Mathematics and Mechanics, 1959, 8(4): 499–517.
[6] Friedman Avner. Free boundary problems for parabolic equations ii. evaporation or condensation of a liquid drop[J]. Journal of Mathematics and Mechanics, 1960, 9(1): 19–66.
[7] Friedman Avner. Remarks on stefan-type free boundary problems for parabolic equations[J]. Journal of Mathematics and Mechanics, 1960, 9(6): 885–903.
[8] Friedman Avner. Free boundary problems for parabolic equations iii. dissolution of a gas bubble in liquid[J]. Journal of Mathematics and Mechanics, 1960, 9(3): 327–345.
[9] Douglas Jim. A uniqueness theorem for the solution of a stefan problem[J]. Proceedings of the American Mathematical Society, 1957, 8(2): 402–408. DOI:10.1090/S0002-9939-1957-0092086-6
[10] Kyner W T. An existence and uniqueness theorem for a nonlinear stefan problem[J]. Journal of Mathematics and Mechanics, 1959, 8(4): 483–498.
[11] Anderson Jeffrey, Deng Keng, Dong Zhihua. Global solvability for the heat equation with boundary flux governed by nonlinear memory[J]. Quarterly of Applied Mathematics, 2011, 69(4): 759–770. DOI:10.1090/S0033-569X-2011-01238-X
[12] Deng Keng, Wang Qian. Blow-up rate for the heat equation with a memory boundary condition[J]. Applicable Analysis, 2015, 94(2): 308–317. DOI:10.1080/00036811.2014.892928
[13] CV Pao. Solution of a nonlinear integrodifferential system arising in nuclear reactor dynamics[J]. Journal of Mathematical Analysis and Applications, 1974, 48(2): 470–492. DOI:10.1016/0022-247X(74)90171-1
[14] Aleksandr Kozhanov Ivanovich. Parabolic equations with nonlocal nonlinear source[J]. Siberian Mathematical Journal, 1994, 35(5): 945–956. DOI:10.1007/BF02104572
[15] Grasselli Maurizio, Pata Vittorino. A reaction-diffusion equation with memory[J]. Discrete and Continuous Dynamical Systems, 2006, 15(4): 1079. DOI:10.3934/dcds.2006.15.1079
[16] Aráujo A, Ferreira JAf, Oliveira P de. The effect of memory terms in diffusion phenomena[J]. Journal of Computational Mathematics, 2006, 24(1): 91–102.
[17] Aráujo A, Ferreira JA, Oliveira P de. Qualitative behavior of numerical traveling solutions for reaction-diffusion equations with memory[J]. Applicable Analysis, 2005, 84(12): 1231–1246. DOI:10.1080/00036810500048277
[18] Caputo Michele. 3-dimensional physically consistent diffusion in anisotropic media with memory[J]. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, 1998, 9(2): 131–143.
[19] Hetzer Georg. A quasilinear functional reaction-diffusion equation from climate modeling[J]. Nonlinear Analysis:Theory, Methods & Applications, 1997, 30(5): 2547–2556.
[20] Julián López Gómez, Márquez Viviana, Wolanski Noemí. Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition[J]. Journal of Differential Equations, 1991, 92(2): 384–401. DOI:10.1016/0022-0396(91)90056-F
[21] Deng Keng, Man Kam Kwong, A Howard Levine. The influence of nonlocal nonlinearities on the long time behavior of solutions of burgers equation[J]. Quarterly of Applied Mathematics, 1992, 50(1): 173–200. DOI:10.1090/qam/1146631
[22] Hu Bei, Ming Yin Hong. Critical exponents for a system of heat equations coupled in a non-linear boundary condition[J]. Mathematical Methods in the Applied Sciences, 1996, 19(14): 1099–1120. DOI:10.1002/(SICI)1099-1476(19960925)19:14<1099::AID-MMA780>3.0.CO;2-J